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ABSTRACT
The emergence of low-power 32-bit Systems-on-Chip (SoCs), which
integrate a 32-bit MCU, radio, and flash, presents an opportunity
to re-examine design points and trade-offs at all levels of the sys-
tem architecture of networked sensors. To this end, we develop a
post-SoC/32-bit design point called Hamilton, showing that using
integrated components enables a ∼$7 core and shifts hardware mod-
ularity to design time. We study the interaction between hardware
and embedded operating systems, identifying that (1) post-SoC
motes provide lower idle current (5.9 µA) than traditional 16-bit
motes, (2) 32-bit MCUs are a major energy consumer (e.g., tick
increases idle current >50 times), comparable to radios, and (3)
thread-based concurrency is viable, requiring only 8.3 µs of context
switch time. We design a system architecture, based on a tickless
multithreading operating system, with cooperative/adaptive clock-
ing, advanced sensor abstraction, and preemptive packet processing.
Its efficient MCU control improves concurrency with ∼30% less en-
ergy consumption. Together, these developments set the system
architecture for networked sensors in a new direction.
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1 INTRODUCTION
We consider the central question of whether and how system ar-
chitecture issues for embedded wireless sensor network (WSN)
systems in the years ahead may be fundamentally different from
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those that have guided design over the past 20 years, since the
emergence of the field [31, 37]. While it is easy to observe high-
level trends and infer that at some point conventional concurrency
models and networking stacks will fit on this class of computing
platform, when dealing with low power embedded operation, the
devil is always in the details.

The datasheets for modern 32-bit System-on-Chip units (SoCs)
with an integrated microcontroller (MCU) and radio are truly im-
pressive [10, 43]. Thread-based OSes have reemerged (e.g., RIOT
[14]), and commercially-driven IPv6 network protocols have arrived
(e.g., OpenThread [71]). However, cursory analysis would suggest
that they still fail to obtain the extremely low idle-power, fast wake-
up and context switching, efficient active operation, and low cost
that are intrinsic requirements of long-lived, unattended WSNs
operating on a limited energy budget [37]. This has been achieved
by communication-centric, event-driven execution on relatively
primitive MCU, radio, ADC, and transducer hardware [64].

We present a detailed design, implementation and analysis to bet-
ter answer this question. This involves: (1) creating a new hardware
platform, Hamilton [9], focused on design for manufacturability
(DFM), (2) porting both an event-driven OS (Contiki [25]) and a
thread-based OS (RIOT) to the hardware platform, (3) carefully
optimizing and re-implementing a thread-based OS to attend to
power and concurrency issues at the level previously obtained with
event-driven execution, and (4) conducting whole-system analysis
of the resulting power and performance characteristics. With all of
these efforts, the higher level question can be answered:
• Modular platforms with application-specific sensor subsystems
separated from an expert-designed processing-radio-storage core
are replaced by design level modularity of a few highly integrated
components dropped as a design block onto a cheap, rudimentary
PCB along with digital sensors.

• With meticulous, platform-aware design of the ‘idle thread’, idle
current on 32-bit SoC-based (e.g., Atmel SAMR21 [10]) plat-
forms can, after 15 years, be brought well below that achieved by
TinyOS [64] on 16-bit TIMSP430-based platforms (e.g., TelosB[75]).

• With high clock-rate and advanced memory system, context
switching among threads, on either yield or preemption, is now
faster than event handling on 16-bit platforms. Advanced hard-
ware support for peripherals vastly diminishes the concurrency
demands on the system. Preemption becomes critical as pro-
cessing-intensive analytics are incorporated locally into applica-
tions.

• With idle listening and other techniques incorporated into radio
hardware, assumptions that radio power consumption vastly ex-
ceeds that of the CPU and that the CPU can busy-wait are no
longer valid. Instead, system design should focus on offloading
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operations to intelligent peripherals and coordinating these op-
erations while sleeping in between. The incorporation of ADCs
and processing directly into digital sensors extends this trend.
To illustrate design issues that are likely to arise in this new

system architecture regime, we explore several questions. With the
availability of multiple SoC clocks and clock/power domains, how
can these be coordinated to achieve the best idle, wake-up, and
active power characteristics? With the prevalence of intelligent,
multi-mode digital sensors, how should the basic primitives and ab-
stractions evolve? In the presence of preemption, relatively limited
buffering, and latency sensitivity, how should concurrency in the
embedded network stack be structured?

To frame the investigation, Section 2 provides a brief retrospec-
tive of critical design factors in generations of sensor system plat-
forms, i.e., motes. Section 3 presents a specific, open-source post-
SoC design point that reduces the manufacturing costs below $7 and
essentially eliminates (previously dominant) assembly costs. It is
represented as a design block that can be dropped into application-
specific systems. Section 4 uses this platform to investigate embed-
ded OS issues, showing why a tickless scheduler is necessary to
achieve a true idle mode (with a current draw of 2.6 µA for the core
and 5.9 µA for a full sensor suite), why the MCU control becomes
as important as the radio control for low power operation, and
why the thread concurrency model becomes competitive with an
event-driven approach. Together these establish the transition to a
new sensor system design regime. Section 5 presents a post-SoC ar-
chitecture with careful MCU management and efficient preemptive
multithreading: cooperative/adaptive clocking, sensor abstraction,
and preemptive packet processing. Section 6 provides an overall
evaluation using this platform, optimized RIOT, and a redesigned
OpenThread stack under typical WSN scenarios, demonstrating
concurrency improvements with ∼30% less energy consumption.
Section 7 discusses remaining issues and Section 8 concludes.

2 RELATEDWORK: CO-EVOLUTION OF
MOTE ANDWSN TECHNOLOGY

In a traditional system architecture [37], there are five distinct
characteristics of networked sensors: (1) Small physical size and
low power consumption, (2) Concurrency-intensive operation, (3)
Limited physical parallelism and controller hierarchy, (4) Diver-
sity in design and usage, and (5) Robust operation. Constraint (1)
shaped the evolution of motes for two decades [91] and motivated
WSN system designs, which are clearly differentiated from that of
embedded devices, such as Raspberry Pi and Arduino.
8-bit Motes (the First Generation). By 2000, a state-of-the-art
mote [37] had an 8-bit MCU with a 4 MHz clock (calibrated by an
external crystal) and 0.5 kB RAM. This resource-constrained MCU
needed to handle every peripheral-generated event due to lack of in-
dependent controllers. For example, its radio had no buffer, forcing
the MCU to handle modulation of each bit to/from the radio on time.
This significant overhead on the MCU motivated a concurrency-
intensive OS, TinyOS [64]. To provide high concurrency with slow
processing and small memory, TinyOS adopted an event-based con-
currency model with a single shared stack, a tickless scheduler, and
non-preemptive run-to-completion semantics. This made the event
model (rather than the thread model) standard practice for WSNs.

8-bit motes evolved further. Mica [38] reduced the MCU burden
by handling radio data in 8-bit chunks and automating transmission
timing. A peripheral bus approach (featuring a 51-pin connector)
provided modularity. MicaZ [68] additionally reduced the burden
on the MCU by (1) handling radio data in 128-byte packets and
(2) further automating communication operations. Its TI CC2420
radio [33] supported the IEEE 802.15.4 standard, had two 128-byte
buffers and handled all physical and some MAC layer operations
autonomously. The CC2420 became a representative radio in WSN
and spawned numerous low-power network protocols [18, 24, 69].
16-bit Motes (the Second Generation). In 2004, the TelosB [75]
began the 16-bit mote era and significantly impacted system ar-
chitecture with the following features: (1) More RAM (10 kB RAM
in the TI MSP430 [40]) enabled storage and processing of sensor
data in larger batches [78], reducing concurrency requirements.
(2) Integration of every component on a single board with careful
power gating achieved a low-power, easy-to-use, and robust mote,
while sacrificing modularity. The combination of the MSP430 and
the CC2420 became a common choice for 16-bit motes, such as the
Z1 [94], Epic [30], and kMote [49]. While Z1 is a complete board in-
cluding sensors like the TelosB, the kMote and Epic motes separate
the sensor board from the core for modularity.

