Some Fundamental Limitations for Cognitive Radio

Anant Sahai Wireless Foundations, UCB EECS sahai@eecs.berkeley.edu Joint work with Niels Hoven and Rahul Tandra

Work supported by the NSF ITR program

Outline

- 1. Why cognitive radios?
- 2. Fundamental need to detect very weak primary signals
- 3. Knowledge of modulation does not help but knowledge of pilot signals does
- 4. Receiver uncertainty and quantization's impact on detection
- 5. Conclusions

Apparent spectrum allocations

- Traditional spectrum allocation picture
- Apparent spectrum scarcity

Apparent spectrum usage

Actual measurements show that < 20% of spectrum is used, but:

- Some users listen for very weak signals
 - GPS
 - Weather radar and remote sensing
 - Radio astronomy
 - Satellite communications
- Spectrum use can vary with space and time on all scales.

Cognitive radio justification

Wireless interference is primarily a local phenomenon.

"If a radio system transmits in a band and nobody else is listening, does it cause interference?"

Ambitious Goal

Would like to take advantage of plentiful spectrum without requiring a lot of regulation or assumed coordination among users.

Objectives

- Protect primary users of the spectrum
 - Socially important services may deserve priority on band
 - Legacy systems may not be able to change
- Allow for secondary users to use otherwise unused bands
 - Not the UWB approach: "speak softly but use a wide band"
 - May have to coordinate/coexist with other secondary users

See what happens for the case of a single secondary user first.

November 1 at BWRC Cognitive Radio Workshop

Fundamental Tradeoffs

Assume $\frac{1}{d^2}$ attenuation of signals:

$$r_{censored} = \sqrt{\frac{P_s}{\frac{P_p}{(2^{2R}-1)r_{protected}^2} - \sigma^2}}$$
$$P_s = r_{censored}^2 \left[\frac{P_p}{(2^{2R}-1)r_{protected}^2} - \sigma^2\right]$$

- To allow secondary power to increase, we must be able to detect weak primary signals in order to protect primary receivers from interference.
- To protect primary receivers with already marginal reception, the censored radius must grow and so even weaker primary signals must be able to be detected.

November 1 at BWRC Cognitive Radio Workshop

Cognitive radio is still potentially useful

Even while protecting primary users, a large geographic area may still be available for secondary users in any given band.

Lessons so far

- "Don't transmit if you can decode" is a poor rule
- Could do much better if we could detect undecodable signals
 - Better protect primary users
 - Allow longer range and higher rate secondary uses
- How hard is this?

Model

• Hypothesis testing problem: is the primary signal out there?

 $\mathcal{H}_0: Y[n] = W[n]$ $\mathcal{H}_s: Y[n] = W[n] + x[n]$

- Moderate P_{fa} , P_{md} targets.
- Potentially very low SNR at the detector: will need many samples to distinguish hypotheses.
- Proxy for difficulty: How long must we listen?

Assume perfect knowledge

- x[n] known exactly at receiver
- Optimal detector is a matched filter

$$\sum_{k=1}^{N} y[n] \frac{x[n]}{\|x\|} \underset{\mathcal{H}_{0}}{\overset{\mathcal{H}_{s}}{\geq}} \frac{\|x\|}{2}$$

The power of processing gain: we only require O(1/SNR) samples

Assume minimal knowledge

- Only know power and signal is like white Gaussian noise
- No processing gain available
- Optimal detector is an energy detector (radiometer)

$$\sum_{k=1}^{N} y[n]^2 \underset{\mathcal{H}_0}{\overset{\mathcal{H}_s}{\geq}} N\left(\sigma^2 + \frac{P}{2}\right)$$

• We require $O(1/SNR^2)$ samples

November 1 at BWRC Cognitive Radio Workshop

Undecodable BPSK

What if we had a little more information?

- Power is low.
- Modulation scheme (BPSK) is known
- Assume perfect synchronization to both the carrier frequency and symbol timing.

 $\mathcal{H}_0: Y[n] = W[n]$ $\mathcal{H}_s: Y[n] = W[n] + X[n]\sqrt{P}$ $X[n] \sim \text{iid. Bernoulli}(1/2)$

November 1 at BWRC Cognitive Radio Workshop

General symbol constellations

• Is the story bad only for BPSK?

$$\mathcal{H}_{0}: \overrightarrow{Y}[n] = \overrightarrow{W}[n]$$
$$\mathcal{H}_{s}: \overrightarrow{Y}[n] = \overrightarrow{W}[n] + \overrightarrow{X}[n]$$
$$\overrightarrow{x}[n] = \overrightarrow{c}_{i} , \qquad i \in \{1, 2, \dots, 2^{LR}\}$$
$$\overrightarrow{w}[n] \sim \mathcal{N}(0, \sigma^{2}\mathbf{I}_{L})$$

- Assumptions
 - Short symbols $\vec{c_i}$ of length L.
 - $-\ 2^{LR}$ symbols known to the receiver
 - Symbol constellation is zero-mean
 - Symbols independent
 - Very little energy in any individual symbol

November 1 at BWRC Cognitive Radio Workshop

November 1 at BWRC Cognitive Radio Workshop

The story so far

- Without help from the primary user, the secondary users require a long time to detect free bands.
 - Less agility
 - Overhead in searching for unused bands
- It gets a whole lot worse.
 - Noise uncertainty
 - Quantization

Noise uncertainty

- Let residual noise uncertainty be $x \, dB$ within the band.
- Receiver faces an SNR within

 $[SNR_{nominal}, SNR_{nominal} + x]$

•
$$P_{noise} \in [P_{nominal}, \alpha \cdot P_{nominal}], \qquad \alpha = 10^{(x/10)}$$

• Therefore, the energy detector fails if:

$$P_{noise} \ge P_{nominal} + P_{signal}$$

$$\Rightarrow \qquad SNR_{nominal} \le 10 \log_{10} \left[10^{(x/10)} - 1 \right]$$

November 1 at BWRC Cognitive Radio Workshop

November 1 at BWRC Cognitive Radio Workshop

November 1 at BWRC Cognitive Radio Workshop

SNR loss from quantization

Noise uncertainty under quantization

- Detection can be **absolutely impossible** for 2-bit quantizer under noise variance uncertainty alone.
 - Can make the distributions identical under both hypotheses if

$$Q\left(\frac{d_1}{\sigma_0}\right) = \frac{1}{2} \left[Q\left(\frac{d_1 + \sqrt{P}}{\sigma_1}\right) + Q\left(\frac{d_1 - \sqrt{P}}{\sigma_1}\right) \right]$$

- σ_i^2 is noise variance under hypothesis i

- d_1 is the quantization bin boundary
- Wall *always exists* for any detector.

November 1 at BWRC Cognitive Radio Workshop

Conclusions

- Cognitive radios must be able to detect the presence of undecodable signals
 - Just knowing the modulation scheme and codebooks is nearly useless: stuck with energy detector performance.
 - Even small noise uncertainty causes serious limits in detectability.
 - Quantization makes matters even worse.
- Primary users should transmit pilot signals or sirens.
- If not, some serious "infrastructure" will be needed to support cognitive radio deployment.

Key future questions

- Multiuser situations
 - Control channel use and coordination
 - Distributed reliable environmental proofs
 - Efficiency and robustness
- How to ensure forward compatibility
 - Can future computational capabilities help systems engineered today?
 - Poorly engineered systems today will hinder future systems.
- Congestion is still potentially possible in the future.