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Exploiting Interference Diversity for Event-Based
Spectrum Sensing

Arash Parsa, Amin Aminzadeh Gohari, and Anant Sahai

Abstract—Spectrum sensing is a core problem in
cognitive radio. Detecting the presence/absence of
very weak primary users with a single antenna can
be very difficult. Earlier it have been shown that
uncertainties in the environment result in SNR
walls that detectors cannot beat in a robust man-
ner. Multiple antenna approaches show the po-
tential of getting gains, but we show here that
for a single user, multiple antenna detection still
must suffer from an SNR Wall. The reason is
that the real world uncertainty in noise is dom-
inated by the potential presence of an unknown
number of low-powered interference sources in the
external environment. The traditional approach
to collaborative spectrum sensing attempts to use
the shadowing/multipath diversity across different
users to boost the reliability of detection. We show
here that there is another kind of diversity that is
also available: interference diversity. This diversity
captures the fact that these low-powered interfer-
ence sources are local to individual users whereas
the primary user has a global footprint. To exploit
this diversity, we must shift our perspective from
existence-based detection (whether the primary is
present or not) to event-based detection (whether
the primary has turned off or on). We study this
and explore the limits to this approach.

I. Introduction

SPECTRUM sensing at very low SNR regimes has
gained crucial importance in the context of cog-

nitive radio. For example the required sensitivity in
IEEE 802.22 standard is -116 dBm (-22 dB of signal
to noise ratio) [1]. In addition to high sensitivity, the
secondary users need to be able to operate in different
settings and environments. Uncertainty in the noise
statistics imposes fundamental limits on the sensitiv-
ity of secondary users. Below a certain level of SNR,
detectors will not be able to sense the existence of the
signal no matter how long they collect the data [2].
This level is called the SNR wall of the corresponding
detector and partially quantifies the robustness of the
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Fig. 1. Unintentional interferers (e.g. laptops in the fig-
ure) are sensed locally while the primaries are sensed glob-
ally.

system.
For this sensing problem different algorithms such

as energy detection, matched filtering, cyclostation-
ary feature detection [3] [4] [5] have been proposed.
In this paper, we restrict ourselves to the scenarios in
which one does not have knowledge about the features
of the primary signal.

One can categorize these algorithms into single,
non-cooperative multiple antenna and cooperative
multiple antenna systems. From the first two cate-
gories we will briefly review radiometer and max-min
eigenvalue detector [6] and discuss their fundamen-
tal limitations. The last category of algorithms, i.e.
cooperative sensing algorithms, aim to increase the
performance of detection of the overall system by us-
ing a network of sensors and making a decision based
on the information gathered from different sensors.
If sensors are experiencing independent shadowing or
multipath fading effects, cooperative approach proves
to be effective [8][7].

In this paper, we argue that one of the limiting
factors in many of the proposed sensing algorithms
is the choice of hypothesis. Many of the currently
used algorithms choose to test the existence/absense
of the primary signal. We refer to these detectors
as “existence based” detectors. An equivalent set of
hypothesis is to test enterance/exit/idle of the pri-
mary signal at any time instant. We refer to these
detectors as “event based” detectors. When a set
of events could be described using different sets of
hypotheses, the choice that one makes greatly in-
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TABLE I
List of a few noncoherent detection algorithms

Detector Characteristics
Radiometer single-antenna;

non-cooperative
Max-Min Eigenvalue [6] multi-antenna;

non-cooperative
By Mishra et al. [7]

By Ghasemi et al. [8] multi-antenna
By Matsui et al [9] cooperative

The proposed detector

fluences the structure and performance of the cor-
responding hypothesis-testing algorithms. Whereas
an existence/absense detector such as radiometer
bases its decision on the expectation of different lev-
els of energy under different hypothesis, an enter-
ance/exit/idle detectors bases its decision on the ex-
pectation of local surges/local drops/small changes in
the energy level of the received signal. A radiometer
fires a false alarm when the average energy of the noise
is high whereas a single-antenna enterance/exit/idle
detector fires a false alarm when there are local surges
or drops in the energy level of the noise. The latter
event could happen when for example a significant
noise interferer, such as a laptops leaking energy out-
side its permitted bandwidth, turns on or off.

Noise interferers are either “unintended emitters”
(e.g. a laptop leaking energy outside its permitted
bandwidth during a communication, or electronic cir-
cuits of a printer radiating electromagnetic waves dur-
ing its activity) and “intended emitters” (other sec-
ondary networks using the bandwidth when the pri-
mary is absent). A sensor may have some knowledge
about the possible turn on/turn offs of the intended
emitters, but there is little it can do about the “un-
intended emitters”.

In order to deal with the false-alarm events caused
by unintended interferers, the following cooperative
multi-sensor algorithm is proposed: when a primary
signal enters or exits the system, it does so in a global
scale causing many sensors to fire an alarm; however
when an unintended emitters enters or exits the sys-
tem, it does so in a geographically local scale trigger-
ing only a few neighboring sensors. The system can
thus use this “Interference Diversity” to distinguish
between the two events by gathering information from
sensors placed at different physical locations(see fig-
ure 1).

