
A Simple Encoding And Decoding Strategy For

Stabilization Over Discrete Memoryless Channels

Anant Sahai and Hari Palaiyanur
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA, 94720-1770

{sahai, hpalaiya}@eecs.berkeley.edu

Abstract

We study stabilization of a discrete-time scalar unstable plant over a noisy
communication link, where the plant is perturbed at each time by an unknown,
but bounded, additive disturbance. In order to have a simple encoding and de-
coding strategy, we restrict the observer/encoder to be nearly memoryless in that
the channel inputs can only depend on the last sample taken of the plant state,
while the controller/decoder is based on the ZJ or Stack Algorithm. Based on an
argument due to Jelinek, we show that the suboptimal decoding algorithm achieves
stabilization of the same moments as with ML decoding, without the unboundedly
increasing computational cost of ML decoding. While in principle the decoder does
require an unbounded amount of memory, the computational effort expended at
every time instant is a random variable that does not grow with time on average.

1 Introduction

The problem of control in the presence of communication constraints is illustrated in
figure 1. This is a problem of cooperative distributed control in that there are two
different boxes that need to be designed: the observer/encoder that has access to the
plant state and generates an input to the noisy channel, and the controller which has
access to the channel outputs and applies a control to the plant. The reader is referred
to two resources to get the appropriate background. The first is the classic 1978 paper
by Ho, Kastner, and Wong [3] in which they summarize the then known relationships
among team theory, signaling, and information theory from the perspective of automatic
control. The more recent interest in the subject is best understood by reading the recent
September 2004 special issue of Transactions on Automatic Control and the references
contained therein.1

Here, we focus exclusively on the case shown in figure 1 where the information patterns
[9] are non-nested in that the observer does not know everything the controller knows.
This means that there is no explicit feedback of the channel outputs to the observer.
Our previous work [6] showed that in the case of finite alphabet channels, the plant itself
could be used as a “feedback channel” for communication. The controller can make the
plant dance so as to noiselessly communicate the channel output to the encoder/observer.
This showed that in principle, the non-nested information pattern did not increase the
difficulty of the stabilization problem. [6] further showed that the problem of stabilization
over a noisy channel was equivalent to a problem of anytime communication using the
noisy channel with perfect feedback.

1Due to space limitations, I only cite references specifically helpful for understanding the present
work, not for giving full and proper historical background.

1 Step
Delay

�
�

�
�Channel

Noisy

Encoder/
Observer

Decoder/
Controller

�
�

�
�

-
?

?

6

-

U(t)

Control Signals

O

C

X(t)

W (t − 1)

U(t − 1)

Scalar
System

�

Figure 1: Control over a noisy communication channel without any explicit feedback
path from controller to observer.

While this equivalence certainly illuminates the structure of distributed control prob-
lems (see [7] for more details), it does not actually allow us to solve any particular prob-
lem. This is especially true since the previously known generic constructions for anytime
codes are based on infinite random trees. As such, they require growing complexity at
both the encoder and decoder. This contrasts in spirit with the idea of stabilization
making a system behave in a nice “steady-state” manner that returns to the same few
safe states over and over again. If the closed-loop system is behaving nicely, why should
the observer and controller have a steadily increasing workload?

In this paper, we attack this problem by making a structural requirement on the
observer/encoder as well as the controller/decoder with the intent of keeping the com-
plexity at both encoder and decoded bounded. The observer/encoder must be a nearly
memoryless map (though possibly time-varying and random in nature) that picks channel
outputs based only on the current state of the plant. The controller/decoder is required
to be a sequential decoder as defined in the classic paper of Forney[1].

In section 2, we formally introduce the problems of stabilization and anytime com-
munication and review the existing results from [6], and [7]. In section 3, we adapt the
existing strategy by replacing the ML decoder with a sequential decoder. We then state
and prove a sufficient condition for stabilization using nearly memoryless random time-
varying encoder/observers and sequential decoders over discrete memoryless channels.
Next, in section 4, we give simulation results of this strategy and compare them with
the analysis. Finally, we comment on the results and in section 5, we look to future
enhancements of our scheme.