In 2008, Dutta et al. observed three stages (Prototype, Pilot and
Production) of the WSN lifecycle. While the prototype and pilot
favor modular hardware, production favors design-time hardware
inlining [30]. This conclusion was affirmed by several platforms [8,
38, 49, 87, 89], following the ‘reusable core’ and ‘application-specific
daughter board’ architecture.

With 16-bit motes, a number of studies suggested a compromise
OS architecture: a thread model for applications and an event model
for the kernel. Contiki [25] provided a tick-based event kernel with
preemptive multithreading as a library. Protothreads [26] provided
cooperative multithreading to relieve programmers of the burden of
synchronization. Protothreads were stackless to save memory, but
this prevented using thread-local variables or blocking inside of a
routine [67]. To alleviate this problem, TinyThread [67] introduced
stack-based cooperative multithreading, with a static stack analysis
tool [77] to mitigate stack overflow.

As computationally intensive algorithms, such as data compres-
sion [54, 78], were applied in the WSN setting, cooperative multi-
threading became problematic: a long-running computation in an
application can adversely affect system concurrency [56]. To alle-
viate this issue, TOSThread [56] proposed stack-based preemptive
multithreading for applications, on top of the event-driven kernel
of TinyOS. The authors observed that context switching overhead
is lower in networked sensors than in general-purpose computers
because they do not support virtual memory.
32-bitMotes (theThirdGeneration). Several early efforts sought
to achieve a SoC or 32-bit mote, including Jennic [46], Imote, and
Imote2 [21], but failed to achieve low power operation. In 2012, Egs
and Opal showed that a 32-bit mote can save both time and power
compared to 16-bit motes when performing complex computations,
but idle current remained higher [57]. In 2016, WandStem [87]
showed a 32-bit core achieving lower idle current than 16-bit motes.
Firestorm [8] showed that a 32-bit mote can be applied to the maker



space by providing abundant extension pins like the Arduino and
both IEEE 802.15.4 and BLE radios.

RIOT [14] returned to a classical stack-based preemptive multi-
threading concept in both the kernel and userspace [93] for 32-bit
motes in 2013, with message-passing IPC (interprocess communica-
tion) and a tickless scheduler. The latest 32-bit MCUs have memory
protection units (MPUs). Recent work [8, 65] investigated the po-
tential of MPUs, but used a hybrid concurrency model: processes
for the application and events for the kernel.
Emergence of SoCs. Today, the sophisticated core components
such as the MCU and radio are integrated into a single unit, a SoC.
Although the emergence of SoC comes from system integration
factors, not the MCU progression per se, inWSN the SoCs including
a 32-bit MCU dominate. For example, the OpenMote [89] is built on
the TI CC2538 [41], an early 32-bit SoC with high energy consump-
tion by both the MCU and radio. Its latest revision, the OpenMote
B [72], takes a single-board approach like TelosB, but uses the same
SoC. The Atmel SAMR21 [10] and TI CC2650 [43] are more recent
low-power SoCs, which provide much lower active current for the
MCU and radio than the CC2538. The CC2650’s radio has its own
32-bit MCU, further extending the controller hierarchy.

Several boards have been built on SAMR21, none of which are
low power. SAMR21-XPRO [11] is an evaluation board used in sev-
eral works [48, 74, 83], which consumes high idle current due to its
many peripherals. Sparrow [22] also consumes high idle current
(30 µA). CC2650STK [42] is a complete sensor board built on the
CC2650, which is low power but provides a limited development en-
vironment (only board flashing and packet reading) [39]. However,
a SoC-based mote design has not yet been studied systematically.

Overall, two decades of technical advancement have dramatically
impacted two characteristics of WSNs: (1) concurrency-intensive
operation and (2) physical parallelism and controller hierarchy. This
has motivated new WSN system designs. Likewise, the emergence
of SoCs presents new opportunities. To realize their potential, a
post-SoC system architecture needs to be formulated and evaluated.

3 HAMILTON: A 32-BIT, POST-SOC MOTE
To ground our study, we develop Hamilton (Figure 1) [9], an open
source, 32-bit SoC-basedmote. Off-the-shelf SoC-based boards, such
as OpenMote [89] and SAMR21-XPRO [11], do not permit system-
atic study of design characteristics in a post-SoC era, because they
do not offer application-specific design for manufacturing (DFM),
low power operation, or a sensor suite appropriate for analysis.

3.1 Core
The core encompasses everything that traditionally defines a mote:
processing, storage and communication. In Hamilton, the core is
built around a SAMR21 SoC that combines a 32-bit Cortex M0+,
an AT86RF233 802.15.4 radio, and (optionally) serial flash all in a
single package for $4.58. This SoC provides ample resources (32 kB
RAM/256 kB flash) which allows the use of relatively heavy protocol
stacks, such as OpenThread [71]. Alternatively, the CC2650 has less
memory (20 kB/128 kB) but adds BLE for the same price.1 Both
have comparable power characteristics listed in their datasheets.
1Adding a BLE module is out of scope of this paper but we provide a brief discussion
in Section 7.

Figure 1: Hamilton, a single board that has a low-power 32-
bit SoC and provides 7 types of sensors.

Storm Hamilton
MCU 7.06 USD

4.58 USDFlash 3.18 USD
Radio 2.8 USD

RF frontend 2.73 USD 0.91 USD
Oscillators 0.57 USD 0.66 USD
Assembly 12.00 USD 0.6 USD

Total 30.00 USD 6.75 USD
Table 1: Cost for manufacturing the cores of Storm [7] and
Hamilton. SoC significantly lowers assembly cost.

The SoC is combined with an off-the-shelf chip antenna and
a fully-integrated balun specifically designed for the AT86RF233.
Unlike many previous motes, such as TelosB, Epic, and OpenMote,
we do not use an external oscillator to feed the MCU clock, which
reduces cost. This is because internal oscillators in recent SoCs
are fairly accurate and can be calibrated by the crystal for the ra-
dio [8]. Hamilton uses a 3.0V CR123A Lithium battery as its power
source.2 Compared to two 1.5V AA alkaline batteries, a higher-
energy-density Lithium primary cell provides more consistent volt-
age for a longer time (important for transducers that do not operate
at lower voltages) and reduces the device size.

The BOM (bill of materials) costs of a SoC-based design are
predictably lower (e.g., the SoC costs half as much as its constituent
MCU and radio bought independently) than those without a SoC.
However, the greatest benefit in post-SoC design is that the costs
of PCB manufacture and assembly, which have typically driven the
overall cost of a mote, are significantly reduced, as described below.

Previously, a dense circuit with compact (e.g., ball grid array)
packages required thin traces, multiple PCB layers and small vias,
all of which increased manufacturing costs. In contrast, a SoC-based
mote has fewer chips, no traces for interconnect between the MCU,
radio and flash, and fewer passive components. Previous motes
used expert-designed discrete-element circuits for the balun and
antenna matching network [30], which required precision-value
passives and tight process control in manufacturing; This approach
is no longer required as fully integrated, cheap baluns are available
off the shelf. Similarly, a PCB trace antenna has long been the
standard approach to avoid costly SMA connectors and bulky whip
antennas, but this requires expert design and expensive impedance
controlled PCBmanufacture, along with extensive design validation
across multiple prototypemanufacture runs. Now, off-the-shelf chip
antennas perform well, even with no impedance matching network.
2Although this battery is used for valid reasons, our Hamilton design is independent
from any specific choice of battery.