Our work can be viewed in the context of “change
detection” algorithms. Veeravalli [10] and Mei [11]
study the application of quickest detection theory to
decentralized decision systems. The quickest detec-
tion [12] [13] refers to real-time detection of abrupt
changes in the distribution of observed signals as
quick as possible. The analysis and results based on
this method mostly depends on the assumption that
distributions are known and fixed after and before the
transition points. Furthermore, Li et. al. [14] apply
the theory of quickest detection to problem of sensing
primary signals in cognitive radio. Authors assume
noise distribution is constant and known while there
is some uncertainty about the amplitude and phase of
the primary signal. Since the current proposed meth-
ods using quickest detection are based on knowledge
of distributions they fail to address and capture the
problem of noise uncertainty and robustness. Specifi-
cally many of the changes in the distribution of mea-
sured signal could be a result of entrance/exit of in-
terferers and do not necessarily comply to any prob-
abilistic model.

This paper is organized as follows. In Section II,
sources of noise uncertainty are mentioned. As a pre-
lude to its following sections, Section III reviews a
couple of existence based sensing algorithms. The
role of certain factors such as external interferers in
imposing fundamental limits on the performance of
this class of algorithms is highlighted. In Section IV,
the new cooperative sensing algorithm is introduced
and analyzed at an intuitive level; the rigorous formu-
lation and analysis is moved to appendix B. Section
V includes the simulation results. Lastly, appendix A
includes the proof for a result on the SNR Wall for
the max-min eigenvalue detector.

II. Noise Uncertainty

The sources of noise uncertainty can be decom-
posed into two categories: internal noise and external
noise. An internal noise is a noise that is not inher-
ently present in the environment but is generated by
the detector itself. An external noise on the other
hand is generated by interferers in the environment
and is picked up by the detector.

While the uncertainty in the variance of the aggre-
gate internal noise can be significantly reduced by cal-
ibrating the device in a controlled environment. The
external noise coming from unintended emitters can
not be calibrated because it depends on the environ-
ment in which the device is operating. The existence
and the structure of the signals emitted by these in-
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terferers varies with location and time, and is thus not
known apriori. The maximum received energy from
the interferers is a lower bound on the noise uncer-
tainty. Intuitively the overall uncertainty is equal to
the maximum number of significant interferers that
might co-exist in an environment times the average
energy of a typical significant interferer.

III. Existence Based Detectors

In this section, we briefly review a class of detectors
that are based on the following two hypothesis:

H0: only noise x[n] = w[n]
H1: signal + noise x[n] = w[n] + r[n]

where x[n], w[n] and r[n] are the received signal, the
input noise and the primary signal at time n. We refer
to these detectors as “existence based” or H0 −H1

detectors.
The algorithms based on the above two hypothe-

sis are usually designed for a fixed observation win-
dow. One hopes that by increasing the length of ob-
servation window, the algorithm will have a better
performance. However the SNR wall analysis have
shown that there are fundamental limitations to per-
formance of the algorithm in presence of noise uncer-
tainty [2]. The fundamental limits of these detectors,
such as SNR Walls, are usually analyzed under the as-
sumption that the detection time window approaches
infinity.

As a prelude to the “Event Based Detectors” dis-
cussed in the next section, we review a couple of fac-
tors imposing limits on the performance of “Existence
Based” detection algorithms. Of particular impor-
tance are the external interferers: in a practical en-
vironment there are interferers that may fool a de-
tector who is looking for weak primary signals. The
goal of the following subsections is partly to highlight
the role of interferers in the performance of detection
algorithms at low SNRs. We make this effect explicit
in two particular detection algorithms: energy detec-
tor (radiometer), and maximum-minimum eigenvalue
detector. The former detector has only one antenna
while the latter has multiple antenna.

A. Single Antenna Energy Detection: Radiometer

An energy detector (radiometer) measures the av-
erage received energy in a time window, and makes a
decision by comparing it with a fixed threshold.

First assume that the variance of noise is perfectly
known. Then no matter how weak the primary sig-
nal is, as long as the observation window, N , is large
enough, the detector will be able to identify it with

Fig. 2. Noise variance has a range from “min noise energy”
to “max noise energy”. When the signal is added, this
interval shifts to higher values. If the signal is not strong
enough and these two intervals collide, there would be no
guarantee of success. Otherwise the detector is able to
distinguish the two cases if it observes long enough.

Fig. 3. Single antenna energy detector fails to distinguish
weak primary from interferer.

arbitrarily high probability. In the case of radiome-
ter, we can model the noise uncertainty by assum-
ing that noise variance is known up to an interval.
The length of this uncertainty interval determines
the “SNR wall” for the radiometer (see figure 2).
This analysis indicates that in terms of robustness
one might prefer to have a larger average noise en-
ergy and less uncertainty rather than small average
noise energy with much more uncertainty.

As mentioned in Section II, the SNR wall of the
radiometer is no less than the maximum number of
significant interferers that might co-exist in an envi-
ronment times the average energy of a typical signif-
icant interferer (see figure 3).

B. Max-Min Eigenvalue Detection

In this section, we specifically discuss a multi an-
tenna sensing algorithm known as Max-Min Eigen-
value Detector introduced by Liang and Zeng in [6]
and highlight the effect of external interferers on the
performance of this detector.

Liang and Zeng assume noise to be white and uni-
form (in terms of power) over different antennas. The
authors argue that if primary signal does not exist,
the correlation between samples at different anten-
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nas and/or different times will be zero. On the other
hand, if primary signal is present, some of these cor-
relations will not be zero. Therefore the detector can
distinguish between these two scenarios by measuring
the deviation of a covariance matrix from the identity
matrix in terms of the ratio of maximum and mini-
mum eigenvalues.