2 Problem Definition and Review

2.1 Stabilization Problem

At the heart of the stabilization problem is a scalar plant that is unstable in open loop.
Expressed in discrete-time, we have:

X(t + 1) = λX(t) + U(t) + W (t), t ≥ 0 (1)

where {X(t)} is a IR-valued state process. {U(t)} is a IR-valued control process and
{W (t)} is a bounded noise/disturbance process s.t. |W (t)| ≤ Ω

2
a.s. λ ≥ 1 so the system

is unstable while X(0) = 0 for convenience.2

The distributed nature of the problem comes from having a noisy communication
channel in the feedback loop. We require an observer/encoder system O to observe X(t)
and generate inputs A(t) to the channel. We also require a decoder/controller system C
to observe channel outputs B(t) and generate control signals U(t). In general, we could
allow both O, C to have arbitrary memory and to be nonlinear. In this paper, we focus
on the case of nearly memoryless O.

Definition 2.1 A closed-loop dynamic system with state X(t) is η-stable if there exists
a constant K s.t. E[|X(t)|η] ≤ K for all t ≥ 0.

Holding the η-moment within bounds is a way of keeping large deviations rare.3 The
larger η is, the more strongly we penalize very large deviations.

2.2 Anytime communication

For simplicity of notation, let Mi be the R bit message that a channel encoder takes
in at time i. Based on all the messages received so far, and any additional information
(e.g. past channel output feedback) that it might have, the channel encoder emits the
i-th channel input. An anytime decoder provides estimates M̂i(t), the best estimate for
message i at time t. If we are considering a delay d, the probability of error we are
interested in is P (M̂t−d(t) 6= Mt−d).

Definition 2.2 The α-anytime capacity Canytime(α) of a channel is the least upper
bound of the rates at which the channel can be used to transmit data so that there exists
a uniform constant K such that for all d and all times t we have

P (M̂t−d(t) 6= Mt−d(t)) ≤ K2−αd

The probability is taken over the channel and any randomness that we deem the
encoder and decoder to have access to. Due to the fast convergence of an exponential,
it is equivalent to requiring that the probability of error for all messages sent upto time

t − d is bounded by K ′2−αd.

2.3 Anytime communication and stabilization

Theorem 2.3 [6] For a given noisy channel, bound Ω, and η > 0, if there exists an
observer/encoder O and controller/decoder C for the unstable scalar system that achieves
E[|X(t)|η] < K for all bounded driving noise −Ω

2
≤ W (t) ≤ Ω

2
, then Canytime(η log2 λ) ≥

log2 λ bits per channel use for the noisy channel considered with noiseless feedback.

And for the non-nested information pattern case:

Theorem 2.4 [6] It is possible to control an unstable scalar process driven by a bounded
disturbance over a noisy finite output-alphabet channel so that the η-moment of X(t)
stays finite for all time if the channel with feedback has Canytime(α) ≥ log2 λ for some

α > η log2 λ if the observer is allowed to observe the state X(t) exactly.

The encoders and decoders used in the proofs of these theorems were far from simple.
Next we define the class of simplified encoders and decoders we wish to restrict ourselves
to.

2Just start time at −1 if you want an unknown but bounded initial condition.
3[7] shows how to map the results given here to almost-sure stabilization in the undisturbed case

when W (t) = 0.

2.4 Nearly memoryless encoders and ML decoders

By nearly memoryless observers, we mean O functions that sample the plant state every
T time units (for some T > 0), and then apply a channel input that depends only on the
last such sample.

Definition 2.5 A random nearly memoryless observer is a sequence of maps Ot such
that there exist O′

t so that:

Ot(X
t
0, Z

t
0) = O′

t(X(T ⌊
t

T
⌋), Z⌊ t

T
⌋)

where the Zi are the iid continuous uniform random variables on [0, 1] that represent the
common-randomness available at both the observer/encoder and the controller/decoder.

Definition 2.6 A sequential decoder for a trellis code is one that searches paths through
the trellis in a sequential and causal manner.

The following result will guide us in our approach and can be found in [7].

Theorem 2.7 We can η-stabilize an unstable scalar process driven by a bounded dis-
turbance over a discrete memoryless channel if the channel without feedback has random
block-coding error exponent Er(R) > η log2 λ for some R > log2 λ and the observer is only
allowed access to the plant state where Er(R) is Gallager’s random coding error exponent.
Furthermore, this can be achieved with a nearly memoryless random encoder/observer.

