An AVC perspective on source/channel separation

Anant Sahai
joint work with:
Mukul Agarwal Sanjoy K. Mitter

EE 290S

Advanced Information Theory
Suppose the aliens landed . . .

- Your mission: reverse-engineer their communications technology
Suppose the aliens landed...

- Your mission: reverse-engineer their communications technology
- What assumptions should you make?
Suppose the aliens landed…

- Your mission: reverse-engineer their communications technology
- What assumptions should you make?
Does information theory determine architecture?

Channel coding is an “optimal” interface.
Does information theory determine architecture?

- Channel coding is an “optimal” interface.
- Is it *the* unique interface?

Fig. 1 — Schematic diagram of a general communication system.
What is an interface?

Virtual "lossless transfer" of bits

An interface abstracts away the details
What is an interface?

- An interface abstracts away the details
 - Channel code promises only $P_e < \epsilon$
What is an interface?

Virtual "lossless transfer" of bits

Fig. 1 — Schematic diagram of a general communication system.

- An interface abstracts away the details
 - Channel code promises only $P_e < \epsilon$
 - No promises about how errors occur.
An interface abstracts away the details

- Channel code promises only $P_e < \epsilon$
- No promises about how errors occur.

It reuses a solution to a different problem.

- Transfer lots of bits with Hamming Distortion 0
What is an interface?

- An interface abstracts away the details
 - Channel code promises only $P_e < \epsilon$
 - No promises about how errors occur.
- It reuses a solution to a different problem.
 - Transfer lots of bits with Hamming Distortion 0
 - Source code: **reduction** of one problem to another

Fig. 1 — Schematic diagram of a general communication system.
Equivalence proved using mutual information characterizations of $R(D)$ and C_{Shannon}.
Classical separation revisited

- Equivalence proved using mutual information characterizations of $R(D)$ and C_{Shannon}.

- Bidirectional reductions at the problem level.
So could we have a different interface?

Virtual "lossy transfer" for a different source

Reuse the solution to a different problem
So could we have a different interface?

Virtual "lossy transfer" for a different source

Reuse the solution to a different problem
- Channel code promises $\frac{1}{n} \sum_{i=1}^{n} \rho(X_i, \hat{X}_i) \leq D$
- Channel code promises $P_e < \epsilon$

![Schematic diagram of a general communication system.](image)
So could we have a different interface?

Virtual "lossy transfer" for a different source

Reuse the solution to a different problem

- Channel code promises \(\frac{1}{n} \sum_{i=1}^{n} \rho(X_i, \hat{X}_i) \leq D \)
- Channel code promises \(P_e < \epsilon \)
- No promises about how errors occur.
So could we have a different interface?

Virtual "lossy transfer" for a different source

- Reuse the solution to a different problem
 - Channel code promises $\frac{1}{n} \sum_{i=1}^{n} \rho(X_i, \hat{X}_i) \leq D$
 - Channel code promises $P_e < \epsilon$
 - No promises about how errors occur.

- AVC where “Jammer” has access to codeword \vec{X}
 - “Jammer” is constrained in what he can do
 - We are constrained to codewords that look like $P(X)$
Main Result: “Reverse Source Coding”

Suppose we have a family of black-box systems indexed by ϵ that can communicate streams from input alphabet $\{\mathcal{X}\}$ satisfying:

$$P\left(\frac{1}{n_\epsilon} \sum_{i=1}^{n_\epsilon} \rho(X_i, Y_i) > D\right) \leq \epsilon$$
Main Result: “Reverse Source Coding”

Suppose we have a family of black-box systems indexed by ϵ that can communicate streams from input alphabet $\{\mathcal{X}\}$ satisfying:

$$P\left(\frac{1}{n\epsilon} \sum_{i=1}^{n\epsilon} \rho(X_i, Y_i) > D\right) \leq \epsilon$$

- The distortion measure ρ is non-negative and additive.
Main Result: “Reverse Source Coding”

Suppose we have a family of black-box systems indexed by ϵ that can communicate streams from input alphabet $\{\mathcal{X}\}$ satisfying:

$$P\left(\frac{1}{n}\sum_{i=1}^{n\epsilon} \rho(X_i, Y_i) > D\right) \leq \epsilon$$

