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Abstract—In this paper we consider the problem of
robustly detecting the presence/absence of signals in un-
certain low SNR environments. Our previous results have
shown the existence of fundamental SNR thresholds called
SNR walls below which robust detection is impossible.
For signals with narrowband pilots, we had shown earlier
that a simple modification to the matched filter provides
significant robustness gains. This technique is called run-
time noise calibration. In this paper we show that run-
time noise calibration can also be applied to improve the
robustness of other feature detectors. We use a 50% duty-
cycle pulse-amplitude-modulated signal as an example to
illustrate the gains from noise calibration.
Robustness results for this example give us important

insights which also apply in the general case of cyclosta-
tionary signals. Our results suggests that for cyclostation-
ary signals, frequency-selective fading and uncertain noise
color are the main reasons for detector non-robustness.
Furthermore, we introduce the notion of delay coherence
for frequency-selective channels. We also characterize the
location of the SNR wall as a function of the delay-
coherence time of the channel.

I. INTRODUCTION

In this paper we consider the problem of detecting the
presence/absence of weak signals in noisy uncertain en-
vironments. This problem is important in many practical
situations. Our main motivation to consider this problem
stems from secondary users trying to opportunistically
reuse primary spectrum [1]. Such opportunistic sec-
ondary systems are allowed to recycle underutilized
primary spectrum as long as they do not cause inter-
ference to any primary user. In order to guarantee non-
interference, it is known that secondary users must be
able to sense weak primary signals [2], [3].
In low SNR environments small modeling uncer-

tainties are unavoidable and robustness to them has
been shown to be a fundamental performance metric.

Both theoretical and experimental results have shown
the existence of the phenomenon of SNR walls —
fundamental SNR thresholds below which robustness
to uncertainties is impossible [4]–[7]. In particular, all
commonly used detection strategies like the radiometer
(energy detector) and the matched filter suffer from SNR
wall limitations [4], [8]. For a better understanding of
the SNR wall phenomenon, we give an alternate sample-
complexity based interpretation in Section II.
Here our goal is to explore signal processing tech-

niques that improve detector robustness. One such tech-
nique was introduced in [4] for the case of matched
filters trying to detect narrowband pilots. The key idea
was to use in-band measurements at frequencies where
the pilot is absent to calibrate the noise statistics at
the pilot frequencies. This technique was called run-
time noise calibration. It exploits the localized nature
of the signal feature (pilot tone) within the whole band
of interest. This raises the following obvious question:
can we obtain similar noise-calibration gains for other
classes of signals?
In many communications schemes the statistics of the

transmitted signals are periodic. This is due to inherent
periodicities in the system like the modulation rate,
carrier frequency, etc. It has been argued that such signals
can be modeled to be widesense cyclostationary [9]–
[11]. Feature detectors are a class of detectors which
can be used to distinguish cyclostationary signals from
stationary noise. They were first proposed by William
Gardner [12], [13]. These detectors were believed to be
attractive candidates to solve the problem of robustly
detecting very weak signals in noise [14].
Feature detection can be thought as a two step process:

A transformation from the time-domain into the feature
domain; followed by a hypothesis test in this new do-
main. One particular detection algorithm is to focus on



a single signal feature in the transform domain, and test
its presence/absence to decide whether the primary signal
is present or absent. This is called a single-cycle feature
detector [12]. The robustness analysis of the single-cycle
feature detector was given in [15]. It was shown that in
a block fading model the single-cycle feature detector
also suffers from SNR wall limitations, and the SNR
wall decays as 1√

Nc
, where Nc is the coherence time of

the channel.
However, in [15], the key insights were obscured

by the notational complexity of feature detection. Also,
the SNR wall in [15] is derived as a function of the
channel-coherence time, without giving any insight into
the physical nature of the channel-coherence time. More
importantly, these results do not provide any intuition
into whether run-time noise calibration is feasible for
feature detectors. To answer these questions we need to
move to a simpler model.
So, we focus on pulse-amplitude-modulated (PAM)

signals, which are an important class of cyclostationary
signals. Curiously, signals modulated with Sinc pulses
do not exhibit cyclostationary features. One explanation
for this is that under the Sinc modulation, the signal is
effectively stationary. An alternative explanation is that
the Sinc pulse has 100% spectral efficiency. A signal
using only half the available bandwidth is a trivial exam-
ple of a signal with spectral redundancy. Despite being a
stationary signal, noise calibration gains for this example
were shown in [4]. This suggests that noise calibration
gains might also be feasible for cyclostationary signals
that seemingly have no spectral redundancy.
The simplest example of a cyclostationary signal with

seemingly no spectral redundancy is a 50%-duty-cycle
PAM signal. The analysis of this example using feature
detectors is notationally complex. Instead, we analyze
this example using a simple energy-detection based de-
tection algorithm. This algorithm is conceptually similar
to the single-cycle feature detection algorithm considered
in [15]. We derive the SNR wall results for this detector
and show that its robustness performance is comparable
to the robustness of the single-cycle feature detector, i.e.,
the SNR walls for both detectors scale as 1√

Nc
.