Overall, the Hamilton core consists of only five off-the-shelf com-
ponentswith five low-precision capacitors: SoC, balun, chip antenna,
crystal (for the radio), and battery. With significantly lower circuit
complexity,3 it can be manufactured without advanced techniques,
for less than $7, even at small quantities. Table 1 compares the to-
tal cost of Hamilton to that of the Storm [7], a recent 32-bit mote
without SoC, showing that Hamilton is 77% cheaper. More impor-
tantly, while assembly is the most significant part of manufacturing
Storm’s cost (40%), it becomes the least significant in Hamilton
(8.8%).4 Using a SoC greatly reduces assembly overhead and makes
BOM costs the dominant factor in overall cost.

3.2 Design for Manufacturing (DFM)
Recognizing the significantly reduced design complexity and man-
ufacturing cost of the post-SoC mote core, we must revisit the
question of modularity to support a wide diversity of designs.
Specifically, the tolerances of a SoC-era core board with its re-
duced complexity are comparable to the tolerances demanded by
digital transducers. These tolerances are well within the capacity of
maker-friendly small-run PCB fabrication facilities, such as Seeed
Studio [4] which can produce 20 four-layer Hamilton PCBs for $2
each with no tooling and setup costs.5 It is now cheaper, simpler and
faster to produce a fully integrated mote than to produce a ‘sensor
daughterboard + mote’ combination even at small quantities.

Modularity is still key, but reuse occurs at the design level. Free
CAD software packages such as Autodesk Eagle [12] now support
design blocks allowing a core to be dropped into an application-
specific design incorporating sensors. In addition to the reduced
complexity of the core, design-time application specialization re-
moves all the traces and vias associated with unused I/O pins,
further reducing complexity and manufacturing cost. This is in
contrast with the expansion ports on conventional modular de-
signs which must accommodate the maximum conceivable I/O
demands [8, 38, 49].

Modern digital sensors are now affordable, presenting additional
opportunities. Rather than analog conditioning circuitry for each
transducer (e.g., potential dividers and filters), digital transducers
integrate everything, including the ADC, into a low-pinout package.
Furthermore, they connect to a bus, reducing the number of traces
on the board and required MCU pins. Also, in the past, complex
techniques such as multiple power domains at different voltages
or individual component power gating, were required to achieve
whole-board low power operation. In contrast, modern digital sen-
sors provide advanced low-power modes, and power consumption
can be adequately controlled using digital commands.

To quantify the impact of DFM in a post-SoC mote, we drive the
specialization of the Hamilton core, following the ‘fully integrated
single board’ architecture like the Z1 and TelosB, with typical en-
vironmental monitoring as an application. According to feedback
from users, such as civil engineers and building architects, we in-
clude transducers to sense the following: air temperature, humidity,
radiant temperature, illuminance, magnetic field, acceleration, and

3For comparison, the TelosB core requires an MCU, radio, flash, two crystals, and a
carefully designed balun and PCB antenna, with 28 passive components [70].
4We used the same manufacturing vendor for fair comparison.
5In contrast, without SoC, e.g., Storm [8], a discrete-component PCB requires 6 layers
and tight tolerances, resulting in each PCB cost an order of magnitude more with a
minimum quantity of 1000 and hundreds of dollars in setup and tooling costs.

(a) WSN ecosystem: 1) with 6 sensors, 2) with 7 sensors (+PIR sensor), 3) small
powered router, and 4) border router with a raspberry pi

(b) Extended ecosystem: 1) ultrasonic anemometer, 2) auto-heating/cooling
insole and smart desk fan (both with an actuator), and 3) thermostat

Figure 2: Hamilton ecosystem. The low manufacturing bur-
den in the post-SoC era shifts hardware modularity to the
design time, enabling easy production of various boards us-
ing the same core.

optionally PIR motion. We include JTAG via bed-of-nails connector
as the user interface, which is fast and provides rich debugging
features with no additional BOM cost or power consumption. This
platform is the basis for the OS and networking investigations in
the subsequent sections.

Manufactured in the USA at prototype quantities (50), each com-
plete system costs $25 for turnkey production (PCB manufacture,
assembly, programming and calibration), about $8 more than the
BOM cost. Manufactured in China at pilot quantities (500), the
complete system costs $18, only $2 more than the BOM cost. At
production quantities (10k), each complete system is quoted at $12,
which is below the BOM cost if purchased at that quantity in the
USA. With low manufacturing cost and the additional advantages,
such as a smaller form factor, increased reliability, and improved
power efficiency [75], it is reasonable to follow the single-board
approach instead of the ‘core + daughter board’ approach or off-
the-shelf development kits.

Figure 2 illustrates Hamilton’s hardware ecosystem. The core
has been used not only in the typical WSN setting (Figure 2(a)) but
also in several projects including an anemometer, wearable device,
desk fan, and thermostat (Figure 2(b)) [16]. Hardware modularity
at the design time allows a single-board architecture for all devices.

3.3 Summary
This section investigated design and manufacturing aspects when
using modern components, including overall cost. The Hamilton
core and its environment sensing specialization are open source de-
sign blocks6 — anyone can drop them into an application schematic
6Hamilton design blocks are provided at https://github.com/hamilton-mote/hw and
Hamilton motes are commercially available at https://hamiltoniot.com.

https://github.com/hamilton-mote/hw
https://hamiltoniot.com


Idle Current
TelosB/TinyOS 8.9 µA
Storm/TinyOS 13.0 µA

Firestorm/TinyOS 25.6 µA
TelosB/Contiki 36 µA

OpenMote/Contiki 2169 µA
CC2650STK/Contiki 13.2 µA
Hamilton/Contiki 347 µA

TelosB/RIOT 1926 µA
SAMR21-XPRO/RIOT 6012 µA

Hamilton/RIOT 5.9 µA (2.6 µA core)
Table 2: Average idle current consumption of various de-
vice/OS packages with 3.3V of input voltage (5.0V for
SAMR21-XPRO).

and send the files to a turnkey manufacturer. The latest technology
has crossed a critical threshold regarding assembly burden, opening
a low-cost 32-bit mote era. Without advanced techniques, post-SoC
motes can be manufactured by more accessible PCB vendors. Low-
cost motes have the potential to facilitate dense deployment and
enable researchers with a low budget (common in developing coun-
tries) to more easily enter into this regime.

4 CHARACTERIZING POST-SOC
HARDWARE/OS INTERACTION

In this section, we establish critical performance characteristics of
Hamilton (power consumption and concurrency) when interact-
ing with embedded OSes, and perform a systematic comparison
to those of prior motes. To this end, we port both RIOT [14] and
Contiki7 on Hamilton and use popular mote/OS packages, such as
TelosB/TinyOS, TelosB/Contiki, and OpenMote/Contiki, as bench-
marks. We use the latest Contiki-NG [5] for the Contiki evaluation.

4.1 Power Consumption: Idle Current
Given that a networked sensor is expected to sleep most of the time,
idle current dominates battery lifetime. Although idle current of
each hardware component is provided by its datasheet, idle current
of a mote/OS ensemble must be measured directly since it may be
impacted by many additional factors, including board assembly and
OS behavior, making it significantly greater than the sum of the
datasheets values. We measure the average idle current of various
mote/OS packages, as shown in Table 2.

TelosB/TinyOS consumes 8.9 µA of idle current, consistent with
previous studies [55]. Storm consumes slightly more current than
TelosB, showing that a 32-bit mote was less energy efficient than
TelosB a few years ago. Firestorm uses Storm as its core but adds
more components, such as BLE, and uses a larger board, doubling
the idle current.

Interestingly, the idle current of TelosB/Contiki is 4 times higher
than that of TelosB/TinyOS, 36 µA. We found that, unlike TinyOS,
Contiki’s tick-based scheduler makes the MCU periodically wake
up to poll and process if any pending task exists (e.g., timer ex-
piry and I/O request). The tick period must be short (around a few
ms) for responsive operation, increasing power consumption. The
7The Contiki/Hamilton port is not fully connected to the network stack but functional
enough for this study.

other two cases of Contiki, OpenMote and CC2650STK, also ex-
hibit an idle current that is much higher than what is given in the
SoC datasheets [41, 43]. This confirms that the OS’s MCU control
impacts power consumption of networked sensors.