- The distortion measure ρ is non-negative and additive.
- The probability measure P is for $\{X_i\}$ iid according to $P(x)$.
Main Result: “Reverse Source Coding”

Suppose we have a family of black-box systems indexed by ϵ that can communicate streams from input alphabet $\{X\}$ satisfying:

$$P\left(\frac{1}{n_\epsilon} \sum_{i=1}^{n_\epsilon} \rho(X_i, Y_i) > D\right) \leq \epsilon$$

- The distortion measure ρ is non-negative and additive.
- The probability measure P is for $\{X_i\}$ iid according to $P(x)$

Then, assuming access to common-randomness at both the encoder and decoder, it is possible to choose ϵ and reliably communicate $n_\epsilon R$ bits at all rates $R < R(D)$ bits per source symbol over the black-box system so that the probability of error is as small as desired.
Finite alphabet case

- Random encoder

- “Nearest typical neighbor” decoder

- Error events:
Finite alphabet case

- Random encoder
 - Randomly draw 2^{nR} length n codewords iid according to P_X using common randomness.

- “Nearest typical neighbor” decoder

- Error events:
Finite alphabet case

- Random encoder
 - Randomly draw 2^{nR} length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.
- “Nearest typical neighbor” decoder

- Error events:
Finite alphabet case

- Random encoder
 - Randomly draw 2^{nR} length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.
- “Nearest typical neighbor” decoder
 - Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.

Error events:
Finite alphabet case

- Random encoder
 - Randomly draw $2^n R$ length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.

- “Nearest typical neighbor” decoder
 - Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.
 - Let y_1^n be the received string.

- Error events:
Finite alphabet case

- Random encoder
 - Randomly draw 2^nR length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.
- “Nearest typical neighbor” decoder
 - Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.
 - Let y_1^n be the received string.
 - Decode to $\hat{X}_1^n \in C_R$ closest to y_1^n in a ρ-distortion sense.
- Error events:
Finite alphabet case

Random encoder
- Randomly draw 2^{nR} length n codewords iid according to P_X using common randomness.
- Transmit the one corresponding to the message.

“Nearest typical neighbor” decoder
- Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.
- Let y_1^n be the received string.
- Decode to $\hat{X}_1^n \in C_R$ closest to y_1^n in a ρ-distortion sense.

Error events:
- Atypical codeword X_1^n. Probability tends to 0.
Finite alphabet case

- Random encoder
 - Randomly draw 2^nR length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.

- “Nearest typical neighbor” decoder
 - Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.
 - Let y_1^n be the received string.
 - Decode to $\hat{X}_1^n \in C_R$ closest to y_1^n in a ρ-distortion sense.

- Error events:
 - Atypical codeword X_1^n. Probability tends to 0.
 - Excess average distortion ($> D$) on true codeword. Probability tends to 0 by assumption.
Finite alphabet case

- Random encoder
 - Randomly draw 2^{nR} length n codewords iid according to P_X using common randomness.
 - Transmit the one corresponding to the message.

- “Nearest typical neighbor” decoder
 - Define the typical codeword set C_R to be codewords with type $P_X \pm \epsilon'$ for small ϵ'.
 - Let y_1^n be the received string.
 - Decode to $\hat{X}_1^n \in C_R$ closest to y_1^n in a ρ-distortion sense.

- Error events:
 - Atypical codeword X_1^n. Probability tends to 0.
 - Excess average distortion ($> D$) on true codeword. Probability tends to 0 by assumption.
 - There exists a false codeword has average distortion $< D$
Suppose y_1^n has type q_Y. Consider $z_1^n \in C_R$ that is false. Let q_{XY} be the resulting joint type.
Suppose y^n_1 has type q_Y. Consider $z^n_1 \in C_R$ that is false. Let q_{XY} be the resulting joint type.

$q_X \in p_X \pm \epsilon'$
Probability of false codeword being close

- Suppose y^n_1 has type q_Y. Consider $z^n_1 \in C_R$ that is false. Let q_{XY} be the resulting joint type.
- $q_X \in p_X \pm \epsilon'$
- $E_{q_{XY}}[\rho(X, Y)] \leq D$ if an error.
Probability of false codeword being close

- Suppose y_1^n has type q_Y. Consider $z_1^n \in C_R$ that is false. Let q_{XY} be the resulting joint type.
- $q_X \in p_X \pm \epsilon'$
- $E_{q_{XY}}[\rho(X, Y)] \leq D$ if an error.