In this example, the coherence time corresponds to
the smallest time over which the impulse response of
the channel changes significantly. Since the simplest
example of a change in impulse response corresponds
to a change in the delay for a pure-delay fading process,
we call this the delay-coherence time of the channel and
denote it by Dc. It is shown in Section IV that the delay-
coherence time can be significantly different than the tra-

ditional phase-coherence and magnitude-coherence times
of the channel.
More importantly, we show that a simple modification

to this detector will gives run-time noise calibration
gains. An analytic expression for the SNR wall for the
modified detector is derived, and this shows that the
SNR wall for the 50%-PAM signal (with uncertain noise
color) scales as 1√

Dc
with the delay-coherence time of

the channel. This scaling is different than the O
³
1
Nc

´
scaling of the SNR wall for the matched filter, where Nc

is the phase-coherence time of the channel.
Table I gives the analogies between noise-calibration

gains in the frequency domain (matched filter) and the
noise-calibration gains in the time-domain (50%-duty-
cycle PAM signal).

II. ROBUST SENSING PROBLEM SETUP AND
BACKGROUND REVIEW

In this section we briefly recap the robustness results
from [4]. The readers are encouraged to read the paper
for complete details. In discrete time, the sensing prob-
lem can be formulated as a binary hypothesis test with
the following hypotheses:

H0 : Y [n] = W [n]

H1 : Y [n] = H(X)[n] +W [n], (1)

for n = 1, 2, · · · , N . Here X[n] are the samples of
the signal of interest, W [n] are samples of noise, Y [n]
are the received signal samples and H(.) is a linear
time-varying fading operator. The signal is assumed to
be independent of the noise and fading process. The
noise process {W [n]}n=1,··· is modeled to have any
distributionW from a set of possible distributionscWρ,λ,
ρ > λ ≥ 1. This set is called the noise uncertainty set.
The exact mathematical model for the distributions incWρ,λ is given in [4], and we use this model in the rest
of the paper.
The parameter ρ in cWρ,λ is used to quantify the

amount of uncertainty in the noise power and the pa-
rameter λ is used to quantify the uncertainty in the color
of the noise process. For the special case when λ = 1,
the noise uncertainty model reduces to a ‘white’ noise
uncertainty model. For notational convenience denote the
‘white’ noise uncertainty set by Wρ. Figure 1 describes
the possible power spectral densities under the ‘white’
and colored noise uncertainty models pictorially.
Under the noise uncertainty model given above, it was

shown that the radiometer and the matched filter have
fundamental SNR thresholds, called SNR walls, below



Signal model Strategy Key reason for non-robustness SNR wall scaling
Unknown or ‘white’ signal Energy detection Uncertain noise power O(1)
with a power constraint Optimal detection Uncertain noise moments
‘White’ signal with Matched filter Finite phase-coherence time

and uncertain noise power
narrowband pilot Matched filter with Finite phase-coherence time O

³
1
Nc

´
run-time noise calibration and uncertain noise color

50%-duty-cycle pulse Detector defined in (12) Finite delay-coherence time
amplitude modulated signal and uncertain noise power

(example of a Detector defined in (16) Finite delay-coherence time O
³

1√
Dc

´
cyclostationary signal) (run-time noise calibration) and uncertain noise color

TABLE I
COMPARISON OF ROBUSTNESS RESULTS FOR DIFFERENT CLASSES OF SIGNAL MODELS.

which robust detection1 is impossible [4]. The SNR wall
expressions for the radiometer and the matched filter are

SNRenergy
wall =

ρ2 − 1
ρ

, (2)

and

SNRmf
wall =

1

Nc · θ
µ
ρ2 − 1
ρ

¶
, (3)

where θ is the fraction of the total signal power allocated
to the known pilot tone, and Nc is the phase-coherence
time of the channel.
We now give an alternate interpretation for SNR

walls using the notion of sample complexity. Consider
the robust detection problem in (1). Assume that the
signal and noise samples are independent and identically
distributed (iid), and the noise distribution lies in the
white noise uncertainty set Wρ. Let the detector test-
statistic be given by

T (Y) :=
1

N

NX
n=1

φ(Y [n])
H1

≷
H0

γ, (4)

where φ(·) is a known deterministic function and γ is the
detector threshold. Denote the SNR wall for this detector
by SNRT

wall. Let SNR > SNRT
wall. Then, by the

definition of an SNR wall (see [4] for a formal definition)
we know that any PFA < 1

2 and PMD < 1
2 can be

robustly achieved. That is, we can choose a detection
threshold γ such that

PFA = max
W∈Wρ

PW (T (Y) > γ|H0) ,
PMD = max

W∈Wρ

PW (T (Y) < γ|H1) . (5)

1See [4] for a formal definition of robust detection.

