Noise calibration, delay coherence and SNR walls for signal detection

Rahul Tandra Anant Sahai

Wireless Foundations Center
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

15th October, DySpAN 2008
Problem setup

\[H_0 : W[n] \]

\[H_1 : H(X[n]) + W[n] \]

\(\{Y[n]\}_1^N \) → Detector → \(\hat{H} \)

Faded Signal

Noise
Spectrum sensing: traditional picture

Energy Detector
SNR = 1 dB
N = 50

Detection Threshold

Test-statistic Support
Spectrum sensing: traditional picture

Energy Detector
SNR = 1 dB
N = 100

Detection Threshold

Test-statistic Support
Spectrum sensing: traditional picture

Energy Detector
SNR = 1 dB
N = 500

Detection Threshold

Test-statistic Support
Spectrum sensing: noise uncertainty

Energy Detector
SNR = 1 dB
SNR Wall = -4 dB
N = 50

Detector Threshold
Worst-case distributions

Test-statistic Support

m₀

m₁
Spectrum sensing: noise uncertainty

Energy Detector
SNR = 1 dB
SNR Wall = -4 dB
N = 500

Detector Threshold
Worst-case distributions

Test-statistic Support

m_0

m_1
Spectrum sensing: noise uncertainty

Energy Detector
SNR = 1 dB
SNR Wall = -4 dB
N = 5000

Detector Threshold
Worst-case distributions

Test-statistic Support

m₀
Spectrum sensing: SNR walls

Energy Detector
SNR = -6 dB
SNR Wall = -4 dB

Detector Threshold

Worst-case distributions

P_{MD}

P_{FA}

m_0 m_1

Test-statistic Support
Impact of SNR walls — sensing overhead

Time Overhead

Model:
- Energy Detector
- Coherent Detector

Parameters:
- $P_{MD} = P_{FA} = 0.01$
- Pilot Power = 10%
- Coherence Time = 100
- SNR walls with noise uncertainty = 1 dB
- SNR walls with noise uncertainty = 0.001 dB

Graph shows the relationship between SNR [dB] and time overhead on a logarithmic scale.
Narrowband pilot signals

Sinusoidal pilot plus noise

Magnitude response of sinusoidal pilot plus noise
Narrowband pilot signals

- Single-tap Gauss-Markov fading process

- Magnitude response of a single-tap Gauss-Markov process
Narrowband pilot signals

Single-tap Gauss-Markov faded sinusoidal pilot

Magnitude response of faded pilot plus noise
Cyclostationary signals

Raised-Cosine modulated BPSK signal

Time (n)
Cyclostationary feature detection

\[
\{Y[n]\}_{n=1}^{N} \xrightarrow{\text{Cyclostationary Feature Transform}} \tilde{S}_{Y}[f,\alpha] \xrightarrow{\text{Correlation with } S_{Y}[f,\alpha]} T(Y) \geq \lambda
\]

\[N = 3200\]
Cyclostationary feature detection

\[
\{Y[n]\}_{1}^{N} \xrightarrow{\text{Cyclostationary Feature Transform}} \tilde{S}_{Y}[f,\alpha] \xrightarrow{\text{Correlation with}} S_{Y}[f,\alpha] \xrightarrow{} T(Y) \approx \lambda
\]

\[
N = 32000
\]
Cyclostationary feature detection

\[
\{Y[n]\}^N_1 \xrightarrow{\text{Cyclostationary Feature Transform}} \tilde{S}_Y[f,\alpha] \xrightarrow{\text{Correlation with } S_Y[f,\alpha]} T(Y) \gtrsim \lambda
\]
Feature detection: single-tap Gauss-Markov fading

Single-tap Gauss-Markov fading process

$S_{Y}(f, \alpha)$

$N = 6400$
Feature detection: single-tap Gauss-Markov fading

Single-tap Gauss-Markov fading process

$N = 64000$
Feature detection: single-tap Gauss-Markov fading

Single-tap Gauss-Markov fading process

N = 640000
Feature detection: multi-tap Gauss-Markov fading

N = 6400
Feature detection: multi-tap Gauss-Markov fading

$N = 64000$
Feature detection: multi-tap Gauss-Markov fading

\[N = 640000 \]
Feature detection: finite-delay fading process

Time-varying single-tap finite delay fading

Single-tap time-varying finite delay fading, N = 3200
Feature detection: finite-delay fading process

Time-varying single-tap finite delay fading

Single-tap time-varying finite delay fading, $N=320000$
Phase coherence vs Delay coherence

Delay spread = 2 micro secs
Carrier frequency = 1 GHz

Single mobile receiving antenna
16 randomly located scatterers
Phase coherence vs Delay coherence

Bandwidth = 400 KHz

- First lap, $h_1[n]$
- Second lap, $h_2[n]$
- Third lap, $h_3[n]$
- Fourth lap, $h_4[n]$
Phase coherence vs Delay coherence

Bandwidth = 400 KHz

First tap, $h_1[m]$

Phase (in radians)

Time (in secs)

0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1

First tap, $h_2[m]$

Magnitude

0 1 2 3

t=0 sec

0 1 2 3

t=20 ms
Phase coherence vs Delay coherence

Bandwidth = 1 KHz

First tap, $h_0[m]$

First tap, $h_2[m]$

$t=0$

$t=20$ msec

$t=several$ secs
Noise calibration: pilot case

Pilot

Band pass filters

\textbf{f}_p \textbf{f}

\textbf{f}_m
Noise calibration: cyclostationary feature detection

\[\{Y[n]\}_1^N \rightarrow \{\hat{Y}[n]\}_1^N \rightarrow \hat{S}_\hat{Y}[f,\alpha] \rightarrow T(\hat{Y}) \geq \lambda \]

AGC calibration:

\[\hat{Y}[n] = \frac{1}{\sqrt{\frac{1}{N} \sum_{n=1}^{N} |Y[n]|^2}} Y[n] \]

As \(N \to \infty \)

\[\frac{1}{\sqrt{\frac{1}{N} \sum_{n=1}^{N} |Y[n]|^2}} \rightarrow \begin{cases} \frac{1}{\sigma_a} & \text{Under } \mathcal{H}_0 \\ \frac{1}{\sqrt{P+\sigma_a^2}} & \text{Under } \mathcal{H}_1 \end{cases} \]
Robustness gains from noise calibration
Robustness gains from noise calibration

Means after AGC calibration

Delay Coherence Time

Means of test-statistic $\times 10^3$
Robustness gains from noise calibration

Colored noise model:

\[W[n] = M[n] - \beta M[n - 1], \]

\(M[n] \) is iid white Gaussian noise, \(\beta \in [0, \beta_{max}] \).