With the assumption of white and uniform (in
terms of power) noise over different antennas and/or
at different times, the max-min eigenvalue detector
can overcome noise uncertainty. However, in a real-
istic scenario interferers are a major source of noise
uncertainty and can not be ignored. Being gener-
ated by unknown sources such as electronic devices
leaking outside their permitted bandwidth, the unin-
tended interference noise may not be white and uni-
form (in terms of power) over different antennas. In
other words from the perspective of max-min eigen-
value detector there is no difference between a very
weak primary and an interferer. In the appendix we
make this point more explicit by proving the follow-
ing theorem on the SNR wall of this detector (see
Appendix for notations):

Theorem A.1. For any positive ε, there exists a
threshold ρ such that whenever the primary power
P is less than ρ, the detector can not guarantee a
probability of miss-detection less than 1− ε. Further-
more, given the probability of false alarm PrFA, ρ is
bounded from below by (γ−1)σ2

η

c1(γ+1) where c1 = O(1
ε ) and

γ = Thf(PrFA).
As we saw above, many of the known detectors

are vulnerable to external interferers masquerading as
weak primaries and vice versa. In Section IV, we pro-
pose an “event-based detection” algorithm for dealing
with the negative effect of external interferers.

IV. Event Based Detection

As discussed in Section III, sensing algorithms
based on existence/absence (H0−H1) hypothesis are
vulnerable to external interferers and uncertainty
about the environment. The H0−H1 hypothesis set-
ting does no allow the sensing algorithm to exploit the
fact that primary signals are sometimes present and
sometimes absent. Intuitively, the transition between
the existence/absence states of the primary signal cre-
ates rapid changes in the level of energy at the sensors.
We refer to these changes as “energy edges”; if there
is a surge in the energy level, we call it a “positive
edge”, otherwise we call it a “negative edge”. For
every time instance, we define three types of event
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Fig. 4. Two sample noisy signal observation from the
first noise model described in the “High Level Intuition”
Section. Radiometer is very sensitive to uncertainty about
the level of energy.

hypotheses:



H−[n] : when there is a negative edge at time n;
H+[n] : when there is a positive edge at time n;
HI [n] : otherwise.

The new set of hypothesis may be thought of as the
first derivative of the previous hypotheses. Knowing
the location of these events is equivalent to know-
ing the existence/absence of the primary signals. In
this part of the paper we show that by changing our
hypotheses from sensing the level of energy to sens-
ing the energy edges, we will be able to significantly
improve our performance. Since this kind of sensing
algorithm aims at detecting the enterance/exit of the
primary signals and infer their existence from this in-
formation, we call it “event based sensing”.

A. High Level Intuition

In this section, we would like to demonstrate the
core ideas behind the new detection algorithm.

We start from a simplistic scenario in which the
noise power is unknown but constant over time. Also
assume that when the primary enters/exits, the re-
ceived power changes instantaneously. Furthermore
assume that in the time scale of interest, the primary
changes its state at most once. If the signal power is
less than the noise uncertainty (that is the range of
the noise power) the radiometer fails. On the other
hand, no matter how weak the primary signal is, an
edge detection algorithm will be able to sense the pri-
mary if the observation window is long enough; and
therefore no SNR Wall exists (see figure 4).

Next, consider the less restricted scenario in which
the noise is comprised of different interferers each of
which have constant power over time but are allowed
to enter/exit (or turn on/off)1. Furthermore, we as-

1 For instance this noise model may be used in the following
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sume that whenever an interferer enters or exists,
the energy level changes instantaneously. Under this
model, any single antenna edge detector will also fail
since it can not distinguish between the entrance/exit
of primary and that of interferers. To solve this prob-
lem, first we make the key observation that in many
realistic scenarios interferers are short-range while
primary signals are long-range (local-global assump-
tion). Based on this assumption we propose a coop-
erative sensing scheme that can overcome the inter-
ference problem. The local-global assumption means
that enterance/exit of the primary signal is sensed by
most of the sensor nodes while interferers will only
affect one or at most a few of the sensors. Therefore
the system can detect the change in the status of pri-
mary whenever many sensors simultaneously declare
so. It is important to note that we are proposing this
sensing algorithm for a very low SNR regime. We will
prove that as long as we do not deviate significantly
from the local-global assumption, under certain con-
ditions, the proposed algorithm is able to correctly
detect weak primary signals.

B. Formulation and Analysis

In this section we explain the detection algorithm
and its analysis at an intuitive level. For a more rig-
orous formulation and analysis of the system see Ap-
pendix B.

Consider a network of sensors geographically dis-
tributed in an area. Assume that the sensors are
connected to a Central Unit (CU) through commu-
nication links that have limited capacity. Each sen-
sor node transmits its belief about a possible change
in the status of primaries (i.e. whether a primary
has entered (or exited), or that nobody has changed
its state). At each time instant, the CU will decide
whether the primary has changed its state by, roughly
speaking, taking a majority vote of the received mes-
sages from the sensors (see appendix B for a rigorous
formulation).

The objective of a sensor is to detect the changes
in the level of energy due to entrance/exit of the pri-
mary. One possible scheme is to compare the mea-
sured energy levels of the first half and second half
of a shifting observation window. The goal of each
sensor node is to provide the CU with as much infor-

scenario: assume the interferer is a 802.11 wireless router leak-
ing very weak signals out of its assigned bandwidth because of
imperfect filters. Because of On/Off nature of the packet tran-
sitions there will be an entrance/exit pattern of interference in
the band of interest.