Eliminating γ from (5) we can solve for N as a function
of the SNR, PFA, PMD and ρ. Hence, we can write

N = µ(SNR,PFA, PMD, ρ). (6)

This is called the sample complexity of the detector. For
any reasonable detector the sample complexity increases
as the SNR decreases, i.e., µ(SNR,PFA, PMD, ρ) is a
monotonically decreasing function of SNR. Under this
monotonicity assumption, it turns out that

lim
SNR↓SNRT

wall

µ(SNR,PFA, PMD, ρ) =∞. (7)

Equation (7) gives an alternate interpretation for an
SNR wall. It tells us that the SNR wall for a detector
is the SNR threshold at which the sample complexity
approaches ∞.
From [4] the sample complexity of the radiometer is

N ≈ 2[Q
−1(PFA)−Q−1(1− PMD)]

2h
SNR−

³
ρ2−1
ρ

´i2 , (8)

where Q−1(·) is the inverse of the Gaussian tail prob-
ability function. Again from [4], the sample complexity
for the matched filter is

N ≈ 2[Q
−1(PFA)−Q−1(1− PMD)]

2h
θ ·Nc · SNR−

³
ρ2−1
ρ

´i2 , (9)

Clearly (8) and (9) verify the assertion made in (7).
Figure 2 plots the sample complexity of the radiometer
and the matched filter. From the figure it is easy to see
that the sample complexity curves go to infinity as the
SNR decreases to the SNR wall.
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Fig. 1. Figure (a) describes the set of possible PSDs in Wρ and
Figure (b) describes the set of possible PSDs in bWρ,λ. The readers
are advised to refer to [4] for a detailed description of this figure.
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Fig. 2. This figure shows how the sample complexity (N as a
function of SNR) for the radiometer and the matched filter varies
as the SNR approaches the SNRwall. (See Equations (8) and (9)
and use x = 10 log10 ρ, θ = 0.1, Nc = 100, PFA = 0.1, and
PMD = 0.1). The two sets of curves for the matched filter and
the radiometer correspond to x = 1 dB and x = 0.001 dB noise
uncertainty. From the figure it is clear that the sample complexity
approaches infinity as the SNR approaches the SNR wall.

III. NOISE CALIBRATION AND DELAY COHERENCE

In the previous section we reviewed the robustness
limits of two simple detection schemes — energy and
coherent detection. The SNR wall exists because of the
uncertainty in the noise/interference process. The key
signal-processing question is whether it is possible to
reduce the uncertainty in the noise at run-time. The focus
on run-time is important because any calibration done far
in advance can get stale.
This leads to a tension. Ideally, we would like access

to H0 in a parallel universe that is identical to our own
except that the primary user is guaranteed to be absent.
However, our detector is necessarily confined to our own
universe where the presence or absence of the primary
user is unknown. Any run-time calibration that aims to
reduce the noise uncertainty must use data that might be
corrupted by the presence of the primary signal.
We first review the idea of noise calibration in fre-

quency domain for pilot detectors (see [4] for the de-
tails). Figure 3 describes the idea of noise calibration
in frequency domain. Figure 3(a) shows the PSD of the
received signal under hypothesis H1. The shaded region
in the bottom is the PSD of the data carrying part of
the signal, the solid region is the PSD of noise, and the
delta function is the pilot tone. One possible approach
to detect a narrowband pilot is the following: pass the
received signal through an ideal band-pass filter centered
around the pilot frequency, measure the power of the
filtered signal and compare it to a threshold. The filtering
operation reduces the noise power and hence boosts the
SNR. As the fading process can spread the pilot tone
in frequency there is a limit to the amount of coherent
processing gain obtained by filtering. The residual noise
power uncertainty in the filtered band leads to an SNR
wall. One intuitive approach to reduce this uncertainty at
run-time is to measure the noise power in another narrow
band close to the pilot location and use it to calibrate
the noise power in the band around the pilot tone (See
Figure 3(b)). There will be some calibration error as the
noise power in these two bands is not identical. However,
this error can be much lower than the uncertainty in the
noise power itself. Thus calibrating the noise power at
run-time improves the SNR wall.
The key intuition is that run-time noise calibration is

feasible only if the signal feature of interest, in this case
the pilot tone, occupies a fraction of the total degrees
of freedom. This allows for calibration via measurement
from the unoccupied degrees of freedom.
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Fig. 3. This figure gives a pictorial description of noise calibration
in frequency domain. Figure (a) shows the power spectrum of the
received signal with colored noise. The shaded region corresponds to
the signal power spectrum, the solid region corresponds to the noise
power spectrum and the vertical arrow corresponds to the narrowband
pilot tone. Figure (b) shows the technique used to perform noise
calibration in frequency domain. The noise power (area of the solid
region) in the band on the right is used to estimate the noise power
in the band on the left. This technique is only feasible because the
pilot occupies a small fraction of the total degrees of freedom.