Sort y_1^n and correspondingly shuffle codeword z_1^n
Probability of false codeword being close

- Suppose \(y^n_i\) has type \(q_Y\). Consider \(z^n_i \in C_R\) that is false. Let \(q_{XY}\) be the resulting joint type.
- \(q_X \in p_X \pm \epsilon'\)
- \(E_{q_{XY}}[\rho(X, Y)] \leq D\) if an error.

Sort \(y^n_i\) and correspondingly shuffle codeword \(z^n_i\)

\[
P(Z^n_1 \text{ collides}) \leq \prod_j 2^{-nq_Y(j)D(q_{X|Y=j}\|p_X)} = 2^{-nD(q_{XY}\|p_Xq_Y)}
\]
Bounding probability of collision

- Union bound over 2^{nR} codewords and $(n + 1)|\mathcal{X}||\mathcal{Y}|$ possible joint types q_{XY}.
- Minimize divergence $D(q_{XY}||p_X q_Y)$ over set of joint types q_{XY} satisfying:

 - $E_{q_{XY}}[\rho(X, Y)] \leq D$
 - $q_X \in p_X \pm \epsilon'$
Bounding probability of collision

- Union bound over 2^{nR} codewords and $(n + 1)|\mathcal{X}||\mathcal{Y}|$ possible joint types q_{XY}.
- Minimize divergence $D(q_{XY}||p_Xq_Y)$ over set of joint types q_{XY} satisfying:

 ▶ $E_{q_{XY}}[\rho(X, Y)] \leq D$

 ▶ $q_X \in p_X \pm \epsilon'$

- Key step:

 $D(q_{XY}||p_Xq_Y) = D(q_X||p_X) + D(q_{XY}||q_Xq_Y) \leq D(q_{XY}||q_Xq_Y) = I_q(X; Y)$
Bounding probability of collision

- Union bound over 2^{nR} codewords and $(n + 1)|\mathcal{X}|\mathcal{Y}$ possible joint types q_{XY}.
- Minimize divergence $D(q_{XY}||p_{X}q_{Y})$ over set of joint types q_{XY} satisfying:
 - $E_{q_{XY}}[\rho(X, Y)] \leq D$
 - $q_X \in p_X \pm \epsilon'$
- Key step:
 $D(q_{XY}||p_{X}q_{Y}) = D(q_{X}||p_{X}) + D(q_{XY}||q_{X}q_{Y}) \leq D(q_{XY}||q_{X}q_{Y}) = I_q(X; Y)$
- Minimizing $I_q(X; Y)$ gives $R(D)$ when $\epsilon' \to 0$
Bounding probability of collision

- Union bound over 2^{nR} codewords and $(n + 1)|\mathcal{X}||\mathcal{Y}|$ possible joint types q_{XY}.
- Minimize divergence $D(q_{XY}||p_Xq_Y)$ over set of joint types q_{XY} satisfying:
 - $E_{q_{XY}}[\rho(X, Y)] \leq D$
 - $q_X \in p_X \pm \epsilon'$
- Key step:
 $$D(q_{XY}||p_Xq_Y) = D(q_X||p_X) + D(q_{XY}||q_Xq_Y) \leq D(q_{XY}||q_Xq_Y) = I_q(X; Y)$$
- Minimizing $I_q(X; Y)$ gives $R(D)$ when $\epsilon' \to 0$
- If $R < R(D)$, collision probability $\to 0$ with n.

Anant Sahai (290S) Inverse Rate Distortion Nov 15, 2006 12 / 19
Can we reduce the randomization requirements?

- Under the current promises
 - Jammer can completely corrupt a tiny fraction of inputs
Can we reduce the randomization requirements?

- Under the current promises
 - Jammer can completely corrupt a tiny fraction of inputs
 - Is this what we want to allow?
Can we reduce the randomization requirements?

- Under the current promises
 - Jammer can completely corrupt a tiny fraction of inputs
 - Is this what we want to allow?

- Let’s renegotiate!
 - Have to be reasonable
 - Allow Jammer to kill before seeing the codeword. (channel noise)
 - Otherwise require good treatment of typical sources.
Can we reduce the randomization requirements?

