Where do stabilization problems sit in the communication problem hierarchy?

Anant Sahai
University of California at Berkeley
sahai@eecs.berkeley.edu
April 1, 2005

Joint work with: S. Mitter, T. Simsek, Q. Xu, C. Cheng, P. Minero, and A. Avestimehr
Outline

1. Communication problem hierarchy
2. Stabilization problems and anytime communication
3. Core reason: feedback channel coding: block-length is not a good proxy for delay
Big questions about communication.

- Are all communication problems asymptotically alike?

- How does delay interact with capacity issues?

- Can we find examples that let us explore these questions in an asymptotic setting?

 “... can be pursued further and is related to a duality between past and future and the notions of control and knowledge. Thus we may have knowledge of the past and cannot control it; we may control the future but have no knowledge of it.” — Claude Shannon 1959

April 1, 2005 at CalTech Workshop
An abstract model of single channel problems

- Problem: Source S, Information pattern \mathcal{I}, and Objective \mathcal{V}.
- Constrained resource: Noisy channel f_c
- Designed solution: “Encoder” \mathcal{E}, “Decoder” \mathcal{D}

April 1, 2005 at CalTech Workshop
Focus: what channels are “good enough” for the problem

- \(f_c \) solves the problem if \(\exists \mathcal{E}, \mathcal{D} \) so system satisfies \(\mathcal{V} \)
- Problem \(A \) is *harder* than problem \(B \) if any \(f_c \) that solves \(A \) solves \(B \).
- Information theory is an *asymptotic* theory
 - Pick \(\mathcal{V} \) family with an appropriate “slack” parameter
 - Consider the set of channels that solve the problem.
 - Take union over slack parameter choices.

April 1, 2005 at CalTech Workshop
The Shannon problems $A_{R,\epsilon,d}$

- Source: *noninteractive* X_i (R bits): fair coin tosses

- Information pattern: \mathcal{D}_i has access to Z^i_1
 - A^f With feedback: \mathcal{E}_i gets X^i_1 and Z^{i-1}_1
 - A^{nf} Without feedback: \mathcal{E}_i gets only X^i_1

- Performance objective: $\mathcal{V}(\epsilon, d)$ is satisfied if $\mathcal{P}(X_i \neq U_{i+d}) \leq \epsilon$
 for every $i \geq 0$.
 - Slack parameter: permitted delay d
 - Natural orderings: larger ϵ, d is easier but larger R is harder.

- Classical capacity

\[
C^f_R = \bigcap_{\epsilon > 0} \bigcap_{R' < R} \bigcup_{d > 0} \{f_c | f_c \text{ solves } A^f_{R',\epsilon,d}\}
\]

\[
C_{Shannon}(f_c) = \sup\{R > 0 | f_c \in C_R\}
\]

April 1, 2005 at CalTech Workshop
Classical relationships

- Feedback doesn’t change capacity for memoryless channels C^m
 \[C_{R}^{nf} \cap C^m = C_R^f \cap C^m \]

- Zero-error capacity
 \[C_{0,R}^f = \bigcap_{R' < R} \bigcup_{d > 0} \{ f_c | f_c \text{ solves } A_{R',0,d}^f \} \]
 \[C_0(f_c) = \sup\{ R > 0 | f_c \in C_{0,R} \} \]
 - Can change with feedback even for memoryless channels
 \[(C_{0,R}^f \cap C^m) \subset (C_R^f \cap C^m) \]
 - Zero-error problem is fundamentally harder
 \[(C_{0,R}^{nf} \cap C^m) \subset (C_{0,R}^f \cap C^m) \subset (C_R \cap C^m) \]
Estimation with distortion: $A_{(F_X, \rho, D, d)}$