A. 50%-duty-cycle PAM signal example

The goal of this paper is to show that run-time noise
calibration is a powerful technique and can be applied
to improve robustness for a rich class of primary signals
beyond the frequency domain example.
We now consider an example of a signal occupying

a fraction of the underlying degrees of freedom. To be
specific, consider signals that use only half of the avail-
able degrees of freedom in time rather than frequency.
The signal X[n] can be described as follows:

X[n] =

½ ±√2P with probability 1
2 , if n is odd,

0 if n is even. (10)

The average power of this signal is P and this example
is a caricature of practical signals whose amplitude is
modulated using time-domain pulses. Such PAM signals
come under the general category of cyclostationary sig-
nals [9]–[11]. Here we illustrate the basic idea of noise
calibration for cyclostationary signals in the context of
this simple caricature.
In this example, the average power measurements at

‘even’ time samples can be used to calibrate the noise
in the ‘odd’ time samples.

1) No channel fading: Suppose that there was no
fading. The natural test statistic is given by

T (Y) =

 2
N

N

2X
n=1

|Y [2n− 1]|2 − 2

N

N

2X
n=1

|Y [2n]|2
 . (11)

In this case it is easy to verify that E[T (Y)|H0] =
E[ 2N

PN

2

n=1 |W [2n − 1]|2] − E[ 2N
PN

2

n=1 |W [2n]|2] = 0
and E[T (Y)|H1] = 2P 6= 0. Therefore, it is clear that
we can obtain infinite gains from noise calibration and
hence there is no SNR wall if the noise is guaranteed to
be wide sense stationary. The noise contribution to each
expectation is identical by stationarity.
2) Flat fading: Assume that the channel fading is

flat (i.e H(·) is just multiplication by a bandlimited
scalar signal). For pilot-detection, this is enough to
cause an SNR wall since it spreads the pilot tone over
a finite bandwidth and thereby stops infinite coherent
processing gains [4]. In this case however, the scalar
multiplication can do nothing to the zero samples of the
signal! Even time-samples continue to provide a clean
view of the noise. Therefore, by the arguments above
noise calibration becomes perfect. Noise color is not
enough to stop this since the stationarity of the noise
guarantees that the calibration term under hypothesisH0,
2
N

PN

2

n=1 |Y [2n]|2 = 2
N

PN

2

n=1 |W [2n]|2 converges with
probability one to 2

N

PN

2

n=1 |W [2n−1]|2 as N gets large.
3) Frequency-selective fading: The previous result is

somewhat surprising since the matched filter for pilot
tones is not-robust to this kind of flat-fading uncertainty,
even with noise calibration when the noise is colored.
However, frequency-selective fading does introduce an
SNR wall for this detector in (11). To illustrate the
idea, consider the simplest possible frequency-selective
fading: a pure delay. Let the received signal under hy-
pothesis H1 be Y [n] = X[n− l[n]]+W [n]. In this case,
we show that uncertainty in the delay l[n] will lead to an
SNR wall. To be concrete, consider a block-fading model
in which the delay l[n] is piecewise constant for Dc

time steps before taking on an independent realization.
Since Dc models the minimum time over which the
delay of the fading process changes significantly, we call
it the delay-coherence time. More generally, the delay-
coherence time refers to the minimum time over which
the shape of the impulse response of the fading process
changes significantly.

B. Robustness analysis
For this simplest example of a fading process with

finite Dc, the strategy of (11) is doomed to failure if



the sums are taken beyond one coherence time. The
signal will eventually corrupt both the even and odd time
samples due to the random delay. By analogy with the
case of matched filtering, a natural detection strategy is
to compute the square of the test statistic within each
coherence time and average that over multiple coherence
times. The modified test statistic is given in (12).
Theorem 1: Let the received signal under hypothesis

H1 in (1) be given by Y [n] = X[n− l[n]] +W [n], with
X[n] given in (10), and W [n] stationary uncertain noise
independent of the signal. Assume that the distribution
of the noise arises from the colored noise uncertainty setcWρ,λ. Suppose the delay fading satisfies:
• l[n] is constant within a delay-coherence block and
iid across different delay-coherence blocks.