- Under the current promises
 - Jammer can completely corrupt a tiny fraction of inputs
 - Is this what we want to allow?
- Let’s renegotiate!
 - Have to be reasonable
 - Allow Jammer to kill before seeing the codeword. (channel noise)
 - Otherwise require good treatment of typical sources.
- Use list-decoding
 - A distortion ball need not contain too many codewords
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.
Extending to real vector alphabets

- **Compact support and difference-distortion**
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- **Unbounded support**
 - New codebook construction:
 - View $F_X(x) = (1 - \delta)F_{\tilde{X}}(x) + \delta F_{\tilde{X}}(x)$ where \tilde{X} has compact support.
Extending to real vector alphabets

- **Compact support and difference-distortion**
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- **Unbounded support**
 - New codebook construction:
 - View $F_X(x) = (1 - \delta)F_{\tilde{X}}(x) + \delta F_{\bar{X}}(x)$ where \tilde{X} has compact support.
 - First flip n iid unfair coins with $P(\text{head}) = \delta$.
 - Mark positions as dirty or clean.
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- Unbounded support
 - New codebook construction:
 - View $F_X(x) = (1 - \delta) F_{\tilde{X}}(x) + \delta F_{\bar{X}}(x)$ where \tilde{X} has compact support.
 - First flip n iid unfair coins with $P(\text{head}) = \delta$.
 - Mark positions as dirty or clean.
 - Draw codewords from \tilde{X} in clean positions and \bar{X} in dirty ones.
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- Unbounded support
 - New codebook construction:
 - View $F_X(x) = (1 - \delta)F_{\tilde{X}}(x) + \delta F_{\bar{X}}(x)$ where \tilde{X} has compact support.
 - First flip n iid unfair coins with $P(\text{head}) = \delta$.
 - Mark positions as dirty or clean.
 - Draw codewords from \tilde{X} in clean positions and \bar{X} in dirty ones.
 - Modified decoding rule:
 - Declare error if fewer than $(1 - 2\delta)n$ clean positions.
 - Restrict codebook to clean positions only for decoding purposes.
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- Unbounded support
 - New codebook construction:
 - View $F_X(x) = (1 - \delta)F_{\tilde{X}}(x) + \delta F_{\bar{X}}(x)$ where \tilde{X} has compact support.
 - First flip n iid unfair coins with $P(\text{head}) = \delta$.
 - Mark positions as dirty or clean.
 - Draw codewords from \tilde{X} in clean positions and \bar{X} in dirty ones.
 - Modified decoding rule:
 - Declare error if fewer than $(1 - 2\delta)n$ clean positions.
 - Restrict codebook to clean positions only for decoding purposes.
 - Increases distortion by a factor of $\frac{1 + 2\delta}{1 - 2\delta}$.

Anant Sahai (290S)
Inverse Rate Distortion
Nov 15, 2006 14 / 19
Extending to real vector alphabets

- Compact support and difference-distortion
 - Same codebook construction
 - Pick a fine enough quantization Δ
 - Reduces to finite alphabet case at decoder with a small factor increase in distortion.

- Unbounded support
 - New codebook construction:
 - View $F_X(x) = (1 - \delta)F_{\tilde{X}}(x) + \delta F_{\bar{X}}(x)$ where \tilde{X} has compact support.
 - First flip n iid unfair coins with $P(\text{head}) = \delta$.
 - Mark positions as dirty or clean.
 - Draw codewords from \tilde{X} in clean positions and \bar{X} in dirty ones.
 - Modified decoding rule:
 - Declare error if fewer than $(1 - 2\delta)n$ clean positions.
 - Restrict codebook to clean positions only for decoding purposes.
 - Increases distortion by a factor of $\frac{1 + 2\delta}{1 - 2\delta}$.
 - $\lim_{\Delta \to 0} \lim_{\delta \to 0} R_{\Delta, \delta} \left(D \frac{1 + 2\delta}{1 - 2\delta} \right) = R(D)$
Conditional Rate-Distortion

- Assume “coverstory” V^n_1 drawn according to $P(V)$ is known to all parties: encoder, decoder, and attacker.
- All $R < R_{X|V}(D)$ are achievable.
Assume “coverstory” V_1^n drawn according to $P(V)$ is known to all parties: encoder, decoder, and attacker.