Idle current of OpenMote/Contiki (or CC2650STK/Contiki) is
much higher (or slightly lower) than that of the TelosB/Contiki. This
variation among boards is partly because each driver implementa-
tion has a different tick period, but also comes from the hardware’s
power characteristics. While OpenMote’s CC2538 SoC requires an
MCU active current 6.5 times higher than MSP430 [89], the CC2650
has slightly higher MCU-active current. This shows that 32-bit SoC
power characteristics have significantly improved.

RIOT has a tickless scheduler and supports low power operation
by using a dedicated idle thread. The idle thread is executed when-
ever the MCU is free, transitioning the MCU to the lowest power
mode permitted by the current peripheral state. However, the idle
thread does not work as intended, at least in the case of TelosB
and SAMR21 drivers. We observed an idle current of 1.926 mA for
TelosB and 19.7 mA for Hamilton. Achieving a low idle current is
not just about novel concepts but careful driver implementation
considering every component’s behavior.

We undertook the effort to implement a true idle thread in RIOT,
fixing bugs in the MCU, radio, and SPI drivers. Finally, we observe
that, with a low power 32 kHz clock running in the idle mode,
Hamilton/RIOT consumes 5.9 µA, which is 34% lower than the
TelosB/TinyOS case. With only the core of Hamilton (no sensors),
the idle current is 2.6 µA. Although we did not include complex
power-gating circuitry for assembly, the idle current due to sensors
is only 3.3 µA. This confirms that, in the Post-SoC era, the low
power modes integrated in the latest digital sensors are sufficient
for low power operation of an entire board; there is no need for
expensive manufacturing to obtain a low-power mote.

Evenwith our improved SAMR21 driver, the SAMR21-XPRO/RIOT
case shows a very high idle current (6.012 mA) due to more periph-
erals running by default. A low-power SoC does not necessarily
result in a low-power board: The entire board design should be low-
power focused. Finally, Hamilton/Contiki consumes 347 µA with
the same tick period as the TelosB driver, two orders of magnitude
greater than the Hamilton/RIOT case. We confirmed that Hamil-
ton/Contiki provides the same idle current (5.9 µA) when disabling
the tick (but this renders Contiki inoperable). It does show that a
true low-power idle mode for networked sensors should completely
eliminate the active operation of the MCU.

4.2 Power Consumption: MCU vs. Radio
The most significant energy consumer on a mote has historically
been its radio, motivating numerous low power networking proto-
cols [18, 24, 69]. It was a reasonable trade-off to reduce the radio’s
duty-cycle by increasing the MCU’s duty-cycle (more computation
or busy-waiting). For example, MAC implementations on TinyOS
(BoX-MAC-2 [69]) and Contiki (ContikiMAC [24] and TSCH [28])
make the MCU busy-wait during the radio idle listening for timely
radio control (i.e., turning it off as soon as possible).

This tradeoff must be revisited in the Post-SoC era because the
32-bit MCU power draw is fairly high, while the radio power draw
has been reduced. Table 3 shows the power ratio of the radio to
the MCU for various motes [8, 42, 75, 89]. Most 16-bit motes use



Idle listening/ Tx (0 dBm)/
MCU active MCU active

16-bit motes (4 MHz) 9.40 8.70
OpenMote (32 MHz) 1.82 1.85
CC2650STK (48 MHz) 2.21 2.28

Storm (48 MHz) 1.37 1.37
Hamilton (48 MHz) 0.98 1.82

Table 3: Ratio of current consumption on radio operations to
that onMCU’s activemode. Modern 32-bit motes havemuch
lower ratio than traditional 16-bit motes.

0  0.2 0.4

Time [msec]

0 

2 

4 

6 

8 

10

12

14

16

C
u
rr

e
n
t 
[m

A
]

MCU while

MCU comput

Radio reception

Radio idle listen

(a) Smart idle listening

0 1 2 3 4 5 6 7 8 9 10

Time [msec]

0 

2 

4 

6 

8 

10

12

14

16

C
u
rr

e
n
t 
[m

A
]

250 kbps

2 Mbps

Start TxStart backoff

(b) High data rate (2 Mbps)

Figure 3: Currentwaveformof variousHamilton operations,
demonstrating the impact of Hamilton’s advanced radio fea-
tures on power consumption.

the (early version of) MSP430 MCU and the CC2420 radio, which
have a 9.4 power ratio for idle listening. However, 32-bit motes
provide significantly lower power ratios, due to lower radio power
and higher MCU power.

Specifically, the Hamilton radio provides advanced features, such
as smart idle listening and high data rate transmission (up to 2
Mbps). Figure 3(a) shows that with smart idle listening, the radio
current waveform becomes saw-toothed, implying that it tries to
sleep as much as possible.8 This reduces idle listening current to
only half of receiving current, as opposed to previous motes where
idle listening and receiving consume similar current. The average
idle listening current (6.38 mA) becomes slightly lower than the
MCU active current (6.50 mA, when busy-waiting by executing the
‘while’ statement), resulting in the power ratio of 0.98. It also shows
that the current for MCU computation (i.e., AES encryption in this
case) is now similar to that of radio reception.

Figure 3(b) compares normal (250 kbps) and high (2 Mbps) data
rates when Hamilton wakes up, broadcasts a packet, and sleeps.
Interestingly, the high data rate reduces transmission time without
additional current. It significantly reduces radio energy in exchange
for reduced transmission range (∼7 dBm loss). This figure also
reveals automatic CSMA/CA, where the radio sleeps during the
backoff to save energy.

Overall, the design and evaluation of a low-power network pro-
tocol for post-SoC motes must jointly consider MCU and radio
power consumption. In the Hamilton case, making the MCU busy-
wait during idle listening doubles power consumption. Likewise, a
low-power OS should remove any redundant MCU wake-up.
4.3 Concurrency: Context Switch
Next, we investigate concurrency: events vs. threads. The event
model supports highly concurrent operations and is resource effi-
cient [37] but requires finite state machine-based programming and
8The exact radio operation with the smart idle listening is not open to the public.

Preempt Yield
TelosB/TinyOS (4 MHz) 38.9 µs 21.0 µs
TelosB/Contiki (4 MHz) 87.6 µs 72.0 µs

Hamilton/Contiki (48 MHz) 5.84 µs 4.36 µs
TelosB/RIOT (4 MHz) 92.2 µs 83.0 µs

Hamilton/RIOT (4 MHz) 79.4 µs 74.6 µs
Hamilton/RIOT (48 MHz) 8.30 µs 7.76 µs

Table 4: Context switch times. Preempt refers to waking
up a thread or posting a task, and then switching to that
thread/task. Yield refers to switching to a thread/task that
is already runnable/posted.

manual matching of calls and returns [6], increasing the program-
ming burden [86, 90]. The thread model enables a more natural
programming style, with the blocking-wait abstraction and easy
pairing of calls/returns [90], but requires context switches that are
heavier than event dequeuing and has greater memory overhead
in the form of per-thread stacks [37].

Although the thread model is widely used in general-purpose
computers, familiar to most system programmers (taught in most,
if not all, undergraduate OS classes) and extensively investigated
in academia and industry, networked sensors have used the event
model (e.g., TinyOS and Contiki) due to significant resource con-
straints of the underlying hardware. Some limited forms of thread-
ing have been proposed, such as Protothread for Contiki [26] and
TOSThread for TinyOS [56], which provide user-level thread-based
abstractions rather than full stack-based preemptive thread model.
However, it has been two decades since TinyOS was developed
and a decade since the above hybrid models were developed. Mean-
while, motes have become more capable. It is therefore meaningful
to investigate whether the thread model is viable in this regime.

