Future datacenters will look fundamentally different.

There will be no “servers”.

Like it or not.
Outline:

1. What will happen?
2. Why will it happen?
3. How will it happen?
Today: Server-Centric Architecture
Tomorrow: Resource-Centric Architecture

All resources are individually addressable
The Trends: Disaggregation

1. HP MoonShot
 - Shared cooling/casing/power/mgmt for server blades
The Trends: Disaggregation

1. HP MoonShot
2. AMD SeaMicro
 - Virtualized I/O
The Trends: Disaggregation

1. HP MoonShot
2. AMD SeaMicro
3. Intel Rack Scale Architecture
The Trends: Disaggregation

1. HP MoonShot
2. AMD SeaMicro
3. Intel Rack Scale Architecture
4. Open Compute Project
Disaggregated Datacenter

Resource as a standalone blade
Why will it happen?

: Extreme resource modularity
Benefits of Resource Modularity

I. Easier to build & evolve

– Resources have different cycles/trends/constraints.
 • Tight integration in a server is a huge pain
 • E.g., “Memory capacity per core drops 30% for every 2 years” [Lim et al., ISCA ’09]

– Disaggregation enables independent evolution

– The biggest driving force from vendor’s viewpoint
Benefits of Resource Modularity

1. Easier to build & evolve

2. Fine-grained resource provisioning

 - Current practice: replace/buy an entire server, rack, or even datacenter.

 - e.g., “I want just more processors, not servers!”
 • Go buy some CPU blades at Best Buy® and plug them in.

 - e.g., “I want to try the new NVRAM technology!”
 • Again, go for it.
Benefits of Resource Modularity

1. Easier to build & evolve
2. Fine-grained resource provisioning
3. Operational efficiency
 - Datacenter as a single giant computer
 - Higher utilization with statistical multiplexing
 - (I will get back to this)
How will it happen?

: Incrementally and radically.
• Do we need to change everything? NO.
 – HW change is minimal.
 – SW change is minimal, too.
HW Requires Minimal Modification

- The internals don’t need to change.
- All we need is embedded network controller:
 - They already have: QPI, HT, PCIe, SATA, …
 - Can be very cheap
 - E.g., a whole graphics card w/ 128Gbps for only $50
How About SW?

• Existing SW infrastructure heavily relies on the concept of “server”
 – We don’t want to rewrite it from scratch.
 – How to utilize the “giant computer”?

No modification for App/OS
Minor changes in VMM.
Much higher utilization!
Elastic VMs Achieve High Utilization!
Elastic VMs Achieve High Utilization!

40% of resources are wasted

Servers
Elastic VMs Achieve High Utilization!

1. No “server boundary”
2. Statistical multiplexing at a larger scale
3. Higher utilization!

40% of resources are wasted
Figure 1: Distribution of disk/memory capacity demand to CPU usage ratio for tasks in Google’s datacenter.
• We don’t need to change everything.
 – HW change is minimal.
 – SW change is minimal, too.

• A unified network is plausible
 – The intra-/inter-server networks can be unified.
 – Bandwidth/latency requirements are within reach.
Two Different(?) Types of Network

Intra-server Network

Inter-server Network
Intra- vs. Inter-Server Networking

Aren’t they two different things?

Not really.

E.g., PCIe and 10GbE

- Serial
- Point-to-point
- Full duplex
- Packet-switched
- Variable packet size
- Supports both message and read/write semantics

No fundamental™ difference!
Making Memory Traffic Manageable

- **Registers**: 10,000 Gbps, 1 ns
- **CPU Cache**: 500 Gbps, 50 ns
- **Memory**: 1-10 Gbps, 50,000 ns
- **SSD / HDD**
Making Memory Traffic Manageable

Registers

10,000 Gbps \(\uparrow \) 1 ns

CPU Cache

500 Gbps \(\uparrow \) 50 ns

Local memory

?? Gbps \(\uparrow \) ?? ns

Remote memory

1-10 Gbps \(\uparrow \) 50,000 ns

SSD / HDD

A small amount of local memory as a “cache”
Desirable Network Speed?

• A quick-and-dirty experiment

![Diagram showing local and emulated memory with artificial delay for bandwidth/latency](image-url)

- Local memory
- Emulated "remote" memory
- Artificial delay for bandwidth/latency
Desirable Network Speed?

- 4 CPU cores, 8GB working set size
- GraphLab, memcached, Pig

- Findings (read the paper)
 1. 10-40 Gbps is enough.
 1. Feasible even today!
 2. Average link utilization: < 1-5Gbps
 2. Latency matters.
WANTED: Low Latency

memcached with varying latency

< 10µs latency, < 20% overhead
Research Questions
Questions

- **Answered:**
 - How fast should it be? >10-40Gbps, <1-10μs.

- **Unanswered:**
 - Scalability?
 - Reliable transfer?
 - QoS?
 - Packet? Circuit?
 - ...
1. “Right” Scale of Disaggregation

- Disaggregation scale: where is the sweet spot?

Datacenter-scale (flat)

Chassis/rack/pod-scale (two-tier)

Traditional inter-server network
2. Realizing Low Latency

- It’s time for low latency [Rumble et al., HotOS ’11]
 - “5-10µs latency is possible in the short term”
 - “1µs round-trip times cannot be achieved off-processor”

- Congestion avoidance/control should be “close to the metal”.
 - A lot of research efforts are ongoing.
 - Will they be still valid in disaggregated datacenters?
3. Unified Scheduler

- We will need a unified scheduler:
 - Job scheduler + network controller
3. Unified Scheduler

- We will need a unified scheduler:
 - Job scheduler + network controller
3. Unified Scheduler

- We will need a unified scheduler:
 - Job scheduler + network controller
Closing Remarks

- Disaggregated datacenter will be “the next big thing”
 - Already happening. We need to catch up!

- We are working on a small-scale prototype.
 - Disaggregated resource blades on existing SW/HW
 - 40 CPUs
 - 6 remote memory blades
 - 8 GPU/NIC/storage blades
 - PCIe as the “unified interconnect”