Fig. 5. Adaptive adjustment of the threshold at the sensor,
γ is the threshold, R is the allowed data rate

mation about the changes in the energy level of the
environment as possible. In reality, because of lim-
ited resources, every sensor is forced to send only the
most significant changes. Inevitably the sensors have
to choose some threshold γ and send an alarm to the
central unit when the energy changes by more than
this threshold. The length of the observation win-
dows is small enough to ensure that the changes in
the energy levels are not coming from changes in the
channel statistics. Figure 10 depicts a sample out-
put of this edge detector to the entrance of primary
signal.

Having a lower threshold means sending more
alarms on average and vice versa. Therefore lim-
ited data rate between the sensors and central unit
imposes a lower bound on γ. If the links are wire-
less, meeting these lower bounds imply saturating all
the links by using all of the available bandwidth and
power.

Figure 5 provides an adaptive approach for setting
γ at each sensor node. Figure 7 shows a simulation
result on the tradeoff between γ and probability of
false alarm under a specific noise model.

In the following paragraphs we explain the results
in Appendix B at an intuitive level. We first analyze
the behavior of the algorithm under the assumption
that the network consists of a large number of nodes
and that the capacity of the links between each sensor
nodes and the CU is some constant R.

The Appendix quantifies the local-global assump-
tion in mathematical terms. The local-global assump-
tion imposes certain constraints on the noise signals
observed at different nodes. It is important to note
that the noise signals may not have statistical descrip-
tion and can vary arbitrarily in time. The constraints
imposed are therefore not on the statistical distribu-
tions of the noise signals but on their aggregate aver-
age behavior in time or in space.

In a large network the chance of an interferer ex-
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iting the system at some node of the network is the
same as the chance of an interferer entering the net-
work. The local-global assumption states that the
interferers are short-range. This means that any en-
trance or exit of an interferer affects only a small
number of sensor nodes. As long as our assumptions
hold, one can expect that when status of the primaries
do not change, the number of sensors experiencing a
surge in their energy level should be roughly equal
to the number of sensors experiencing a drop in their
energy level. This intuition is formally expressed as
the second constraint on noise in definition B.5.1.

The local-global assumption not only states that
the interferers are local, but also that the primaries
are global. This means that a change in the status of a
primary is heard by many sensors. Roughly speaking,
when the primary signal is not very weak, its entrance
should increase the number of the sensors who experi-
ence a rapid increase in their energy level. Similarly, a
primary leaving the system should increase the num-
ber of sensors who experience a rapid decrease in their
energy level. This intuition is formally expressed as
the second constraint on the noise in definition B.5.2.

Finally, the first constraint in definition B.5.1. im-
plies that when the primaries do not enter or exit,
the chosen threshold is sufficiently high so that the
number of alarms generated on average over time by
each sensor node is bounded.

Below, we mention a few examples of the noise sig-
nals that satisfy the constraints of definition B.5.1 and
definition B.5.2 for appropriate choice of parameters:
• When the noise (including interference noise)

at different nodes are white, independently and
identically distributed (i.i.d.) according to an un-
known but continuous density function (such as
Gaussian).

• When the noise signal at each node has two com-
ponents: 1. independent white noise at differ-
ent sensor nodes, identically distributed accord-
ing to an unknown continuous density function;
2. Independent Poisson processes at different
nodes with an unknown and possibly varying, but
bounded rate modeling the entrance/exit of the
interferers. The Poisson processes modeling the
exit of the interferers appear with negative sign
and are expected to on average cancel out the
effect of Poisson processes modeling the entrance
of the interferers.

If the power of the primary is very low, it will not be
able to excite enough receivers and hence the detec-

Fig. 6. In this example, CU is placed at the top of the
sensor nodes and at equidistance from all of them in the
air

tion algorithm will fail. If the average energy of the
primary signal at the sensor nodes is above a certain
limit, the algorithm should however succeed. Theo-
rem B.5.1. and its corollary formulates this intuition.

Roughly speaking, the minimum energy level re-
quired for detection is determined by the following
factor: the lower the energy of the primary signal,
the more sensitive the sensors need to be in detecting
the changes in the energy level. But increasing the
sensitivity of the sensor nodes, makes them vulnera-
ble to entrance/exit of weaker interferers. This would
not only increase the number of false alarms generated
by each sensor node (and thus creating difficulty com-
municating them to the CU) but more importantly
gradually invalidates the local-global assumption. A
strong interferer may be heard by a larger group of
sensor nodes. It should be however noted that the de-
tection algorithm is robust in terms of the validity of
the local-global assumption: for a large network, the
second constraints of definition B.5.1 remains valid as
long as each interferer affects only a sub-linear num-
ber of sensors i.e. the fraction of affected sensors is
relatively small to the total number of sensors.