The scheme we use in the next section will adapt from the proof of this theorem, using
exactly the same encoder. However, the prior proof required ML decoding over a growing
trellis at the controller. It does not take long for this scheme to become impractical due
to the exponential growth in required computation. This provides the motivation for us
to consider using a sequential decoder at the controller.

3 Main Result

We first state and prove the main theorem for η-th moment stabilization, and then briefly
analyze the computation workload of the decoder.

3.1 Theorem and proof

Theorem 3.1 We can η-stabilize an unstable scalar process driven by a bounded dis-
turbance over a discrete memoryless channel if the channel without feedback has random
block-coding error exponent Er(R) > η log2 λ for some R > log2 λ. Furthermore, this
can be achieved with the same nearly memoryless encoder/observer used in [7] and a
stack-based sequential decoder/controller.

Proof: Pick a rate R > log2 λ for which Er(R) > η log2 λ. Pick T, ∆ large enough so
that:

TR > log2(λ
T +

∑∞
i=0 λT−iΩ

∆
)

This means that if X(t) is known to be within any given box of size ∆, then with no
controls applied, the plant state X(t + T) can be in no more than 2TR adjacent boxes
each of size ∆. It is clear that such a T, ∆ pair always exists as long as R > log2 λ.

Our quantizer Q will look at the plant state X with a coarseness of ∆. It is clear that
we satisfy the following:

a. Knowing that X(t) is in a given bin of width ∆ and assuming that no controls are
applied, there are at most 2TR possible bins which could contain X(t + T).

b. The descendants of a given bin dT time units later are all in contiguous bins and
furthermore, there exists a constant K such that the total length covered by these
bins is ≤ KλdT .

Properties [a] and [b] above easily extend to the case when the control sequence
between time X(t) and X(t+T) is known exactly since linearity tells us that the impact
of these controls is just a translation of all the bins by a known amount. Thus, we have:

c. Conditioned on actual past controls applied, the set of possible paths that the states
X(0), X(T), X(2T), . . . could have taken through the quantization bins is a subset
of a trellis that has a maximum branching factor of 2TR. Furthermore, the total
length covered by the d-stage descendants of any particular bin is bounded above
by KλdT .

Not all such paths through the trellis are necessarily possible, but all possible paths
do lie within the trellis. The observer/encoder independently assigns symbols from AT

as time-varying labels to the bins. The probability measure used to draw the symbols
should be the Er(R) achieving distribution. Thus, the labels on each bin are iid through
both time and across bins.

Call two paths through the trellis disjoint with depth d if their last common node was
at depth d and the paths are disjoint after that. We immediately observe:

d. If two paths are disjoint in the trellis at a depth of d, then the channel inputs
corresponding to the past dT channel uses are independent of each other.

In decoding, the controller creates its trellis with the knowledge of past control inputs.
Then, it decodes the channel outputs at times which are multiples of T using a version
of the Stack or Zigangirov-Jelinek Algorithm that is referred to as ‘Algorithm A’ in [1].
This version is simple and does not consider merging of paths on the trellis.

It has been shown that if x is a channel input symbol and y is a channel output symbol,
the optimal metric associated with this symbol pair is of the form m(x, y) = log2

p(y|x)
p(y)

−G,
where G is a real parameter of the algorithm. For a branch with T symbols, the metric of
the branch would then be

∑T−1
i=0 log2

p(yi|xi)
p(yi)

−G. The parameter G will be used to tradeoff
complexity and performance of the controller. Fix a time t and consider an error event
at depth d. This represents the case that the maximum likelihood path last intersected
with the true path dT time steps ago. By property [c] above, our control will be based
on a state estimate that can be at most KλdT away from the true state. Thus, we have:

e. If an error event at depth d occurs at time t, the state |X(t + T)| is smaller than
K ′λ(d+1)T for some constant K ′ that does not depend on d or t.

By property [c], there are no more than 2dTR possible disjoint false paths that last
intersected the true path d stages ago. By the memorylessness of the channel, the log-
likelihood of each path is the sum of the likelihood of the “prefix” of the path leading up
to d stages ago and the “suffix” of the path from that point onward. Property [d] tells
us that the channel inputs corresponding to the false paths are pairwise independent of
the true inputs for the past dT channel uses. For a path that is disjoint from the true
path at a depth of d to beat all paths that end up at the true final state, the false path

must have a final log-likelihood that at least beats the metric of true path at the point of
divergence or beyond, until the current time. With this observation and some techniques
developed by Jelinek extending the random coding error exponent arguments, we have:

Theorem 3.2 ([10]) For a decoder using the Stack Algorithm with bias parameter G,
let Ed denote the event that some false path that diverged with the true path d branches
ago is declared the decoded path. Then, if G satisfies the condition below for ρ such that
R = E ′

0(ρ) and E0(ρ) is Gallager’s function, P (Ed) < L exp2(−dTEr(R)).