- Source: noninteractive X_i drawn iid from F_X
- Same information patterns: with/without feedback.
- Performance objective: $\mathcal{V}(\rho, D, d)$ is satisfied if
 \[\lim_{n \to \infty} \frac{1}{n} E[\sum_{i=1}^{n} \rho(X_i, U_{i+d})] \leq D. \]
 - Slack parameter: permitted delay d
 - Natural orderings: larger D, d is easier
- Channels that are good enough
 \[\mathcal{C}_{e, (F_X, \rho, D)}^f = \bigcap_{D' > D} \bigcup_{d > 0} \{ f_c | f_c \text{ solves } A_{(F_X, \rho, D', d)}^f \} \]
- “Separation Theorem” if ρ is finite.

\[(\mathcal{C}_{R(D)} \cap \mathcal{C}^m) = (\mathcal{C}_{e, (F_X, \rho, D)}^{nf} \cap \mathcal{C}^m) = (\mathcal{C}_{e, (F_X, \rho, D)}^f \cap \mathcal{C}^m) \]
Stabilization problems and anytime communication

- Simple control problem
- Why classical capacity is not enough.
- Why anytime (delay-universality) is needed
- Implications (power laws, etc.)
- Imperfect information patterns and implicit communication
Our simple scalar distributed control problem

\[X_{t+1} = \lambda X_t + U_t + W_t \]

- Unstable \(\lambda > 1 \), bounded initial condition and disturbance \(W \).
- Goal: Stability = \(\sup_{t>0} E[|X_t|^\eta] \leq K \) for some \(K < \infty \).
Is Shannon capacity all we need?

- Consider a system with
 - $\lambda = 2$ for the dynamics
 - noisy channel that sometimes drops packets but is otherwise noiseless (Real erasure channel)

$$Z_t = \begin{cases}
 Y_t & \text{with Probability } \frac{1}{2} \\
 0 & \text{with Probability } \frac{1}{2}
\end{cases}$$

- No other constraints, so design is obvious: $Y_t = X_t$ and $U_t = -\lambda Z_t$

- Resulting closed loop dynamics:

$$X_{t+1} = \begin{cases}
 W_t & \text{with Probability } \frac{1}{2} \\
 2X_t + W_t & \text{with Probability } \frac{1}{2}
\end{cases}$$
Is the closed-loop system stable?

\[X_{t+1} = \begin{cases}
W_t & \text{with Probability } \frac{1}{2} \\
2X_t + W_t & \text{with Probability } \frac{1}{2}
\end{cases} \]

- i.i.d. erasures mean arbitrarily long stretches of erasures are possible, though unlikely.
 - System is not guaranteed to stay inside any box.
 - Under stochastic disturbances, the variance of the state is asymptotically infinite.

- For worst case disturbances \(W_t = 1 \), the tail probability is dying off as \(P(|X| > x) \approx \frac{K}{x} \).

- Meanwhile, \(C = \infty \! \)!
Run same plant \bar{X} over noiseless channel

Window known to contain \bar{X}_t

will grow by factor of $\lambda > 1$

Sending R bits, cut window by a factor of 2^{-R}

Encode which control U_t to apply

grows by $\frac{\Omega}{2}$ on each side

giving a new window for \bar{X}_{t+1}

As long as $R > \log_2 \lambda$, we can have Δ stay bounded forever.
What is needed: key intuition

- Break state X into sum of \tilde{X} (response to disturbance) and \tilde{X} (response to control)
- Suppose $\lambda = 2$ and so $\tilde{X}_t = \sum_{i=0}^{t} 2^i W_{t-1}$
- Assume W_j either 0 or 1
- In binary notation: $\tilde{X}_t = W_0 W_1 W_2 \ldots W_{t-1} 00000 \ldots$
- If $-\tilde{X}_t$ is close to \tilde{X}_t, their binary representations likely agree in all the high-order bits.
 - High-order bits represent earlier disturbances.
 - Typically, to get a difference at the W_{t-d} level, we have to be off by about 2^d.

Stabilization implies communicating bits reliably in an anytime fashion.