To this end, we measure the time to switch tasks (or threads)
in TinyOS/ Contiki (or RIOT). Table 4 shows that, with TelosB,
TinyOS provides the fastest task switch. Contiki is more than twice
as slow as TinyOS, due to more background processing, but is still
faster than RIOT. An event-driven model has lower overhead than
a thread-based model.

Advanced hardware, however, can afford the context switch
overhead of the thread model. Hamilton/RIOT provides a shorter
context switch than TelosB/RIOTwith the same clock speed (4MHz)
due to the efficiency of a 32-bit MCU and its memory system. With
the 48 MHz clock, Hamilton/RIOT’s context switch delay becomes
much shorter, ∼9 µs. This is 3 times shorter than TelosB/TinyOS
and only ∼3 µs longer than Hamilton/Contiki. Given that the task
switch time of TelosB/TinyOS has been regarded as reasonable, the
modern MCU is fast enough to compensate for the inefficiencies of
threads, making stack-based multithreading viable for concurrency.
This likely applies to not only 32-bit and/or post-SoC motes but
any mote which has a capable-enough MCU. For example, modern
16-bit MCUs, such as MSP430FR5994 [44], also have fast clock and
large memory space.

4.4 Concurrency: Computation Offloading
The use of DMA and modern peripherals allows computation to be
offloaded from the MCU, which significantly relieves concurrency
requirements. Hamilton’s radio provides automatic CSMA/CA and
link layer retransmission and automatically sleeps during CSMA



No DMA DMA
ADC Sample Time 643 µs (busy) 599 µs (idle)
I2C Read Time 587 µs (busy) 492 µs (idle)

Table 5: ADC and I2C operations on Hamilton/RIOT. With
DMA, data can be read from peripherals more efficiently,
without consuming CPU time.

backoff for energy savings.9 This enables the MCU to be idle dur-
ing the entire frame transmission without managing backoff and
radio mode.10 For comparison, the popular CC2420 radio requires
the MCU to wake up many times during a frame transmission:
the number of CSMA tries multiplied by the number of link-layer
transmissions.

In addition, given that digital sensors (five sensors in Hamilton)
have their own ADCs, the MCU only needs to read registers to
obtain prepared results. By using DMA, the MCU can be idle when
reading these values, or even when reading from an analog sensor
through the ADC. We write a DMA controller driver on RIOT and
measure the transfer of a 2-byte reading from the illumination
sensor through the ADC and a 4-byte reading from the humidity
sensor via the I2C bus. Table 5 shows that the DMA relieves the
MCU from computation for a nontrivial amount of time.

4.5 Summary
Our preliminary study of a post-SoC mote identifies the following
paradigm shifts in the system architecture for networked sensors:
• A post-SoC mote, despite having more resources, supporting
more advanced features, and being more easily manufacturable,
provides lower idle current than (carefully designed and manu-
factured) traditional motes.

• MCU power consumption has become comparable to radio power
consumption, making MCU power management important. A
low-power OS must be tickless and remove any redundant MCU
operation (e.g., busy-waiting). A low-power network protocol
should consider both the MCU and the radio power consumption.

• The full thread-based concurrency model is now viable in this
regime because (1) a modern MCU can afford to context switch
overhead, and (2) automated modern peripherals relieve concur-
rency requirement.

5 POST-SOC SYSTEM ARCHITECTURE
Motivated by the given paradigm shifts in the previous section, we
investigate a post-SoC system architecture with deep consideration
of modern hardware characteristics. Specifically, we aim to establish
design principles by answering the following questions:
• How can we utilize a modern MCU in an energy efficient way
without sacrificing its fast processing capability?

• How can we provide efficient interaction between the MCU and
an automated modern peripheral and what is the benefit?

• What benefits arise from using the full thread-based concurrency
model, beyond familiarity?

9The radio cannot receive packets during this auto-CSMA/CA procedure since it sleeps
during the backoff. This feature is recommended for leaf nodes rather than routers.
10 Although not included in Hamilton, off-the-shelf BLE radios are even more inde-
pendent of the MCU, providing automatic time synchronization, channel hopping, and
duty-cycling [60, 85].

0  0.5 1  1.5 2  2.5 3  

Time [ms]

0 

2 

4 

6 

8 

10

C
u

rr
e

n
t 

[m
A

] TelosB/TinyOS (4 MHz)

TelosB/Contiki (4 MHz)

(a) TelosB/TinyOS and TelosB/Contiki

0  0.5 1  1.5 2  2.5 3  

Time [ms]

0 

2 

4 

6 

8 

10

C
u

rr
e

n
t 

[m
A

] Hamilton/RIOT (8 MHz)

Hamilton/RIOT (48 MHz)

(b) Hamilton/RIOT (default)

Figure 4: Waveform of simple wake-up and sleep operation.

Figure 5: An example of interaction between different asyn-
chronous clock domains (the case of SAMR21).

5.1 Cooperative Clocking
We first focus on modern MCUs having various different clock do-
mains and investigate the challenges and opportunities. To this end,
we measure the latency of the MCU wake-up and sleep transitions,
which significantly impacts the duration of the MCU active period.
We program a simple application which periodically wakes up and
immediately sleeps again. Two clock speeds are tested for Hamilton:
8 MHz and 48 MHz. The 8 MHz clock consumes less active power
than the 48 MHz clock, depicted in Figure 4.

Figure 4(a) shows that TelosB/TinyOS and TelosB/Contiki take
0.35 ms and 0.70 ms, respectively, from waking up to sleeping
again (except for the power draw tail). Contiki does more back-
ground work at each wakeup, resulting in a longer active period
than TinyOS. Interestingly, Figure 4(b) shows that although Hamil-
ton has faster system clocks than TelosB, the Hamilton/RIOT cases
require active periods of 1.81 ms and 1.88 ms (except for the 0.23 ms
long power draw tail), much longer than the TelosB cases. Given
that it takes only 0.02 ms to wake up the hardware, most of the time
is for the software execution. Further, the 48 MHz clock does not
significantly reduce the active period compared to the 8 MHz clock.
Given that context switch delay is negligibly short in Hamilton,
this active period should be shortened.

Investigating further, we observe that timer management con-
sumes 87% of the active period. Most of the time is consumed getting
the current time value, which is necessary for setting a new timer,
updating an existing timer, and confirming a timer expiry. Given
that the low-power 32 kHz clock runs during the idle mode, the
timer management procedure for wakeup and sleep requires the
current time of the low power clock rather than the fast main clock.
Since the main clock and the low power clock are asynchronous and
have significantly different speeds, accessing the low power timer
register requires crossing clock domains [88]. On the SAMR21, the
synchronizer circuit performs this as depicted in Figure 5. It intro-
duces a long access delay and lengthens the active period despite
the fast main clock.



To address the challenges posed by heterogeneous clock domains,
we design a cooperative clocking mechanism. Given that both the
main and low power clocks are operating in the active period and
the main clock information is fast to access (synchronous clock
domain), we use the two clocks together in a cooperative manner.
Specifically, we access both clock domains once after each wakeup
to get a reference time for each clock. Then, we find the time of
the low power clock indirectly by using the main clock and the
reference information, as shown in Eq. (1) where tLP and tmain
represent the time of the low power and main clocks respectively,
and fLP and fmain represent the frequency of the two clocks.

tLP(now) = (tmain(now) − tmain(ref)) ·
fLP
fmain

+ tLP(ref) (1)

As a result, interaction between the two clock domains happens only
twice during the active period, right after waking up to synchronize
the clock domains and right before sleeping to set a sleep timer. The
reduced timer management overhead shortens the active period
and allows the MCU to perform other tasks quickly (see Section 6.1).

5.2 Adaptive Clocking
Next, among the various clocks of a modern MCU, what clock
should be used as the main system clock to maximize energy effi-
ciency (e.g., 48 MHz clock vs. 8 MHz clock in the case Hamilton)? A
“time vs. current” trade-off exists with the main clock: a faster clock
reduces time but increases power consumption. It is known that a
faster clock is more energy efficient in computationally intensive
operations [8, 57], but we take a more comprehensive view.