G >
1 + ρ

ρ

[

E0(ρ) + f(ρ)

]

where f(ρ) , log2

∑

y

p(y)

[

∑

x

[

p(y|x)

p(y)

]
1

1+ρ

p(x)

]ρ

This result is the reason for why a sequential decoder can stabilize the same moments
as an ML decoder. Now we finish proving stability of the η-th moment by applying a
union bound over error depths, using the stated theorem, and observation [e].

E[|X(t + T)|η] =

⌊t/T ⌋
∑

d=0

P (Ed) · E[|X(t + T)|η|Ed]

<
∞

∑

d=0

L2−dTEr(R) · (Kλ(d+1)T)η

= LKηλTη

∞
∑

d=0

2−dT (Er(R)−η log2 λ)

= K ′ < ∞

The final geometric sum converges because we assume Er(R) > η log2 λ. �

For sequential decoding, the decoder has to perform a random amount of computation
at each time step. The random variable of computation is of practical interest in this
scenario and we explore it next.

3.2 The random variable of computation

To explain the classical view of computation, consider an infinite trellis being partitioned
by the true path through the trellis and a sequential decoder running for eternity to
decode the true path.

Definition 3.3 The ith incorrect subtree is defined by the set of paths that have their
last common node with the true path at depth i into the trellis. The random variable of

computation Ni is defined to be the number of nodes in the ith incorrect subtree that are
ever visited by the sequential decoder.

Theorem 3.4 ([1], [10]) If G = R and ρ is defined parametrically by the equation
R = E0(ρ)/ρ, then the γ-th moment of Ni is finite for γ < ρ. In particular, if R < E0(1),
the expected mean of computation is finite.

In the context of stabilization, however, one would like to say something about the
moments of the number of computations performed at any given time.

Definition 3.5 The random variable C(k) is defined to be the number of nodes visited
by the sequential decoder at time k. The r.v. Ci(k) is the number of nodes in the ith

incorrect subtree visited at time k.

We note the following relation between these two notions of computation. Suppose
E[Ni] = K < ∞. Then, we have

lim
k→∞

E[C(k)] = lim
k→∞

E[
k−1
∑

i=1

Ci(k)]

≤ lim
k→∞

k−2
∑

n=0

sup
l>0

E[Cl(n + l)]

There are more partial paths on the stack as time increases, and the metrics of the
incorrect subtree relative to the correct path are the same regardless of i, so the expected
value of Cl(n + l) should be insensitive to l since the averaging is performed over all
possible random codes and channel noise. Thus, we have

lim
k→∞

E[C(k)] ≤

∞
∑

n=0

E[C1(n + 1)]

= E[
∞

∑

n=0

C1(n + 1)]]

= E[N1] < ∞

Having shown that the mean of C(k) stays bounded, we conjecture that if a moment
of Ni exists for all i, the same moment of C(k) will exist for all k.

Simulation Parameters:
λ = 1.1
ε = 0.05
Ω = 2.0
∆ = 5000.0
Bias = 0.55
T = 10
100,000 Blocks
17 seconds to run

Rate = 0.317
Capacity = 0.71

0 2 4 6 8 10

x 10
4

−1000

−500

0

500

Block Number

B
in

Sample Path of State Bin

0 200 400 600 800 1000
−40

−20

0

20

40

Block Number

D
ec

od
ed

 B
in

Sample Decoded Bin Path and Number of Computations for each block

0 200 400 600 800 1000
0

50

100

150

200

250

Block Number

N
um

 o
f C

om
pu

ta
tio

ns λ = 1.1
 ε = 0.05
Ω = 2.0
∆ = 5000.0
Rate = 0.317

Figure 2: Left: A sample path of the actual bin the state lies in over 100,000 branches of
length 10. Right: A sample path of the decoded bin and C(k). Note that large deviations
in the decoded bin from 0 generally occur near high periods of computation.