April 1, 2005 at CalTech Workshop
Anytime communication problems: $A_{R,\alpha,K}$

- Same as Shannon problem in source and information pattern.
- Performance objective different:
 - Reinterpret $U_t = 0.\hat{X}_0(t), \hat{X}_1(t), \hat{X}_2(t), \ldots$ in binary
 - $\mathcal{V}_{(K,\alpha)}$ is satisfied if $\mathcal{P}(X_i \neq \hat{X}_i(i + d)) \leq K2^{-\alpha d}$ for every $i \geq 0, d \geq 0$.
 - Slack parameter: constant factor K
 - Natural orderings: larger K is easier, but larger R, α are harder.

- Capacity
 \[
 C^f_{a,(R,\alpha)} = \bigcap_{R' < R} \bigcap_{\alpha' < \alpha} \bigcup_{K > 0} \{ f_c | f_c \text{ solves } A^f_{(R',\alpha',K)} \}
 \]
 \[
 C_{\text{any}}(f_c, \alpha) = \sup \{ R > 0 | f_c \in C^f_{a,(R,\alpha)} \}
 \]
Separation theorem for control

Necessity: If a scalar system with parameter $\lambda > 1$ can be stabilized with finite η-moment across a noisy channel, then the channel with noiseless feedback must have

$$C_{\text{any}}(\eta \log_2 \lambda) \geq \log_2 \lambda$$

In general: If $P(|X| > m) < f(m)$, then $\exists K : P_{\text{error}}(d) < f(K\lambda^d)$

Sufficiency: If there is an $\alpha > \eta \log_2 \lambda$ for which the channel with noiseless feedback has

$$C_{\text{any}}(\alpha) > \log_2 \lambda$$

then the scalar system with parameter $\lambda \geq 1$ with a bounded disturbance can be stabilized across the noisy channel with finite η-moment assuming nested information.

April 1, 2005 at CalTech Workshop
What does all this imply?

- If we want $P(|X_t| > m) \leq f(m) = 0$ for some finite m, we require zero-error reliability across the channel.

- For generic DMCs, anytime reliability with feedback is upper-bounded:

$$f(K \lambda^d) \geq \zeta^d$$
$$f(m) \geq \zeta \frac{\log_2 \left(\frac{m}{K} \right)}{\log_2 \lambda}$$
$$f(m) \geq K' m^{- \frac{\log_2 \frac{1}{\zeta}}{\log_2 \lambda}}$$

A controlled state can have at best a power-law tail.

- If we just want $\lim_{m \to \infty} f(m) = 0$, then just Shannon capacity $> \log_2 \lambda$ is required for DMCs.

- Almost-sure stabilization for $W_t = 0$ follows by time-varying transformation.

April 1, 2005 at CalTech Workshop
Known feedback anytime capacities

Characterizing the boundary of possible \((R, \alpha)\) pairs. For generic DMCs, have both upper and lower bounds.

- **L-bit packet erasure channel**

\[
C_{\text{any}}(\alpha) = \frac{\alpha L}{\alpha \log_2 \left(\frac{1-\delta}{1-\delta^{2\alpha}} \right)}
\]

- **Variable-sized packet erasure channel with expected packet-size constrained to be \(\bar{L}\) and maximum packet-size \(L_{\text{max}}\) (Allerton 2004)**

\[
C_{\text{any}}(\alpha) = \min \left((1 - \delta)\bar{L}, \frac{\alpha L_{\text{max}}}{\alpha \log_2 \left(\frac{1-\delta}{1-\delta^{2\alpha}} \right)} \right)
\]
• Average Power-constrained AWGN or Gilbert-Elliott with CSI (ISIT 05)

\[C_{\text{any}}(\alpha) = \frac{1}{2} \log_2(1 + \frac{P}{\sigma^2}) = C_{\text{Shannon}} \]

• Power-constrained AWGN+erasure (Allerton 2004)

\[\alpha^*(R) = \begin{cases} -\log_2 \delta & \text{if } R < C_{\text{Shannon}} \\ 0 & \text{otherwise} \end{cases} \]

• Similar bound for Markov channels with CSI, but replace \(\delta \) with the largest eigenvalue of a censored transition matrix.
What about imperfect information patterns?

- Do we now need a higher quality channel?
- The only path from the controller to the observer is through the plant.