The MCU is required to do two types of jobs: computation and
interaction with peripherals. Although the computation period de-
pends on the main clock, the interaction period does not; it depends
most heavily on the method used for communicating with the pe-
ripheral, such as ADC, I2C, SPI, and synchronizer. For example, I2C
speed (400 kHz) and different clock domain access (Figure 4(b)) are
much slower than the main clock and determine the interaction
period; using a faster main clock results only in higher current. On
the other hand, encryption and SPI speed are limited by the main
clock speed, so using a faster clock with DMA feature can save both
time and energy.

Therefore, we use the fast clock opportunistically, when com-
municating with peripherals where the main clock speed matters
(e.g., SPI in SAMR21), and when doing heavy computation, such
as en/decryption and packet processing. Otherwise, the slow main
clock is used to minimize active current. In this way, the modern
MCU finds the sweet spot of the tradeoff between fast/high-power
and slow/low-power clock, which improves both energy efficiency
and processing delay.

5.3 Sensor Abstraction and Driver
We observed a gap between modern sensors and the sensor abstrac-
tion in low-power OSes. Specifically, although it is common for
the application layer to request a sensor to read one type of sensor
information at a time, modern sensors can often acquire multiple
types of information at once.

To address this gap, we implement a simple caching mechanism
for sensor drivers. When the application requests sensor informa-
tion, the sensor driver has the sensor perform its natural suite of
samples (e.g., both temperature and humidity information at once),

Figure 6: Proposed preemptive network architecture

but returns only the requested type of information to the applica-
tion (e.g., only temperature); it caches the other information (e.g.,
humidity). If the requested type of information is freshly cached,
the sensor driver simply returns the cached value without sensing.
This reduces the number of sensor activations and register accesses,
which saves energy and reduces concurrency requirements. Users
can configure a time threshold to remove the outdated cached in-
formation.

Furthermore, some raw sensor values are hard to interpret. They
need to be converted to meaningful units through nontrivial com-
putation. However, given that end applications read sensor data
from a server, instead of directly from a networked sensor device,
the conversion process can be offloaded to the server, resulting in
more energy savings.

5.4 Preemptive Network Architecture
Beyond its familiarity to programmers, stack-based preemptive
multithreading in the kernel can benefit timely radio control and
packet processing without sacrificing MCU power.

Timely radio control has always been important for low-power
MACs to turn off the radio as fast as possible. Furthermore, given
that the radio buffer can usually hold only one received packet [8, 75,
94], it is important to quickly move the packet to the MCU memory
space before reception of the next packet begins. Otherwise, packet
loss results evenwith good link quality and sufficient queue capacity.
This problem becomes severe when a node needs to receive many
packets while performing other tasks, such as packet transmission
and computation [86]. For example, nodes near the border router
should relay heavy traffic in a large-scale network [51, 53]. Active
monitoring applications let each node store data and trigger bursty
transmission by sending a query. Machine or structural health
monitoring needs frequent data gathering, such as vibration and
acceleration [47, 54].

To address this issue, we design a preemptive network architecture,
as illustrated in Figure 6. Our architecture has four threads: net-
work main (priority 3), network Tx (priority 2), application (priority
1), and event (priority 4) threads where a higher priority thread
preempts a lower priority one. Each thread has its own message
queue, and context switching is triggered by message passing be-
tween threads or from an interrupt handler to a thread. There is a
packet queue shared by the three threads, which must be locked
for synchronization.



• The network main thread incorporates UDP, IPv6, 6LoWPAN,
and link layers and handles most network operation, such as
information updates and processing received packets. It receives
an Rx_Completemessage from the radio upon a packet reception.
Then it preempts the application and the network Tx threads to
process the received packet, resulting in fast packet processing
right after the radio receives it. When the received packet is for
the application, it processes IPv6 and UDP layers and passes the
payload to the application thread. When generating or relaying
a packet, it adds the packet to the packet queue and sends a
Tx_Request message to the network Tx thread.

• The network Tx thread incorporates IPv6, 6LoWPAN, and
link layers and handles packet transmissions: from getting a
packet from the packet queue to sending (including routing and
CSMA/CA) and dequeueing it. This thread receives a Tx_Complete
message from the radio at the end of each transmission, which in-
cludes transmission success, CSMA/CA failure, and transmission
failure. It starts thewhole procedure once receiving a Tx_Request
message from the network main and/or the application threads
and repeats until the packet queue is empty.

• The application thread handles application operation. When
generating a packet to send, it processes UDP and IPv6 layers,
enqueues the packet, and sends a Tx_Requestmessage to the net-
work Tx thread. It receives the application payload of a received
packet from the network main thread.

Inter-layer function call. Although it is intuitive to provide one
thread for each network layer, we include multiple network layers
in one thread (e.g., UDP, IPv6, and 6LoWPAN in the network main
thread). This is because function call is more efficient than thread
context switch for inter-layer communication [20] and having fewer
threads can save memory space.
Thread starvation. At a glance, this Rx-focused preemptive archi-
tecture would seem to risk the starvation of the network Tx and
application threads when the network is fully loaded (nearly con-
tinuous packet reception). However, the radio operation is highly
independent and we design the MCU to avoid busy-waiting. There-
fore the MCU can perform other tasks (e.g., computation at the
application thread) while the radio is transmitting or receiving a
packet, improving concurrency. This independent radio operation,
along with the modern MCU’s fast processing capability, prevents
the starvation of the other threads, shown in Section 6.2. Note that
the fast modern MCU packet processing delay (up to 2.05 ms/0.65
ms with/without security processing) is shorter than the low-power
radio receiving time (up to 4.66 ms with 250 kbps, including ACK
transmission).
Message queue size. It is important to set each thread’s message
queue size considering both memory space and robustness. The net-
work main and application threads pass a Tx_Request message to
the network Tx thread only when there are no queued Tx_Request
messages, which reduces the number of context switches. Given
that CSMA_Timer (before transmission) and Tx_Complete (after
transmission) events do not occur simultaneously, the message
queue size of the network Tx thread is bounded by 2 (one for
Tx_Request and the other for CSMA_Timer and Tx_Complete). As
for the network main thread, given that it sets only one Nwk Timer
(the most urgent one) at a time, it expects to receive only one Nwk

Timer event. Given fast MCU processing speed, it does not expect to
have many Rx_Complete messages. We bound the message queue
size of the network main thread to 4, one for Nwk_Timer and the
others for Rx_Complete.
Comparison with other OSes.When the radio receives a packet
while the MCU is idle, Contiki adds a poll event and waits for the
next system tick to extract the packet from the radio and process
it, which couples delay for packet extraction/processing and radio
control with the tick period.11 Contiki’s CSMA MAC suffers from
this delay. To alleviate the problem, Contiki’s low-power MACs
(ContikiMAC and TSCH) make the MCU busy-wait while the radio
is idle listening, which incurs nontrivial energy costs.

Without tick, TinyOS moves a packet from the radio to the MCU
memory immediately after its reception (in an interrupt context)
and posts a task to process the packet. However, because of run-
to-completion semantics, the packet processing needs to wait until
other pre-posted tasks are processed (i.e., fast extraction but slow
processing).

RIOT’s IPv6 stack, called GNRC, provides a thread for each net-
work layer and allows a lower layer thread to preempt a higher
layer thread. When the radio receives a packet, an interrupt han-
dler simply informs the link layer thread of the event, making
both packet extraction and processing happen in a thread context.
Although the link layer thread preempts higher layer threads to
quickly respond to radio events, a packet reception cannot preempt
a packet transmission because both of them are executed within
the link layer thread. The speed of extracting and processing a re-
ceived packet depends on how many other packets are queued for
transmission. Furthermore, RIOT’s ‘thread per layer’ approach12
requires 7 threads, which causes more context switches than in our
architecture.