• l[n] is uniformly distributed on {0, 1}.
Define, SNR = P

σ2n
. Then, the detector with test-statistic

given by

T (Y,Dc)

=
1

M

M−1X
k=0

¯̄r 2

Dc

Dc/2X
n=1

{|Y [kM + 2n− 1]|2

−
r
2

Dc

Dc/2X
n=1

|Y [kM + 2n]|2}¯̄2
 , (12)

where M = N
Dc
is non-robust if

SNR ≤
−2
³
λ
ρ

´
+

r
4
³
λ2

ρ2

´
+ 2Dc

³
ρ2

λ2 − λ2

ρ2

´
Dc

. (13)

Proof: From (12) it is clear that

E[T (Y,Dc)|Hi] =

E

¯̄̄̄¯̄r 2

Dc

Dc/2X
n=1

©|Y [2n− 1]|2 − |Y [2n]|2ª
¯̄̄̄
¯̄
2 ¯̄Hi

 , (14)
for i = 0, 1. Since we are computing the square of the
test statistic within each coherence block, assume with-
out loss of generality that the delay in the first coherence
block is zero, i.e., l[n] = 0 for n = 1, 2, · · · , Dc. The
detector in (12) is non-robust if there exists a class of
noise distributions such that the set of means under both
hypotheses overlap. We now exhibit a specific class of
noise distributions that satisfy this condition.
AssumeW [n] are iid random variables with marginals

given by W [n] ∼ N (0, σ2) for some λ
ρ ≤ σ2 ≤ ρ

λ . The
following lemma gives the desired quantities.

Lemma 1:

E[T (Y,Dc)|H0] = 4σ4,

E[T (Y, N)|H1] = 2P 2Dc + 8Pσ
2 + 4σ4, (15)

where σ2 = E[|W [n]|2].
Proof: See Appendix I.

Using Lemma 1, it is clear that the detector in (12) is
non-robust if the set of means under both hypotheses
overlap. This condition is equivalent to

min
λ

ρ
σ2n≤σ2≤ ρ

λ
σ2n

2P 2Dc + 8Pσ
2 + 4σ4

≤ max
λ

ρ
σ2n≤σ2≤ ρ

λ
σ2n

4σ4

⇒ P 2Dc + 4

µ
λ

ρ

¶
Pσ2n − 2

µ
ρ2

λ2
− λ2

ρ2

¶
σ4n ≤ 0

The last inequality in SNR := P
σ2n
can be solved to give

the required result by the quadratic formula.
This theorem suggests that it is the uncertainty corre-

sponding to the frequency selectivity of the fading that
induces limits on the detection of very weak signals that
do not fully utilize all the degrees of freedom in time-
domain. There are two interesting aspects of this result:
• The dependence of the SNR wall for this detector
on the delay coherence time is O( 1√

Dc
). This gain

from increasing delay-coherence time is slower than
the O( 1Nc

) gain for the matched filter, but it is better
than the lack of any gain with coherence time for
a primary signal that only uses half the degrees of
freedom in the frequency domain [4].

• The SNR wall result so far does not depend on the
color of the noise! The proposed detector in (12),
while being intuitively very natural, is non-robust
in the presence of frequency-selective fading, even
when the noise is truly white (use λ = 1 in (13)).
As the next section shows, this is an artifact of the
detection strategy used.

C. Noise calibration in time domain
In matched filtering, we obtained the approximate

level of noise from noise power measurements in an
adjacent band. In the current example, the test statistic
is a difference and so intuitively, the sum can provide
access to the approximate level of noise. Explicitly,
compute the empirical power in the received signal bP =
1
N

PN
n=1 |Y [n]|2. This converges to P+σ2 underH1 and

to σ2 under H0 as N → ∞, where σ2 = E[|W [n]|2].
We normalize the received signal with this empirical
power estimate and compute the new test statistic given
in (16). Intuitively, one can think of this as passing



the received signal through an automatic gain controller
(AGC), which is tuned such that its output is normalized
to unit power.
Theorem 2: Let the received signal under hypothesis

H1 in (1) be given by Y [n] = X[n− l[n]] +W [n], with
X[n] given in (10), and W [n] being independent of the
signal with an unknown distribution from the colored
noise uncertainty set cWρ,λ. Suppose the delay fading l[n]
satisfies:
• l[n] is constant within a delay-coherence block and
iid across different delay-coherence blocks.

• The length of the delay-coherence block is Dc > 2.
• l[n] is uniformly distributed on {0, 1}.