“Computation in the air” method:

Above, we assumed R1 = R2 = ... = Rms = R al-
lowing the total rate, R1 + R2 + ... + Rms approach
infinity. This is not a realistic assumption. We how-
ever note that the CU only needs to know the total
number of positive and the total number of negative
alarms rather than the precise identity of those nodes
who send positive or negative alarms.2 Consider the
following strategy:

2 This is reminiscent of works which consider distributed com-
putation combined with wireless communication (see for exam-
ple [15]). It can be shown that separation between the commu-
nication stage and the computation stage turns is not always the
optimal strategy, and a combined communication-computation
scheme can improve the performance.
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The sensor nodes divide their time resources into
consecutive intervals. In odd intervals, those termi-
nals who want to transmit a positive alarm simul-
taneously transmit signals of power P while in the
even intervals those terminals who want to transmit
a negative alarm simultaneously transmit signals of
power P . These communications are taking place in
a control channel which is different from the chan-
nel which needs to be sensed. The central unit, CU ,
measures the energy of the received signal (which is
a superposition of the transmitted signals) in each of
the intervals. These average energies are used to ap-
proximate the total number of sensors who are firing
alarm; in particular the difference in the energy levels
of consecutive odd and even intervals provides an es-
timate of the difference between the number of nodes
who transmit positive alarms, and those who transmit
negative alarms.

Consider the simplistic model 3 shown in Figure 6
where CU is equidistance from all of sensors and is
experiencing the same channel to all of them. This
makes sure that the sensor nodes are contributing
equally to the total power received at the CU . If
α fraction of the ms nodes are transmitting signals at
power P , the expected value of the received energy at
the CU equals α.P.Gav +Pn where Gav is the average
gain from the sensor nodes to the CU and Pn is the
average energy of the noise. Therefore the CU can
estimate α based on the average received energy. In
the general scenario when the CU is placed on the
ground, the channels between the CU and different
sensor nodes would be different. And CU would re-
ceive a weighted average of the transmitted signals
from different sensors. Under the condition that the
channels from the sensors to the CU are different,
if the sensor nodes have some knowledge about the
strength of their channel to the CU , they can adjust
their power correspondingly. Otherwise a more de-
tailed investigation is required.

V. Simulations

The simulation results of this section are based on
the following model: we consider a set of sensors uni-
formly distributed inside an square. At every point

3 The result can be probably extended to the following model:
assume that we divide the sensor nodes into the set of green
nodes and red nodes. When the green nodes are talking, the
red nodes are listening. The red nodes estimate the number of
green nodes who believe that the primary has entered/existed
and thus effectively playing the role of CU . We have thus in
effect planted the CU inside the sensor node themselves.
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false alarm

of the square lies an interferer that changes its status
(i.e. turns on/turns off) with a fixed small probabil-
ity. Around each sensor, we consider a smaller square.
In this model, the interferers falling inside this square
are sensed by the sensor without any attenuation.

Figure 7 shows the tradeoff between threshold and
probability of false alarm. As expected, a decrease in
the threshold increases the number of alarms gener-
ated by each sensors when the signal is not present,
and thus the higher chance of CU making a mistake.

Figure 8 depicts the trade off between number of
sensors and the probability of false alarm. The goal
of this simulation is two fold. Firstly, as long as the
sensitivity area of sensors do not overlap, the alarms
sent to CU are zero mean i.i.d. random variables.
As we increase the number of sensors, their sum will
be within an interval around zero with an increas-
ing probability. Therefore probability of false alarm
will be reduced. Secondly, we observe that increasing
the number of sensors in a closed area will eventually
make them sensitive to common interferers. In other
words, in a dense network, the alarms sent by the
sensors will become correlated and the performance
would not be improved by the same trend.

Appendices

A. SNR Wall Analysis for Max-Min
Eigenvalue Detector

In this appendix, we prove that any interferer can
impose limits on the performance of the max-min
eigenvalue detector [6]. In this section, we adopt the
same notation used in [6]. The authors implicitly as-
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bility of false alarm

sume that the coherence time of the multi-antenna
receiver is infinity. We base our theorem on the same
assumption.

Since the ratio
λmax(Kx̂)

λmin(Kx̂) can not be equal to one due

to the existence of interferers even when the primary
signal is not present, the detector has to set a thresh-
old γ and decide between the hypothesis H0 and the

hypothesis H1 based on 1[
λmax(Kx̂)

λmin(Kx̂) > γ]. The value

of γ would be uniquely determined by the probability
of false-alarm.

Definition A.1. Assuming any specific model
for noise, the threshold function “Thf” is the an-

swer to the following equation: Pr

(
λmax(Kx̂)

λmin(Kx̂) >

Thf(PrFA)
)

= PrFA

Theorem A.1. For any positive ε, there exists a
threshold ρ such that whenever the primary power
P is less than ρ, the detector can not guarantee a
probability of miss-detection less than 1− ε. Further-
more, given the probability of false alarm PrFA, ρ is
bounded from below by (γ−1)σ2

η

c1(γ+1) where c1 = O(1
ε ) and

γ = Thf(PrFA).
Proof: We prove the statement by contradiction.

Fix some PFA and some ε > 0 and assume that the
guarantee of PMD < 1− ε exists. In particular, the
sensor should have PMD < 1−ε when the noise on the
channels are white and uniform, and that Kŝ = P I.
In this case, Kx̂ = κPHH†+σ2

ηIML for some constant
κ. Please note that intuitively if P is small here,
from the perspective of the detector it behaves like
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Fig. 9. Maximum and minimum eigenvalues of I +pHHT

as a function of p, power of the signal. Minimum eigenvalue
remains around one while maximum eigenvalue increases
linearly. Here H is a random matrix. At p = 0, both eigen-
values are one. The maximum eigenvalue increases rapidly
with the increase in p, while the minimum eigenvalue re-
mains almost the same.

an interferer and thus the ratio between maximum
and minimum eigenvalue should be close to one.