5.5 Thread-based Safe I/O Processing
Event-driven OSes have a large global task queue which is sized
to avoid overflow. However, in the stack-based thread model, each
thread has a local, relatively small message queue which can over-
flow. In RIOT, if a thread passes a message to another thread with a
full message queue, the sending thread blocks and waits until the
destination thread’s queue becomes available (i.e., back pressure).
However, when an interrupt handler has the same situation while
sending a message to a thread, it must drop the message, which may
cause severe system problems. For example, in the case of our archi-
tecture, if an interrupt handler passes a Nwk_Timer event directly
to the network main thread, it can be dropped when the network
main thread’s message queue is full of Rx_Complete events.

To avoid missing events coming from an interrupt handler, we
add another thread, called the event thread.13 The event thread

11Note that general purpose tick-based OSes, such as the previous designs of
FreeBSD [45] and Linux [84], use tick only for timer operation and execute threads
asynchronously regardless of tick. In contrast, the use of ticks is ingrained in the
Contiki/Protothread design [25, 26]. Any asynchronous interrupt can only pend corre-
sponding protothreads, which are executed on the next tick, resulting in less respon-
siveness. Given that other tick-based OSes do not do this, we do not see a fundamental
reason to use the synchronous protothread management, other than implementation
simplicity.
12The ‘thread per layer’ design was criticized due to its inefficiency [20].
13Alternatively, we can give the network main thread multiple message queues [15],
where one queue handles timer events and the other queue handles received packets.
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Figure 7: Waveform of simple wake-up and sleep operation
with Hamilton/RIOT. It is highly impacted by utilization of
various clocks in the 32-bit MCU.

manages Nwk_Timer events, except the CSMA timer. It receives
an event message from an interrupt handler and delivers it to the
network main thread. When the network main thread’s queue is
full, the event thread, acting as a bridge, blocks and waits until the
network main thread’s queue becomes available again, providing
reliable message delivery. The event thread expects to receive only
one timer event, which bounds its message queue size to 1. Due to
its simple operation, the event thread’s stack size can be small, like
the idle thread.

5.6 Summary
We present design examples to show improved energy efficiency
and concurrency in the post-SoC era. Cooperative and adaptive
clocking can be applied to any MCU having multiple heterogeneous
clocks, while their effectiveness will vary depending on MCU (clock
architecture) and OS (timer implementation). The preemptive net-
work architecture is hardware agnostic and can be applied to any
full thread OS, but its effectiveness may also vary according to the
radio.14 The idea of robust I/O can be applied when a thread should
process heterogeneous tasks and its message queue can be full of a
specific type of task and lose an event from an interrupt handler.
The sensor driver is a hardware-specific optimization, which shows
the potential of modern peripherals. Overall, we see this work as a
stepping stone for efficient system design in the post-SoC era.

6 EVALUATION
This section evaluates the post-SoC system architecture. We apply
our architecture on RIOT and OpenThread [71].15 The clocking
mechanisms and sensor abstraction are implemented within RIOT
drivers. The preemptive network architecture is implemented on
RIOT/OpenThread.16 Given that timer and radio are the resources
shared by multiple threads (as in Figure 6), we modified RIOT to
make timer access and radio mode change atomic (interrupt free).

6.1 Energy Consumption
Figure 7 shows the results of cooperative clocking onHamilton/RIOT
in a simple wakeup and sleep scenario. The active period is sig-
nificantly reduced: the 48 MHz and 8 MHz cases provide 0.33 ms
and 0.50 ms of active periods respectively, which are 82% and 73%
shorter than before. The gap in active periods between the 8 MHz
and 48 MHz cases is slightly increased because some computation

14For example, the SAMR21 SoC’s radio has a single-packet buffer for both Tx and
Rx [10], the CC2420 radio has a single-packet buffer for each of Tx and Rx [33], and
the CC2650 SoC’s radio has a multi-packet buffer [43].
15OpenThread is an official open implementation of Thread [36], a multihop low-
power network recently standardized from an industry consortium, which uses
UDP/IPv6/6LoWPAN.
16Our code is open at https://github.com/hamilton-mote/hamilton-sw-sensys18.
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Figure 8: Average current consumption of Hamil-
ton/RIOT/OpenThread with various settings.

is needed for clock updates. Given that the effectiveness of cooper-
ative clocking can vary depending on hardware architecture and
timer implementation, the dramatic performance improvement in
Figure 7 partly comes from the RIOT’s choice for its timer imple-
mentation: It checks the current time information more than of
TinyOS and Contiki for accurate timer expiry. In addition, the active
period with cooperative clocking is shorter than the TelosB/TinyOS
case (Figure 4(a)), which shows that careful OS design can mitigate
the pitfalls of complex clock domains in a post-SoC mote to save
time and energy.

Next, we evaluate energy consumption in a sensing and sending
application: a Hamilton periodically wakes up, reads the informa-
tion from all six sensors, generates an AES-128 encrypted payload
with the readings, broadcasts a UDP packet, and sleeps. Figure 8(a)
shows the energy consumption of the four cases according to the
sampling interval: 8 MHz and 48 MHz main clocks with default
RIOT and 250 kbps data rate, and our post-SoC system design with
250 kbps and 2 Mbps data rate. The results of the three 250 kbps
cases show that the post-SoC architecture reduces energy consump-
tion by 14% and 29% for the 8 MHz and 48 MHz cases, respectively,
increasing lifetime by 3 years. Given that the three cases consume
the same energy on the radio, this verifies that the MCU energy
savings (by advanced clocking and sensor abstraction) have a large
impact on lifetime. Using a high data rate further reduces energy
consumption by 13%. Lastly, note that the post-SoC architecture
provides average current below 14 µA when the sampling interval
is 30 seconds. Recalling the very high idle current of Contiki in
Table 2 (e.g., 347 µA for Hamilton), this verifies again that a system
tick should be avoided for 32-bit motes.

In addition, we evaluate energy consumption of a duty-cycling
node when it wakes up, receives a packet from its parent router,17
and sleeps every 10 seconds (Figure 8(b)). The ‘48M/Busy’ case uses
a 48 MHz main clock on default RIOT, and the MCU busy-waits dur-
ing idle listening (mimicking Contiki’s MAC implementations). 17.7
ms elapse between wakeup and completion of processing for the
received packet and sleeping, resulting in a 29 µA average current
draw. When the MCU actually idles during idle listening periods
(the ‘48M’ case), current draw is reduced by 17%, to 24 µA, which
demonstrates the impact of decoupling the MCU operation from
the radio on energy consumption. When our post-SoC architecture
is applied (the ‘PS’ case), it takes 15.5 ms to finish a periodic task

17OpenThread uses a polling-based duty-cycling MAC where a leaf node periodically
sends a data request to the parent router and listens to the channel if the parent has
packets to send [36, 79].

https://github.com/hamilton-mote/hamilton-sw-sensys18
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(c) Context switch overhead at the relay
node (250 kbps)
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Figure 9: Performance in a three-node line topology where
the border router receives packets from the other two nodes.

and the current consumption is further reduced to 21 µA, due to the
improved clocking mechanisms. Lastly, when the radio uses a high
data rate (the ‘PS/2Mbps’ case), each operation period is reduced to
11.4 ms and the current consumption decreases to 17 µA. Overall,
with the same network protocol, using the post-SoC architecture
and high data rate reduces energy consumption by 42%.

6.2 Concurrency and Packet Delivery
To evaluate the effect of preemptive reception, we configured a
three-node line topology where the border router (Raspberry Pi
and Hamilton connected through serial with 1 Mbps baudrate)
receives packets periodically sent from nodes that are one and
two hops away, respectively. As traffic load increases, the one-hop
(middle) node becomes the bottleneck since it must receive/send
the two-hop node’s packets in addition to generating/sending its
own packets. For comparison, we implemented a nonpreemptive
reception where one network thread processes both Rx and Tx in a
first-come, first-served (FCFS) manner.