All $R < R_{X|V}(D)$ are achievable.

- Encoder draws conditionally using $P(X|V)$.

Assume “coverstory” V_1^n drawn according to $P(V)$ is known to all parties: encoder, decoder, and attacker.

All $R < R_{X|V}(D)$ are achievable.

- Encoder draws conditionally using $P(X|V)$.
- Codeword typicality defined similarly (include V_1^n)
Assume “coverstory” V_1^n drawn according to $P(V)$ is known to all parties: encoder, decoder, and attacker.

All $R < R_{X|V}(D)$ are achievable.

- Encoder draws conditionally using $P(X|V)$.
- Codeword typicality defined similarly (include V_1^n).
- Nearest-conditionally-typical codeword decoding.
Assume “coverstory” V_1^n drawn according to $P(V)$ is known to all parties: encoder, decoder, and attacker.

All $R < R_{X|V}(D)$ are achievable.

- Encoder draws conditionally using $P(X|V)$.
- Codeword typicality defined similarly (include V_1^n).
- Nearest-conditionally-typical codeword decoding
- Parallel proof
Application: unstable Markov Processes: $R(D)$

\[X_{t+1} = AX_t + W_t \text{ where } A > 1 \]
Accumulation: Look at \(\{X_{kn}\} \)
- Can embed \(R_1 < n \log_2 A \) bits per symbol
- These bits are recovered with anytime reliability if black-box has finite error moments.
Unstable Markov Processes: two kinds of information

- Accumulation: Look at \(\{X_{kn}\} \)
 - Can embed \(R_1 < n \log_2 A \) bits per symbol
 - These bits are recovered with anytime reliability if black-box has finite error moments.

- Dissipation: Look at \(\{X_{kn-1}^{kn-1} | X_{kn}\} \)
Unstable Markov Processes: two kinds of information

- **Accumulation:** Look at $\{X_{kn}\}$
 - Can embed $R_1 < n \log_2 A$ bits per symbol
 - These bits are recovered with anytime reliability if black-box has finite error moments.

- **Dissipation:** Look at $\{X_{k(n-1)+1}^{kn-1} | X_{kn}\}$
 - Can be transformed to look iid
 - Fall under our results
Unstable Markov Processes: two kinds of information

- **Accumulation:** Look at \(\{X_{kn}\} \)
 - Can embed \(R_1 < n \log_2 A \) bits per symbol
 - These bits are recovered with anytime reliability if black-box has finite error moments.

- **Dissipation:** Look at \(\{X_{kn-1}^{k(n-1)+1} | X_{kn}\} \)
 - Can be transformed to look iid
 - Fall under our results
 - Can embed \(R_2 < R(D) - \log_2 A \) bits per symbol
Unstable Markov Processes: two kinds of information

- **Accumulation:** Look at $\{X_{kn}\}$
 - Can embed $R_1 < n \log_2 A$ bits per symbol
 - These bits are recovered with anytime reliability if black-box has finite error moments.
- **Dissipation:** Look at $\{X_{k(n-1)+1}^{kn-1} | X_{kn}\}$
 - Can be transformed to look iid
 - Fall under our results
 - Can embed $R_2 < R(D) - \log_2 A$ bits per symbol

- Two-tiered nature of information-flow proved by direct reduction.
Conclusions and open problems

Traditional point-to-point source-channel separation is a consequence of a problem-level equivalence that can be proved using direct reductions in both directions.
Conclusions and open problems

- Can the gap between $R_{seq}(D)$ and $R(D)$ be used to carry information?
 - Yes, but nearest neighbor alone won’t do it.

Traditional point-to-point source-channel separation is a consequence of a problem-level equivalence that can be proved using direct reductions in both directions.
Conclusions and open problems

Traditional point-to-point source-channel separation is a consequence of a problem-level equivalence that can be proved using direct reductions in both directions.

- Can the gap between $R_{\text{seq}}(D)$ and $R(D)$ be used to carry information?
 - Yes, but nearest neighbor alone won’t do it.

- Open problems and project ideas
 - Can Wyner-Ziv be covered?
 - Is there another reason to suspect that “digital communication” is fundamental?