4 Simulation Results

The main advantage of using sequential decoding over ML decoding, as we have claimed,
is that the complexity of the decoder does not grow unboundedly as time goes on, except
for the requirement of memory that grows roughly linearly with time. By simulating
the strategy described in Theorem 3.1, we show that complexity is reduced to such an

extent as to make the scheme practical. The simulations were performed with a BSC
with crossover probability ǫ as the channel. Also, we note that the rate is defined to
be log2(B)/T where B is the branching factor of the decoding trellis over a block of T
symbols.

4.1 Sample paths

Since the overall system ‘operates’ at a resolution of ∆, it is not interesting to look at
both the state and the bin of the state, and so we focus on the actual and decoded bins,
rather than the state. Figure 2 shows a sample path of the actual bin, and a sample path
of the decoded bin along with a sample path of C(k). The sample path shows that large
deviations of the state from 0 are rare. By applying Markov’s inequality using a moment
η that we know can be stabilized, we have

P (|X(t)|η ≥ xη) ≤ Ksx
−η

Similarly, P (C(k) ≥ N) ≤ KcN
−γ if we know the γ-th moment of computation to

be finite. Viewed on a log-log plot, both these quantities should decay linearly with a
slope equal to the supremum of finite moments. In Figure 3, we see that with a bias
that is optimized to achieve the random coding exponent for probability of error, the
computation4 does not have the moment stability guaranteed by Theorem 3.4 if we had
the bias equal to the rate. Also, the power law for the state is significantly better than
guaranteed by the random coding exponent, which is Er(R)/ log2(λ).

0 1 2 3 4 5 6

−14

−12

−10

−8

−6

−4

−2

log
2
(M)

lo
g 2(P

(|
B

in
(X

)|
>

=
M

))

Log−Log Plot Showing Power Law for Distribution of State Magnitude

Simulation Data
Linear Fit

λ = 1.1
 ε = 0.05
∆ = 10
Ω = 2

Rate = 0.317
Bias = 0.6
Slope of Fit = −1.7
Slope of RC exp.
Bound = −1.2

 0 1 2 3 4 5 6 7

−14

−12

−10

−8

−6

−4

−2

0

log
2
(N)

lo
g 2(P

(C
>

=
N

))

Log−Log Plot Showing Power Law for Distribution of Computation

Simulation Data
Linear Fit

λ = 1.1
 ε = 0.05
∆ = 10
Ω = 2

Rate = 0.317
Bias = 0.6
Slope of Fit = −1.5
Slope Predicted
if (Bias = 0.317) = −2.3

Figure 3: Left: Log-log plot of the complementary cdf of the state. Right: Log-log plot
of the random variable of computation.

4.2 Tradeoff between computation and stability

As noted in [10], it is not possible in general to optimize both probability of depth d
error and computation simultaneously with a single choice of bias. For the BSC, the bias
required to achieve the random coding exponent is always greater than the rate of the
trellis code.

4In all plots, computation refers to C(k). We have made the assumption of ergodicity as well as that
the moments of the two computations are equal asymptotically. Although this hasn’t been proven, it is
plausible because the simulations show that C(k) is not growing unbounded over time.

Figure 4 shows the tradeoff between these two metrics of performance as a function
of the bias parameter. As expected, increasing the bias always improves state stability.
However, decreasing the bias does not always improve the moments of computation. By
decreasing the bias below the rate, we run the risk of forging ahead into the trellis along
paths that are not correct, only to have to return to the nodes we passed over later on.

0 0.1 0.2 0.3 0.4 0.5 0.6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Bias

P
o

w
e

r
L

a
w

 E
xp

o
n

e
n

t

λ = 1.05, Power Law Comparison for State Bin and Computations

Computation

State

Ω = 2.0
∆ = 10.0
T = 5
Rate = 0.317

E
r
(R)

−−−−−−−−−
Log

2
(λ)

ρ s.t.
R is
E

0
(ρ)/ρ

0 0.1 0.2 0.3 0.4 0.5 0.6

−2.5

−2

−1.5

−1

−0.5

Bias

P
o

w
e

r
L

a
w

 E
xp

o
n

e
n

t

λ = 1.1, Power Law Comparison for State Bin and Computations

State

Computation

Ω = 2.0
∆ = 10.0
T = 5
Rate = 0.317

E
r
(R)

−−−−−−−−−
log

2
(λ)

−ρ s.t.
R is
E

0
(ρ)/ρ

Figure 4: Left: Plot of the computation and state stability tradeoff for λ = 1.05. Right:
Plot of the computation and state stability tradeoff for λ = 1.1.