Using the fact that for any matrixes A and B we
have:

{
λmax(A+B)≤ λmax(A)+ λmax(B);
λmin(A−B)≥ λmin(A)−λmax(B),

we can bound
λmax(Kx̂)

λmin(Kx̂) from above by

σ2
η+κPλmax(HH†)

σ2
η−κPλmax(HH†) as long as σ2

η −κPλmax(HH†) > 0.
In order to use Markov inequality in the above ex-

pression, we first need to show that E[λmax(HH†)] <
∞.

Using the Jensen inequality we have:

E[λmax(HH†)] ≤ E
√∑

i,j

(|HH†)i,j |2 ≤

√
E

∑

i,j

(|HH†)i,j |2 < ∞

Now, using Markov inequality, Pr(λmax(HH†) ≤
1
ε Eλmax(HH†))≥ 1− ε.

Let c1 = κ1
ε Eλmax(HH†). The above inequality im-

plies that if P <
σ2

η

c1
:
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Pr

(
σ2

η − κPλmax(HH†) > 0 and

σ2
η + κPλmax(HH†)

σ2
η − κPλmax(HH†)

≤ σ2
η + c1P

σ2
η − c1P

)
≥ 1− ε

Now, if P <
(γ−1)σ2

η

c1(γ+1) , one can conclude that
σ2

η+c1P

σ2
η−c1P

≤ γ. This would in turn imply that

Pr(
σ2

η + κPλmax(HH†)
σ2

η − κPλmax(HH†)
≤ γ) ≥ 1− ε,

and therefore

PrMD = Pr(
λmax(Kx̂)
λmin(Kx̂)

≤ γ) ≥ 1− ε,

which is a contradiction.

B. Formulation and Analysis of the
Proposed Detection Algorithm

A. Model Configuration

Consider a network of ms sensors, one Central Unit
(CU). The sensors are geographically distributed in
an area. Furthermore each sensor has ma antennas.
There are communication links between each sensor
and the CU with rate constraints R1,R2, ...,Rms . The
message set at each node is {positive alarm, negative
alarm, idle}. A positive (or negative) alarm corre-
sponds to the sensor’s belief that the primary has en-
tered (or exited) while an idle message corresponds
to the belief that primary has not changed its state.
At each time instant, the CU will decide whether the
primary has changed its state based on the received
messages from the sensors. In addition, there is a la-
tency constraint D at the CU meaning that the sys-
tem needs to detect state transitions of the primary
within delay D. Let T be the minimum coherence
time of all wireless communication channels. Assume
that the minimum inter-transition duration of the pri-
mary signal is lower bounded by Ts, i.e. time between
consecutive transitions of the primary is at least Ts.

We assume that there at most mt primaries. The
active primaries are assumed to generate uncorrelated
signals at any particular time instance.

For simplicity of analysis, we assume that whenever
the primary signal enters/exits, all the sensor nodes
detect, and transmit corresponding alarms which are
received instantaneously by the CU . It should be
however noted that in a realistic scenario there will in-
evitably be some delay for reasons such as the coding
used by the sensor nodes, possible clock mismatches
etc.

TABLE II
Notations

Variable Description
CU Central Unit
ms Number of sensor nodes
ma Number of antennas at each node
mt Number of primaries

Ri (i = 1,2, ...,ms) Rate constraints
D Latency constraint at the CU

Ts lower bound on the minimum
inter-trans. duration of primaries

T minimum coherence times
γj Threshold at the jth sensor
γcu Threshold at the CU

Φj(.)[m] Output of the jth sensor
Dt(., ., .)[m] Output of the CU

B. Detection Algorithm at the Sensors

In this algorithm, the objective of a sensor is to
detect the changes in the level of energy due to en-
trance/exit of the primary. One possible scheme is to
compare the measured energy levels of the first half
and second half of a shifting observation window. The
length of the observation windows is chosen to be less
than the minimum coherence time, Tc, ensuring that
the changes in the energy levels are not coming from
changes in the channel statistics. Other constraints
on the duration of the observation window are the
network’s latency constraint, D, and the minimum
inter-transition duration, Ts. The latter constraint
guarantees that the primary signal is active during
the second half of some observation window.

Definition B.2.1. For any positive γ, the output
of the detection algorithm at the jth sensor Φj(γ) is
defined as follows: assuming that the received signal
at the ith antenna of the jth sensor (1 ≤ i ≤ ma) is
xi,j [.], the sensor transmits:

Φj(γ)[m] =





Positive alarm if E1,j [m]−E2,j [m] > γ
Negative alarm if E1,j [m]−E2,j [m] <−γ
Idle message otherwise

where
E1,j [m] = 1

ma

∑ma
r=1E2,j,r[m]− 1

ma

∑ma
r=1E1,j,r[m],

E2,j [m] = 1
ma

∑ma
r=1E1,j,r[m]− 1

ma

∑ma
r=1E2,j,r[m],

where
E1,j,r[m] = 1

N0

∑N0−1
n=0 |xr,j [m−n−N0− 1]|2,

E2,j,r[m] = 1
N0

∑N0−1
n=0 |xr,j [m−n]|2,

2N0 +1 = min(Ts,Tc,D). •
We will discuss more about the choice of γ in a
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Fig. 10. The output of the edge detector filter will be
approximately zero unless there is a surge or drop in the
received energy level.

noisy environment later.

C. Detection Algorithm at the Central Unit

At any time instance m, the central unit receives
signals from the sensor nodes. It seems intuitive for
the CU to take the majority vote. We proceed with
this detecting strategy.