Figure 9 shows various performance metrics according to total
input traffic load (sum of the two nodes’ traffic). Figure 9(a) shows
that the preemptive reception achieves more aggregate throughput
than the FCFS case. The performance improvement becomes larger
with a 2Mbps data rate, because both the border router and the relay
node quickly process received packets in the radio buffer, allowing
the radio to continuously receive packets. Otherwise, a packet
sender will experience more CSMA backoff without receiving an
ACK from the receiver, which causes more delay and queue loss as
shown in Figure 9(b).

We confirm this by observing context switch overhead in Fig-
ures 9(c) and 9(d). FCFS causes many more context switches per
delivered packet due to more CSMA backoffs. In contrast, preemp-
tive reception provides significantly lower context switch overhead.
Under heavy traffic, it always causes one preemptive context switch
for relaying a packet, verifying that the MCU is busy doing other
tasks whenever its radio buffer has a new received packet. This one

Figure 10: Testbed topology with a snapshot of 4-hop up-
ward routing paths given by OpenThread when using trans-
mission power of -6 dBm. Nodes with the same hop count
have the same color.
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Figure 11: Performance on a testbed where each node peri-
odically sends packets to the border router.

preemption nullifies redundant delay and significantly improves
system efficiency.

In addition, we measure the MCU’s duty-cycle and confirm that
it is at most 50% even at the border router (the busiest node) when
the throughput is saturated. This confirms that the main bottleneck
of throughput performance is not theMCU processing speed but the
radio communication and the radio-MCU interaction. Although the
MCU is idle enough due to its fast processing speed and the radio’s
highly independent operation, preemption still makes a difference
by improving concurrency and enabling the MCU to utilize the
radio in a timely manner. This low duty-cycle also verifies that the
MCU is capable enough to perform computation at the application
thread while it is busy doing network operation.

For multihop networks, we configured a testbed in an office
where one Hamilton border router and 14 Hamiltons form a 4-hop
topology with OpenThread as in Figure 10. We first evaluate the
performance when each node periodically sends packets to the
border router with the same packet interval. Figures 11(a) and 11(b)
plot packet reception ratio (PRR) and context switch overhead ac-
cording to total input traffic load. The experiments were performed
during the nighttime without duty-cycling to focus on the effect of
preemptive reception. The two figures verify that the observations
from Figure 9 are also valid in multihop networks. Preemptive re-
ception delivers more traffic with fewer context switches. While
preemptive packet reception leads to high throughput in this sce-
nario, it is important to note that the primary value of preemptive
reception is not just high throughput, but more efficient concur-
rency in various scenarios. For example, in other scenarios, better
concurrency may result in less energy consumption.

We evaluate the 250 kbps and 2 Mbps data rates by having each
node send a packet every 30 sec during normal working hours.
Figure 12(a) shows that the 2.4 GHz band becomes very noisy
at this time, even without WiFi (Bluetooth devices have become
pervasive). Figures 12(b) and 12(c) show that using a high data
rate causes significantly fewer transmission failures, resulting in
significantly better PRR. A higher data rate makes each packet
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Figure 12: Performance when each node sends a packet to
the border router every 30 sec. It shows that high data rate
is effective for avoiding interference.

shorter, which reduces the likelihood for a packet to experience
interference. Although the 2 Mbps date rate in Hamilton reduces
transmission range by 7 dBm, it does not change the routing path in
our environment. Recalling the results in Figure 8, a high data rate
helps save energy and avoid wireless interference, which shows
additional potential of post-SoC motes.

7 DISCUSSION: GOING FORWARD
This work began at the start of the post-SoC era. Now across a
critical threshold, hardware technology continues to evolve rapidly.
Low-power 32-bit SoCs are becoming more capable with clock rates
up to 64MHz, 256 kB RAM and 1MB flashwith low idle current [81],
reminiscent of i386 in early PCs. They have separate processors and
buffers for managing sensors and radios [43], further reducing the
burden of the main CPU. Radios are becoming crystal free [92] and
even more energy efficient (i.e., an order of magnitude reduction
compared to CC2420 [50]), and support multiple antennas [10].
Their auto-security processing now supports both confidentiality
and integrity (i.e., AES-CCM [28]). Some recent motes even have a
public-key cryptography module [82]. It has become increasingly
common for a SoC to offer both 802.15.4 and BLE radios. The latest
Bluetooth 5.0 [76] supports 2 Mbps data rate without additional
current consumption. System design must evolve to match these
technological advances, rather than sticking to old customs, such as
“extremely limited implementation to operate on TelosB”.

For example, it has been common that an implementation of a
low-power Internet protocol standard (e.g., 6LoWPAN, RPL, and
embedded TCP) supports only a subset of the whole standard due to
resource constraints, making it not interoperable with reasonable
performance [13, 52, 58]. But given more memory space in post-SoC
motes, the “interoperability vs. complexity” question needs to be
revisited. Advanced radio features also present new research oppor-
tunities, such as adaptive data rate control (high vs. low rate) for
energy efficiency and interference avoidance, and multi-antenna di-
versity [59] for reliable communication. Public-key crypto modules
enable to explore asymmetric cryptography [82]. As both 802.15.4
and BLE support frequency hopping [27], mesh networks [35, 61],
and open sourced low-power OS [85], comparison or joint use of
BLE and 802.15.4 in a SoC needs investigation. For dependable
evaluation of all the potential [17], migration of the reference hard-
ware in open WSN testbeds needs to be discussed, given that some
representative testbeds mainly use traditional motes [23, 80].

Open source operating systems present a landscape of shifting
tradeoffs. TinyOS has robust and efficient system design [19, 34,
56, 63], but has a steep learning curve [62]. Its use has faded, with

active maintenance ceasing about 6 years ago [1]. Contiki’s sys-
tem design is relatively inefficient but is widely used [17, 52] with
implementations of more recent network protocols [24, 27, 29, 32],
a COOJA simulator [73], and active maintenance [5]. RIOT has a
full thread model [93] and supports more boards with more main-
tenance effort [3], but does not yet have an efficient and robust
design (e.g., timer and message queue). Its network stack has not
been thoroughly tested. Recently growing Tock [65] supports safe
multi-programming with use of MPU, Rust language [66], and an
event-driven kernel, but its network stack and open source commu-
nity are yet at an early stage. There are some open-source multihop
network stacks, such as OpenWSN [2] and OpenThread [71], which
can run by themselves (event-driven kernel) or on embedded OSes.
Once we understand the pros and cons of the various embedded
OSes, can we create a useful synergy of their approaches?

8 CONCLUSION
As we move into the post-SoC era, several of the guiding principles
of WSN research [37] have shifted: (1) With reduced manufacturing
burden, hardware modularity is replaced by design-time modular-
ity where application-specific motes are constructed using design
blocks and fabricated using readily-available and affordable turnkey
manufacturing. (2) As the MCU energy consumption is now sig-
nificant on a mote, low power OSes and network protocols should
consider the MCU more carefully. Tickless operation and avoiding
busy-wait are now necessary. Cooperative/adaptive clocking signif-
icantly reduces energy consumption on the MCU. When applying
all the above techniques, post-SoC motes become even more energy
efficient than traditional motes with lower idle current, shorter
active period, and lower energy consumption during the active pe-
riod; The time of “low power vs. high performance” [57] has gone.
(3) There is no longer a lack of resources and physical parallelism
that dictates the concurrency model. It is now viable to return to
the familiar thread-based model. Moreover, the thread model gives
a chance to investigate a preemptive network architecture. The
preemption enables efficient interaction between the radio and the
MCU, improving both concurrency and energy efficiency.

We provide the Hamilton design block, the Hamilton itself, and
our changes to RIOT and OpenThread. To revise an old adage, one
might say “WSN is dead, long live WSN with a post-SoC system
architecture.”
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