4.3 Comments

An implicit assumption made is that the controller/decoder has unlimited computational
speed so that no matter how many computations must be performed at one time, the
decoder can finish them and apply the control to the plant before the next time step.
Suppose instead that no more than L− 1 computations may be performed within any T
time steps. If there are more than NL computations required at one time, the controller
takes no action for N blocks, leaving the state to wander until it can decode. It is known
that the distribution of computation can be lower bounded by a Pareto distribution[4]
with some parameter γ. So even in the case that the noise is negligible, assuming |X(t)| =
x, we have

E

[

|X(t + NT)|

∣

∣

∣

∣

|X(t)| = x

]

≥ E

[

|X(t + NT)|

∣

∣

∣

∣

|X(t)| = x,C(t) > NL

]

P (C(t) > NL)

≥ xKc · λ
NT N−γ

Letting N go to infinity, we see that expected value of the state diverges. Clearly,
this applies to any moment of the state. So this scheme fails to stabilize the state
if the controller has limited computational speed, regardless of how large that limit.
However, for the binary erasure channel, one can use a finite speed decoder and essentially
memoryless encoder to control the state.[5] This leads us to wonder whether there is a
way stabilize with finite speed decoding for arbitrary DMCs.

5 Conclusion

We have developed a strategy for stabilization over a noisy channel that works in a low
complexity way at both the encoder and decoder. We have shown that a sequential

decoder can be used in place of an ML decoder with almost the same performance
in stabilizing the system. Furthermore, the amount of computation performed by the
decoder fits with the concept of a stable system, namely that we shouldn’t have to do an
ever increasing amount of work if the system keeps returning to the same few states.

There are many more questions that can be naturally asked about this problem. The
most practically important of these is the question of performance. In the low rate regime,
is there a way of using some bits to supervise the state into remaining near the center
of a coarser bin? Such a controller would essentially operate at different time scales,
decoupling the questions of performance and asymptotic stability. Second, and perhaps
of greater theoretical interest, if we don’t restrict ourselves to a uniform quantizer, could
we get away with using less rate or stabilizing higher moments? It turns out that there
is a large gap between the performance being achieved by this scheme and the bound
given by the reliability exponent for a channel with feedback.[8]

References

[1] G.D. Forney, Jr., “Convolutional codes III. Sequential decoding.” Inform. and Con-

trol, vol. 25 pp. 267-297, 1974.

[2] R.G. Gallager, Information Theory and Reliable Communication. New York, NY:
John Wiley and Sons, 1971.

[3] Y.C. Ho, M.P. Kastner, and E. Wong, “Teams, Signaling, and Information Theory,”
IEEE Transactions on Automatic Control, April 1978, pp 305-312.

[4] I.M. Jacobs and E.R. Berlekamp, ”A lower bound to the distribution of computa-
tion for sequential decoding,” IEEE Transactions on Information Theory, vol. 13,
pp. 167-174, April 1967.

[5] A. Sahai, “Evaluating channels for control: Capacity reconsidered,” in Proceedings

of the 2000 American Control Conference, Chicago, CA, June 2000, pp. 2358–2362.

[6] A. Sahai, “The necessity and sufficiency of anytime capacity for control over a noisy
communication link,” Proceedings of the 43rd IEEE Conference on Decision and

Control, December 2004.

[7] A. Sahai and S.K. Mitter, “The necessity and sufficiency of anytime capacity for con-
trol over a noisy communication link: Part I” Submitted to the IEEE Transactions

on Information Theory, April 2005.

[8] A. Sahai, T. Simsek, and P. Varaiya, “Why block length and delay are not the same
thing.” In preparation.

[9] H. Witsenhausen, “Separation of Estimation and Control for Discrete Time Sys-
tems.” Proceedings of the IEEE, Vol 59, No. 11, November 1971.

[10] F. Jelinek “Upper Bounds on Sequential Decoding Performance Parameters,”IEEE

Transactions on Information Theory, vol. 20, pp. 227-239, Mar. 1974.