Definition B.3.1. For any positive γcu, the output
of the detection algorithm at the CU is defined as
follows:

Dt(−→γ ,γcu,
−→
R )[m] =




H+ :
1

ms

∑ms
j=11[Φj(γj)[m] = “Positive alarm”]−

1
ms

∑ms
j=11[Φj(γj)[m] = “Negative alarm”] > γcu

H− :
1

ms

∑ms
j=11[Φj(γj)[m] = “Positive alarm”]−

1
ms

∑ms
j=11[Φj(γj)[m] = “Negative alarm”] <−γcu

HI :
Otherwise

where
−→γ = (γ1,γ2, ...,γms),

−→
R = (R1,R2, ...,Rms).

D. Analysis

For simplicity of analysis, we assume that the chan-
nel is flat fading and that the primaries are using the
Phase-shift keying (PSK) digital modulation, i.e. the
constellation points chosen are positioned with uni-
form angular spacing around a circle.

The received signal at the ith antenna of the jth sen-
sor is equal to xi,j [n] =

∑mt
z=1 hz

ijsz[n] + wi,j [n] where

10 20 30 40 50 60

0

50

100

150

200

Number of Antennas, ma

A
ve

ra
ge

 R
ec

ei
ve

d 
P

ow
er

 V
ar

ia
nc

e

Fig. 11. Figure depicting the variance of
1

ma

∑ma

i=1 |wi,j [n]|2 as a function of ma. Here it is
assumed that the noise signals is comprised of inde-
pendent white Gaussian noises over different antennas,
and also interference signals coming from an external
interferer. As ma →∞, the randomness coming from the
white Gaussian noises and the fadings from the external
interferer to the receiver decreases while the uncertainty
in the energy level of the samples of the external interferer
remains.

hz
ij is the channel gain and sz[n] is the signal trans-

mitted by the zth primary. If the primary is not ac-
tive, sz[n] = 0 otherwise it has constant amplitude
|sz[n]|2 = Pz.

We have:

|xi,j [n]|2 =
mt∑

z=1

mt∑

z′=1

hz
ijsz[n](hz′

ijsz′ [n])†+

mt∑

z=1

hz
ijsz[n]wi,j [n]† +

mt∑

z=1

(hz
ijsz[n])†wi,j [n] + |wi,j [n])|2

Let E∗,j [n] := 1
ma

∑ma
i=1 |xi,j [n]|2.

Averaging over different antennas cancels the effect
of multipath fading. Since the transmitted messages
from different primaries at a time instance are uncor-
related we get the following equation using the law of
large numbers:
limma→∞E∗,j [n] =

∑mt
z=1 ρj,z[n]Pz1[zth active at n] +

|W∗,j [n]|2.
where ρj,z[n] is the average gain from the zth trans-
mitter to jth sensor node and |W∗,j [n]|2 is the average
noise power at the different antennas at time instance
n: |W∗,j [n]|2 = limma→∞

1
ma

∑ma
i=1 |wi,j [n]|2

Figure 11 depicts the average variance of
1

ma

∑ma
i=1 |wi,j [n]|2 as a function of ma for a specific

noise model.
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We therefore have: limma→∞ E1,j [m] =
1

N0

∑N0−1
n=0 E∗,j [m−n−N0− 1],

limma→∞E2,j [m] = 1
N0

∑N0−1
n=0 E∗,j [m−n].

Observation B4.1. Since 2N0 ≤ Tc, ρj,z[n] does
not change within an observation window. We can
thus draw the conclusion that if the status of a
primary does not change throughout the observation
window, it does not contribute to the difference
limma→∞Φj(γ)[m] = limma→∞(E1,j [m]−E2,j [m]). •

In the following subsections, we analyze the de-
tection algorithm under different configurations. In
the first subsection, we analyze the asymptotic be-
havior of the algorithm under the assumption that
R1 = R2 = ... = Rms = R. We will prove that the de-
tector has no SNR-Wall when ma,ms →∞ as long
as the noise is following from a certain model. The
problem with this configuration is however that the
total rate, R1 + R2 + ... + Rms approaches infinity as
ms →∞.

In the next subsection, we justify the choice of R1 =
R2 = ... = Rms = R arguing that the CU only needs
to know the total number of positive and the total
number of negative alarms; CU is only interested in
this function of the transmitted messages, and does
not need to know the identity of the nodes that are
transmitting positive or negative alarms.

D.1 Equal Rate At All Sensors

Assume that R1 = R2 = ... = Rms = R. We will
define a class of noise functions under which the de-
tection algorithm has arbitrarily low probability of
false alarm and miss-detection as ms and ma con-
verge to infinity for arbitrarily weak primaries. The
constraint imposed on the noise functions quantifies
the local-global assumption according to which the
noise signal observed at different sensors are indepen-
dent.