April 1, 2005 at CalTech Workshop
Make the plant “dance” in a stable way!

April 1, 2005 at CalTech Workshop
Stabilization and Anytime Equivalence

• With nested information: $A^f_{\lambda, \eta, K}$. Without: A^{nf}
 – Slack parameter: K (Performance)
 – Natural ordering: larger η, λ are harder, but larger K is easier.

$$C^f_{s,(\lambda, \eta)} = \bigcap_{\lambda' < \lambda} \bigcap_{\eta' < \eta} \bigcup_{K > 0} \{ f_c | f_c \text{ solves } A^f_{(\lambda', \eta', K)} \}$$

• Equivalences

$$C^{nf}_{s,(\lambda, \eta)} \subseteq C^f_{s,(\lambda, \eta)} = C^f_{a,(\log_2 \lambda, \eta \log_2 \lambda)}$$

$$(C^{nf}_{s,(\lambda, \eta)} \cap C^{\text{finite}}) = (C^f_{s,(\lambda, \eta)} \cap C^{\text{finite}}) = (C^f_{a,(\log_2 \lambda, \eta \log_2 \lambda)} \cap C^{\text{finite}})$$

April 1, 2005 at CalTech Workshop
The vector case: differentiated service

- Possibly many unstable eigenvalues
- All unstable eigenspaces need to be estimated with eventually zero error
- Some bits are more important than others.
- Instead of a single α and a single rate R, we get a vector $\tilde{\alpha}$ and a rate vector \tilde{R}.
- Direct and converse both hold on an eigenvalue by eigenvalue basis.
- Imperfect information patterns: need to deal with intrinsic delays.
April 1, 2005 at CalTech Workshop
Asymptotic communication problem hierarchy

• The easiest: Shannon communication
 – Asymptotically: a single figure of merit C
 – Equivalent to most estimation problems of stationary ergodic processes with bounded distortion measures.
 – Feedback does not matter.

• Intermediate families: Anytime communication
 – Multiple figures of merit: $(\vec{R}, \vec{\alpha})$
 – Feedback case equivalent to stabilization problems
 – Related nonstationary estimation problems fall here also
 – Feedback matters.

• Hardest level: Zero-error communication
 – Single figure of merit C_0
 – Feedback matters.
Outline

1. Communication problem hierarchy
2. Stabilization problems and anytime communication
3. Feedback channel coding: block-length is not a good proxy for delay

April 1, 2005 at CalTech Workshop
Our favorite example: The BEC

- Simple capacity $1 - \delta$
- With perfect feedback, simple to achieve: retransmit until it gets through
 - Time till success: Geometric($1 - \delta$)
 - Expected time to get through: $\frac{1}{1-\delta}$
- One size fits all!
 - Strategy works regardless of δ (Universality)
 - All bits eventually get through correctly
 - Gets bits through as soon as possible

April 1, 2005 at CalTech Workshop
Is block-length a good proxy for delay?

- Study erasure case with and without feedback
- Block-codes vs general codes
- Behavior of probability of error with delay
Fixed block length coding

\[E(R) = \lim_{n \to \infty} - \frac{\log_2 P_e(n)}{n} \]

- Classical bounds
 - Random coding bound \(\max_{\rho \in [0,1]} E_0(\rho) - \rho R \)
 - Sphere-packing bound \(D(1 - R \| \delta) \)
- What happens with feedback?

April 1, 2005 at CalTech Workshop
BEC reliability with feedback

- At rate $R < 1$, have Rn bits to transmit in n channel uses.
- Typically $(1 - \delta)n$ code bits will be received.
- Block errors caused by atypical channel behavior.
 - Doomed if fewer than Rn bits arrive intact.
 - Feedback can not save us.
 - $D(1 - R||\delta)$
- Dobrushin showed that this type of behavior is common.
 - For sufficiently symmetric channels, the sphere-packing bound $E_{sp}(R)$ is unchanged with feedback.
 - In general, can get better but not by much — same convex shape.

