Trade-off of lossless source coding error exponents

Cheng Chang Anant Sahai

HP Labs, Palo Alto
EECS, UC Berkeley

ISIT 2008
Motivation

- Sensor networks: control, communication and information theory
 - Distributed control
 - Unstable process with noisy feedback loop
Stabilizing an unstable system with noisy feedback

- Scalar case \(X_{t+1} = \lambda X_t + U_t + W_t \) (Sahai/Mitter 2006)
 - \(E(|X_t|^{\eta}) < \infty \), for all \(t \) iff delay exponent \(E(\log_2(\lambda)) > \eta \log_2(\lambda) \)
Stabilizing an unstable system with noisy feedback

- Scalar case $X_{t+1} = \lambda X_t + U_t + W_t$ (Sahai/Mitter 2006)
 - $E(|X_t|^\eta) < \infty$, for all t iff delay exponent $E(\log_2(\lambda)) > \eta \log_2(\lambda)$

- Vector case $\vec{X}_{t+1} = A\vec{X}_t + \vec{U}_t + \vec{W}_t$: A eigenvalues $\lambda_1, \lambda_2, \ldots$
 - Different error exponents for different streams
Related work

- Messages requiring different reliability
- Sub-messages requiring different reliability
- This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80
- Sub-messages requiring different reliability
- This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80

- Sub-messages requiring different reliability

- This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80
 - Kudryashov ’79 and Sahai/Draper ’06, ’08
 - Borade et al ’08 (Talk on Friday)
- Sub-messages requiring different reliability

This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80
 - Kudryashov ’79 and Sahai/Draper ’06, ’08
 - Borade et al ’08 (Talk on Friday)

- Sub-messages requiring different reliability
 - Priority-encoded transmission (Luby et al ’96, Boucheron/Salamatian ’00)

This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80
 - Kudryashov ’79 and Sahai/Draper ’06, ’08
 - Borade et al ’08 (Talk on Friday)
- Sub-messages requiring different reliability
 - Priority-encoded transmission (Luby et al ’96, Boucheron/Salamatian ’00)

This talk is about multi-stream trade-offs.
Related work

- Messages requiring different reliability
 - Csiszar ’80
 - Kudryashov ’79 and Sahai/Draper ’06, ’08
 - Borade et al ’08 (Talk on Friday)

- Sub-messages requiring different reliability
 - Priority-encoded transmission (Luby et al ’96, Boucheron/Salamatian ’00)
 - Multiterminal coding error-exponent trade-offs (Weng et al ’08, Kaspi et al ’08, Etkin et al ’08)

- This talk is about multi-stream trade-offs.
Outline

1 Motivation and related work

2 Main Results:
 - Trade-off for block source coding: a complete characterization
 - Trade-off for streaming source coding: inner and outer bounds
 - Trade-off for BEC with feedback and its control implications

3 Conclusions
Fixed-length block coding for i.i.d. source $x \sim P$

$$x_1^n \in \mathcal{X}^n \rightarrow b_1^{nR} \in \{0, 1\}^{nR} \rightarrow \hat{x}_1^n \in \mathcal{X}^n$$
Block source-coding error exponents

- Fixed-length block coding for i.i.d. source $x \sim P$

$$x_1^n \in \mathcal{X}^n \rightarrow b_1^{nR} \in \{0, 1\}^{nR} \rightarrow \hat{x}_1^n \in \mathcal{X}^n$$

- Performance criteria: $\Pr(\hat{x}_1^n \neq x_1^n)$ small for large n (lossless)
Block source-coding error exponents

- Fixed-length block coding for i.i.d. source \(x \sim P \)

\[
x^n_1 \in \mathcal{X}^n \rightarrow b^n_{1} \in \{0, 1\}^{nR} \rightarrow \hat{x}^n_1 \in \mathcal{X}^n
\]

- Performance criteria: \(\Pr(\hat{x}^n_1 \neq x^n_1) \) small for large \(n \) (lossless)

- Entropy and error exponent:
 - \(R > H(P) \)
 - \(\Pr(\hat{x}^n_1 \neq x^n_1) \sim 2^{-nE_{\text{block}}(R)} \) for optimal coding

\[
E_{\text{block}}(R) = \min_{Q : H(Q) \geq R} D(Q \| P)
\]
Two sources X and Y share R bits/sec
Error-exponent region (block coding)

- Two sources X and Y share R bits/sec

- Error-exponent region
 \[\{ (E_x, E_y) : \Pr(\hat{x}_1^n \neq x_1^n) \sim 2^{-nE_x} \text{ and } \Pr(\hat{y}_1^n \neq y_1^n) \sim 2^{-nE_y} \} \] for some coding scheme
Two sources X and Y share R bits/sec

Error-exponent region

$$\{(E_x, E_y) : \Pr(\hat{x}_1^n \neq x_1^n) \sim 2^{-nE_x} \text{ and } \Pr(\hat{y}_1^n \neq y_1^n) \sim 2^{-nE_y}\}$$ for some coding scheme

Naive outer bound (converse):
Error-exponent region (block coding)

- Two sources X and Y share R bits/sec

\[\{(E_x, E_y) : \Pr(\hat{x}_1^n \neq x_1^n) \sim 2^{-nE_x} \text{ and } \Pr(\hat{y}_1^n \neq y_1^n) \sim 2^{-nE_y} \} \] for some coding scheme

- Naive outer bound (converse):
 - $E_x \leq E_{block(x)}(R)$, all for one source
 - Either $E_x \leq E_{block(xy)}(R)$ or $E_y \leq E_{block(xy)}(R)$
A non-convex region.
A non-convex region.
Suffices to show B is achievable.
A non-convex region.