Then, the detector with test-statistic given byeT (Y,Dc)

=
1

M

M−1X
k=0

¯̄r 2

Dc

Dc/2X
n=1

{|bY [kM + 2n− 1]|2

−
r
2

Dc

Dc/2X
n=1

|bY [kM + 2n]|2}¯̄2
 , (16)

where M = N
Dc
and bY [n] = Y [n]√

1

N

PN
n=1 |Y [n]|2

is non-
robust if

SNR ≤
³ρ
λ

´
·
2
³
1− 1√

λ

´
√
Dc

. (17)

Proof: Assume that a genie guarantees that the
times when the delay l[n] assumes an independent re-
alization are integer multiples of Dc itself. From (16) it
is clear that

E[ eT (Y,Dc)|Hi] =

E

 ¯̄̄̄¯̄r 2

Dc

Dc/2X
n=1

n
|bY [2n− 1]|2 − |bY [2n]|2o

¯̄̄̄
¯̄
2 ¯̄Hi

 , (18)
for i = 0, 1. Since we are computing the square
of the test statistic within each coherence block, as-
sume without loss of generality that the delay in the
first coherence block is zero, i.e., l[n] = 0 for n =
1, 2, · · · ,Dc. The detector in (16) is non-robust if there
exist two distinct noise distributions W1,W2 ∈ cWρ,λ

such that EW1
[eT (Y,Dc)|H1] = EW2

[ eT (Y, Dc)|H0]. We
now exhibit a specific class of noise distributions that
satisfy this condition.
LetM [n] be an iid white Gaussian noise process, with

the variance σ2m ∈ [λρσ2n, ρλσ2n]. Let W [n] = M [n] −
αM [n − 1] for some α within some small range 0 ≤
|α| ≤ αmax.

To apply the central limit theorem, define

(G1, G2) :=r 2

Dc

Dc/2X
n=1

|bY [2n− 1]|2,r 2

Dc

Dc/2X
n=1

|bY [2n]|2
 . (19)

The parameters of the jointly Gaussian approximation
for (G1, G2) are computed in the following lemma.
Lemma 2: Assume N À 1. Then, the statistics of

(G1,G2) under hypothesis H1 are given by the mean
and covariance

m̄ :=

µ
EG1
EG2

¶
,

Λ :=

µ
Var(G1) Cov(G1, G2)

Cov(G1, G2) Var(G1)

¶
,

taking values

m̄ =
1

κ

 q
Dc

2 (2P + σ2)q
Dc

2 σ2

 ,

Λ =
1

κ2

 8Pσ2 + 2σ4 4α2σ4m

h
Dc−2
Dc

i
4α2σ4m

h
Dc−2
Dc

i
2σ4

 ,(20)

where κ := 1
P+σ2 , σ

2 = (1+α2)σ2m. The corresponding
statistics under the hypothesis H0 are computed by
substituting P = 0 in (20).

Proof: See Appendix II.
From (18) we have

E[ eT (Y,Dc)|H1] = E[|G1 −G2|2]
= Var(G1) + Var(G2)−

2Cov(G1, G2) + (EG1 − EG2)
2. (21)

Substituting (20) in (21) gives

E[eT (Y,Dc)|H1] =
4[(1 + α2)2P + (1 + α4)σ2m]σ

2
m

(P + (1 + α2)σ2m)
2

+
8α2σ4m

³
2
Dc

´
+
¡
Dc

2

¢
4P 2

(P + (1 + α2)σ2m)
2

. (22)

Setting P = 0 in (22) gives

E[eT (Y,Dc)|H0] =
4(1 + α4) + 8

³
2
Dc

´
α2

(1 + α2)2

= 4

1− 2α2
³
1− 2

Dc

´
(1 + α2)2


≤ 4, (23)



∀Dc > 2. From (22) and (23), it is clear that the means
of the test statistic under both hypotheses overlap if

4 ≥ 4[(1 + α2max)2P + (1 + α4max)σ
2
m]σ

2
m

(P + (1 + α2max)σ
2
m)

2

+
8α2maxσ

4
m

³
2
Dc

´
+
¡
Dc

2

¢
4P 2

(P + (1 + α2max)σ
2
m)

2

⇒ 0
(a)

≥ −(1− 2

Dc
)8α2maxσ

4
m +

µ
Dc

2
− 1
¶
4P 2

⇒ SNR ≤ 2αmax√
Dc

µ
σ2m
σ2n

¶
≤
³ρ
λ

´ 2αmax√
Dc

. (24)

In the above chain of inequalities, (a) follows by
completing squares on the right hand side.
To prove the result of the theorem we need to give

conditions on αmax such that the distribution of the noise
process W [n] lies in cWρ,λ.
Lemma 3: Let αmax = 1 − 1√

λ
, where λ > 1 is

the parameter in the definition of the colored noise
uncertainty set cWρ,λ. Then the class of noise processes
defined by W [n] = M [n] − αM [n − 1] (for white
M [n] with variance σ2m ∈ [λρσ2n, ρλσ2n]) have distributions
W ∈ cWρ,λ for all 0 ≤ |α| ≤ αmax.