Definition B.5.1. For any integer N0 and vec-
tors of positive real numbers −→γ and −→

R , Noise
model Θ(−→γ ,

−→
R,N0,ms,ma) is the set of noise func-

tions wi,j [n] (1 ≤ i ≤ ma, 1 ≤ j ≤ ms, n =
...,−2,−1,0,1,2, ...) satisfying the following two con-
straints. Whenever primaries are absent, i.e. xi,j [.] =
wi,j [.],
1.∀ j :
limM→∞ 1

M

∑M
m=11[Φj(γj)[m] 6= “Idle message”]≤R

2.∀ m :
limms→∞

{
1

ms

∑ms
j=1 1[Φj(γj)[m] =

“Positive alarm”]−
1

ms

∑ms
j=11[Φj(γj)[m] = “Negative alarm”]

}
= 0

Remark : The first constraint ensures that for the
chosen threshold γj , the uncoded transmission of the
alarms generated by the noise signal when primaries
are absent do not violate the rate constraints. Obser-
vation B4.1 implies that when some of the primaries
are present but do not change their state, the same
alarms rate would be generated. Clearly increasing
γj makes enlarges the set of noise sequences that sat-
isfy the first property. In the extreme case of γj =∞,
the constraint would be valid for all Rj . The sec-
ond assumption is intuitively saying that noise is un-
biased: as ms →∞, the number of positive alarms
and negative alarms generated by the noise converge
together. This phenomenon would happen if the
noise sequences are each unbiased and behave inde-
pendently of each other. If the local-global assump-
tion fails, the alarms generated by different nodes will
no longer be independent of each other and this con-
straint may no longer be valid.

Definition B.5.2. For any constant c, Noise
model Υ(c,−→γ ,N0,ms,ma) is the set of noise func-
tions wi,j [n] (1 ≤ i ≤ ma, 1 ≤ j ≤ ms, n =
...,−2,−1,0,1,2, ...) satisfying the following two con-
straints. Whenever primaries are absent, i.e. xi,j [.] =
wi,j [.], either of the following two conditions are sat-
isfied:

δ1 = inf
m

lim
ms→∞

inf−→
γ′ :γj≥γ′j for j=1,2,..ms and 1

ms
|−→γ −

−→
γ′ |1≥c

{
1

ms

ms∑

j=1

[
1[Φj(γj)[m] = “Positive alarm”]−

1[Φj(γ′j)[m] = “Positive alarm”]
]}

> 0;

or

δ2 = inf
m

lim
ms→∞

inf−→̂
γ :γj≤γ̂j for j=1,2,..ms and 1

ms
|−→γ −−→̂γ |1≥c

{
1

ms

ms∑

j=1

[
1[Φj(γj)[m] = “Negative alarm”]−

1[Φj(γ̂j)[m] = “Negative alarm”]
]}

> 0.

Remark : Clearly for any j and any γ′j ≤ γj ,

1[Φj(γj)[m] = “Positive alarm”] ≥

1[Φj(γ′j)[m] = “Positive alarm”];
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The first condition ensures that in the limit case,
whenever the average gap between γ′j and γj is at
least a constant c, the rate of positive alarm is sensi-
tive to changes in γ. The second condition has a sim-
ilar interpretation. The reason for introducing these
two conditions is that intuitively when a primary en-
ters the system, the chance of passing threshold γ,
and thus of “Positive alarm”, increases whereas the
chance of passing −γ, and thus of “Negative alarm”,
decreases. This is because the effective threshold for
“Positive alarm” from the perspective of noise de-
creases, whereas the effective threshold for “Positive
alarm” from the perspective of noise decreases.

Theorem B.5.1. The detection algorithm
Dt(−→γ , γcu,

−→
R ) succeeds with probability one as

ma,ms →∞ if
• The detector is operating in an envi-

ronment with a noise sequence from
Θ(−→γ ,

−→
R,N0)

⋂
Υ(c,−→γ ,N0,ms,ma);

• The average power of the primary that has en-
tered/existed the system over all antennas of the
system is at least c;

• γcu < max(δ1, δ2) where δ1 and δ2 are defined in
Υ(c,−→γ ,N0,ms,ma).

Proof. Assume that no primary changes
its status in the interval [n − N0 − 1, n + N0 − 1].
The second property of Θ(−→γ ,

−→
R,N0) ensures that

limms→∞Dt(−→γ ,γcu,
−→
R ) = HI .

Next assume that the zth primary turns on at time
n. Since 2N0 + 1 is less than the minimum inter-
transition duration of the primary signals, Ts, there
can be no other primary arriving or leaving in the
interval [n−N0 − 1, n + N0 − 1]. Thus, other pri-
maries do not contribute to limma→∞Φj(γ)[m] ac-
cording to observation B4.1. Since 2N0 + 1 is less
than the coherence time, ρj,z[n] is constant during
the interval [n−N0 − 1, n + N0 − 1]; let ρj := ρj,z[u]
(for u ∈ [n−N0− 1,n +N0− 1]).

The best opportunity to detect the entrance of the
zth primary is at time n + N0− 1, when the very be-
ginning of the second half of the observation window
is the entrance time of the zth primary. The aver-
age energy in the second part of the window is in-
creased by ρjPz. Let γ′j = γj − ρjPz, γ̂j = γj + ρjPz.
Since the average power of the primary that has en-
tered/existed the system over all antennas of the sys-
tem is at least c, we get 1

ms

∑ms
j=1 ρjPz ≥ c. The condi-

tion imposed in Υ(c,−→γ ,N0,ms,ma) ensures that the
average number of positive alarms that the CU re-
ceives is greater than the average number of nega-

tive alarms by at least max(δ1, δ2). This means that
the detector Dt(−→γ ,γcu,

−→
R ) succeeds to detect the pri-

mary.
Corollary: The detector will be able to detect the

entrance/exit of primary signal with average power
pmin if noise signal belongs to the set:

⋂

c≥pmin

Υ(c,−→γ ,N0,ms,ma)
⋂

Θ(−→γ ,
−→
R, N0)
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