Suffices to show B is achievable
 - Encoder knows source before encoding.
A non-convex region.

Suffices to show B is achievable

- Encoder knows source before encoding.
- Transmit high priority source if cannot send both
Beyond block coding

- Block coding: x_1^n known at time -1, block error probability
Beyond block coding

- Block coding: x_1^n known at time -1, block error probability
- Real-time coding with delay constraints (Anytime)
 - Causality: source symbols $x_1, x_2, \ldots, x_k, \ldots$ streaming into the encoder
 - End-to-end system delay Δ
Beyond block coding

- Block coding: x_1^n known at time -1, block error probability
- Real-time coding with delay constraints (Anytime)
 - Causality: source symbols $x_1, x_2, \ldots, x_k, \ldots$ streaming into the encoder
 - End-to-end system delay Δ

Symbol-wise decoding error: $\Pr(x_i \neq \hat{x}_i(i + \Delta)) \sim 2^{-\Delta E(R)}$

Focusing bound $E(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_{block}((\alpha + 1)R)$
Error-exponent region (streaming)

- Two streaming sources X and Y share R bits/sec
- Error exponent region

$$\{(E_x, E_y) : \Pr(x_t \neq \hat{x}_t(t+\Delta)) \sim 2^{-\Delta E_x} \text{ and } \Pr(y_t \neq \hat{y}_t(t+\Delta)) \sim 2^{-\Delta E_y}\}$$
Error-exponent region (streaming)

- Two streaming sources X and Y share R bits/sec
- Error exponent region

\[\{(E_x, E_y) : \Pr(x_t \neq \hat{x}_t(t+\Delta)) \sim 2^{-\Delta E_x} \text{ and } \Pr(y_t \neq \hat{y}_t(t+\Delta)) \sim 2^{-\Delta E_y} \} \]

- Inner and outer bounds
Proof ideas

- Generalization of p-to-p source coding with delay (Chang 2006)
Proof ideas

- Generalization of p-to-p source coding with delay (Chang 2006)
- Inner bound: α-priority instead of total priority
Proof ideas

- Generalization of p-to-p source coding with delay (Chang 2006)
- Inner bound: α-priority instead of total priority

Outer bound: uncertainty-focusing bound for two sources

\[
x \quad (1 + \beta)n
\]

\[
y \quad \alpha n \quad n
\]
Two bitstreams R_1 and R_2 share a BEC(β)
Two bitstreams R_1 and R_2 share a BEC(β)

Generalization of point to point case (Sahai ’08)
Two bitstreams R_1 and R_2 share a BEC(β)

Generalization of point to point case (Sahai ’08)

Inner bounds (better than Sahai ’00) and outer bounds
Implications for control systems

- $\mathbf{X}_{t+1} = A \mathbf{X}_t + \mathbf{U}_t + \mathbf{W}_t$: A with eigenvalues λ_1, λ_2
- Control-feedback channel: BEC with feedback
- Inner and outer bounds on stabilizable(λ_1, λ_2) for $\beta = 0.1, \eta = 2$

Conclusions

- Lossless source-coding provides a useful stepping-stone to channel coding with feedback.
- Unequal error protection results:
Conclusions

- Lossless source-coding provides a useful stepping-stone to channel coding with feedback.
- Unequal error protection results:
 - Complete characterization of the error exponent region for block coding
 - Inner and outer bounds for streaming source coding
Conclusions

- Lossless source-coding provides a useful stepping-stone to channel coding with feedback.
- Unequal error protection results:
 - Complete characterization of the error exponent region for block coding
 - Inner and outer bounds for streaming source coding
 - Inner and outer bounds for anytime BEC with feedback
Conclusions

- Lossless source-coding provides a useful stepping-stone to channel coding with feedback.

- Unequal error protection results:
 - Complete characterization of the error exponent region for block coding
 - Inner and outer bounds for streaming source coding
 - Inner and outer bounds for anytime BEC with feedback
 - Sufficient/Necessary (not both) conditions for stabilizing vector processes through a BEC feedback channel
Conclusions

- Lossless source-coding provides a useful stepping-stone to channel coding with feedback.

- Unequal error protection results:
 - Complete characterization of the error exponent region for block coding
 - Inner and outer bounds for streaming source coding
 - Inner and outer bounds for anytime BEC with feedback
 - Sufficient/Necessary (not both) conditions for stabilizing vector processes through a BEC feedback channel

- Future directions
 - Tightening the inner and outer bounds
 - Extending to general channels
 - Trade-off of lossy source-coding error exponents (block and streaming)