Proof: See Appendix III.
By Lemma 3, setting αmax = 1 − 1√

λ
in (24) gives us

the required result.

IV. INTERPRETING THE “DELAY-COHERENCE TIME”
In real-world wireless environments, the channel re-

sponse tends to change continuously due to relative
motion in space-time. Coherence time is a useful short-
hand for the time required for the channel to change
“significantly.” What constitutes a significant change is
a matter of engineering judgement and depends on the
context.
The magnitude-coherence time is the minimum time

over which the magnitude response of the fading process
changes significantly. This coherence-time tends to be
inversely proportional to the Doppler spread of the chan-
nel. Traditionally, a significant change in the magnitude-
response leads to a change in the “water-filling” power
allocation across sub-channels. By contrast, the phase-
coherence time is the minimum time over which the
phase of an individual channel tap changes significantly.
This is relevant in the context of how long a matched-
filter can operate as well as for beamforming in MIMO
contexts. On the other hand, the delay-coherence time is
the minimum time over which the shape of the impulse
response changes significantly. Alternatively, we can also
think of it as the minimum time over which the relative
phase-response changes significantly.

In most traditional communication systems, receivers
have a phase locked loop (PLL). However, for sensors
trying to detect the presence/absence of primary signals
it is not possible to have a phase lock since the receiver
is not even sure whether the primary signal is present
or absent. This leads to a frequency offset error that in
time leads to missed or extra samples. This possibility
introduces a finite delay-coherence time even when the
sensor is not physically in motion. It also shows how
a change in the delay is not only the simplest possible
example, it is also unavoidable in real-world systems.
To further understand the nature of the delay-

coherence time Dc, it is useful to consider two cases:
• Assume that the delay spread of the channel is sig-
nificantly larger than 1 sample and all of the channel
taps arise from the sum of many paths. (There is no
dominant line-of-sight path) As these path-lengths
change over time, all of the taps will get different
values. In such a case, the delay-coherence time
Dc and the traditional phase-coherence time Nc (or
equivalently, the reciprocal of the bandwidth of the
fading process) are the same since the relative phase
response can change significantly in this time. This
is the model that is likely to hold for wideband
primary users being detected in urban environments
at significant distances from their transmitters. This
basically corresponds to when ISI is significant.

• Now suppose there is only one dominant line-of-
sight path that is arriving at the spectrum sensor, but
is subject to local reflections in the near neighbor-
hood of the sensor. (e.g. A user in an airplane) The
delay spread of the channel can be smaller than 1
sample. In this case, there will just be a single tap
in the filter. The amplitude might change rapidly
since the local paths can go in and out of phase
with each other, but the overall delay is not going
to be changing as fast. In such cases, the delay-
coherence time Dc > Nc and the dominant effect
may very well be the clock skew of the sensor’s
local oscillator relative to the primary oscillator. In
such cases, the factor difference between Dc and
Nc is comparable to the factor difference between
the signal bandwidth and the carrier frequency.

V. DISCUSSION AND CONCLUSIONS

A. Comparing different SNR walls

In this paper we have shown the existence and com-
puted the location of SNR walls for the 50%-duty-cycle
example with noise calibration. We now compare the
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Fig. 4. The location of SNR walls for various detection algorithms
is plotted as a function of the delay-coherence time. The curve with
‘triangle’ markers (blue) is the location of the SNR wall for the energy
detector. The dashed curve (red) is the location of the SNR wall for
the matched filter assuming 50% of the power is in the pilot. The
dashed-dotted curve (black) is the location of the SNR wall for the
50%-duty-cycle example without noise calibration. Finally, the solid
curve (green) is the location of the SNR wall for the 50%-duty-cycle
example with noise calibration. These curves were obtained from
Equations (2), (3), (13), and (17) respectively.

robustness for this detector to the robustness of other
detection algorithms. Figure 4 plots the SNR wall loca-
tions for the radiometer, the matched filter, and the 50%
duty-cycle example with and without noise calibration
as a function of the channel-coherence time Nc. In this
example, the delay-coherence time is assumed to be the
same as the phase-coherence time, i.e., Nc = Dc. In this
plot we have assumed θ = 0.5 (See (3)) for the matched
filter and the noise uncertainty parameters are ρ = 10
and λ = 10