April 1, 2005 at CalTech Workshop
Bit error vs Block error

• Block-code with feedback is unfair to later bits.
 – First bit: $- \log_2 \delta$
 – Last bit: $D(1 - R||\delta)$

• Symmetrize by randomly shuffling bits first.

• Makes no difference in exponential order!
BEC with feedback

- $R = \frac{1}{2}$ example:

 $R = \frac{1}{2}$

 \[
 \begin{align*}
 &0 \quad \xrightarrow{\delta^2 (1 - \delta)^2} \quad 1 \quad \xrightarrow{\delta^2 (1 - \delta)^2} \quad 2 \quad \xrightarrow{\delta^2 (1 - \delta)^2} \quad 3 \quad \xrightarrow{\delta^2 (1 - \delta)^2} \ldots
 \end{align*}
 \]

- Birth-death chain: positive recurrent if $\delta < \frac{1}{2}$

- Delay exponent easy to see:

 \[
 P(D \geq d) = P(L > \frac{d}{2}) = K\left(\frac{\delta}{1 - \delta}\right)^d
 \]

- ≈ 0.584 vs 0.0294 for block-coding!
Compare BEC feedback-delay reliability α to classical E_{sp}

$$R(\alpha) = \frac{\alpha}{\alpha + \log_2\left(\frac{1-\delta}{1-\delta^2\alpha}\right)}$$

April 1, 2005 at CalTech Workshop
Using E_{sp} to bound α^* in general

- Use a rate R anytime-code to make a block code of rate $R' = (1 - \lambda)R$ where $\lambda \in [0, 1]$.
 - Take $R'n$ bits of data and consider them the first bits to arrive at the anytime encoder.
 - For the rest of the data bits (taking time λn), just choose 0.
- The block error probability is bounded by $K2^{-\alpha \lambda n}$ which can not exceed the sphere-packing bound $2^{-E_{sp}((1-\lambda)R)n}$

$$\alpha^*(R) \leq \frac{E_{sp}((1 - \lambda)R)}{\lambda}$$
Upper bound tight for the BEC with feedback
Bound for symmetric DMCs

Minimize over λ for symmetric DMCs to sweep out frontier by varying $\rho > 0$:

$$R(\rho) = \frac{E_+^a(\rho)}{\rho}$$

$$E_+^a(\rho) = -\max_q \log_2 \sum_j \left(\sum_i q_i p_{ij}^{\frac{1}{1+\rho}} \right)^{1+\rho}$$

The same basic form as the sphere-packing bound, but concave \cap instead of convex \cup.
Reliability: from general coding or from feedback?

- Without feedback: $E_{sp}(R)$ continues to be a bound. (Pinsker)
- Consider a code with target delay d
 - Use it to construct a block-code with blocksize $n >> d$
 - Genie-aided decoder: has the truth of all bits before i
 - Error events for genie-aided system depend only on last d
 - Apply a change of measure argument

April 1, 2005 at CalTech Workshop
Anytime codes without feedback?

Infinite binary tree, with iid random labels:

- Choose a path through the tree based on data bits
- Transmit the path labels through the channel

- Can implement with time-varying convolutional code.
- Decoder does ML decoding
 - Disjoint paths are pairwise indep to true path.
 - $E_r(R)$ analysis applies.
- Achieves $\alpha = E_r(R)$ for every d for all $R < C$

April 1, 2005 at CalTech Workshop
Open questions

- Value of delayed or noisy feedback?
- Bounds for \((\tilde{R}, \tilde{\alpha})\) regions with/without feedback?
- Distributed problems — many sensors and/or many controllers.
 - Anytime MAC, Broadcast, and Slepian-Wolf exist.
 - Should yield new distributed sufficient conditions.
- Interaction with unmodeled dynamics

- Performance
 - Tatikonda’s \(D_{seq}(R)\) bounds are still the best we have.
 - Anytime tells us more about the \(\infty\) vs finite boundary, but not about performance within the “finite” region.
 - For non-causal estimation of unstable processes, performance is due to residual capacity left over after anytime requirement is met.