1

10 .
In Figure 4, the curve with ‘triangle’ markers corre-

sponds to the energy detection SNR wall, and this is
independent of the channel-coherence time. The dashed
curve corresponds to the matched filter. The dashed-
dotted curved corresponds to the 50%-duty-cycle exam-
ple without noise calibration (See (13)), and the solid
curve represents the SNR wall for the 50%-duty-cycle
example with noise calibration (See (17)).
Notice that in Figure 4, the matched filter SNR wall is

better than the SNR wall for the 50%-duty-cycle example
with noise calibration for Nc ≥ 300. The 50%-duty-
cycle signaling scheme has a significant loss in primary
data rate as compared to an optimal capacity achieving
signaling scheme since it is effectively throwing away
more than half the degrees of freedom. In general as
the signaling scheme makes better use of the degrees of

freedom the robustness gains will diminish.

B. Concluding remarks

In this paper we consider the example of a 50%-duty-
cycle PAM signal to demonstrate the robustness gains
achievable by run-time noise calibration. This example
suggests that the robustness gains for feature detection
are coming implicitly from run-time calibration of the
noise model based on the observations themselves.
The noise-calibration gains presented in this paper are

not specific to the 50% duty-cycle example. Our analysis
can be applied to any PAM signal with an arbitrary duty-
cycle. Furthermore, these techniques can also be applied
to cyclostationary feature detectors [16]. Knowledge of
deterministic components of the primary signal such as
pilot tones give rise to SNR walls that scale as 1

Nc
with

phase-coherence time Nc whereas knowledge of purely
structural features of the data signaling strategy give
rise to SNR walls that scale only as 1√

Dc
with delay-

coherence time Dc. This suggests that unless the delay-
coherence time is significantly larger than the phase-
coherence time, it is unlikely that feature-detection will
be an attractive choice to increase the robustness of
detecting very weak primary users.

APPENDIX I
PROOF OF LEMMA 1

Under hypothesis H0: Y [n] =W [n] ∼ N (0, σ2) for
all n > 0. Using this in (14), we get

E[T (Y,Dc)|H0] =

E


¯̄̄̄
¯̄r 2

Dc

Dc/2X
n=1

©|W [2n− 1]|2 − |W [2n]|2ª
¯̄̄̄
¯̄
2
 .(25)

|W [2n− 1]|2− |W [2n]|2 are iid random variables with
zero mean and variance 4σ4. Using the Central Limit
Theorem [17], we getr
2

Dc

Dc/2X
n=1

©|W [2n− 1]|2 − |W [2n]|2ª ∼ N (0, 4σ4).
Using this approximation in (25), we get
E[T (Y, Dc)|H0] = 4σ4.
Under hypothesis H1: Without loss of generality we

can assume l[n] = 0. So, we have Y [2n− 1] = X[2n−
1] +W [2n− 1] and Y [2n] = X[2n] +W [2n] =W [2n].
This implies that |Y [2n−1]|2− |Y [2n]|2 are iid random
variables with mean 2P and variance 8Pσ2+4P 2. Again



using the Central Limit Theorem [17], we get

r
2

Dc

Dc/2X
n=1

©|Y [2n− 1]|2 − |Y [2n]|2ª ∼
N (
r

Dc

2
(2P ), 8Pσ2 + 4σ4).

Using this approximation we get

E[T (Y,Dc)|H1] = 8Pσ2 + 4σ4 +

Ãr
Dc

2
(2P )

!2
= 8Pσ2 + 4σ4 + 2P 2Dc.

APPENDIX II
PROOF OF LEMMA 2

Recall bY [n] = Y [n]√
1

N

PN
n=1 |Y [n]|2

. Since we are inter-
ested in robustness results, we assume that N is very
large. Specifically, we assume that 1

N

PN
n=1 Y

2[n] =

P + σ2 under hypothesis H1 and 1
N

PN
n=1 Y

2[n] = σ2

under hypothesis H0, where σ2 = (1 + α2)σ2m.
Under hypothesis H1: From (19), we can write G1 =

K1S1, and G2 = K1S2, where

S1 =

Dc
2X

n=1

Y 2[2n− 1], S2 =

Dc
2X

n=1

Y 2[2n],

and K1 =
q

2
Dc
· 1
P+σ2 . Now, ES1 =

PDc
2

n=1 EY 2[2n−
1] =

PDc
2

n=1 E(X[2n − 1] + W [2n − 1])2 =
Dc

2 [2P + σ2]. Similarly, ES2 =
PDc

2

n=1 EY 2[2n] =PDc
2

n=1 E(W [2n])2 = Dc

2 [σ
2]. Here we have used the

fact that the random delay in the current coherent block
is l[n] = 0. Therefore, X[2n − 1] is ±√2P with
probability 1

2 for each sign and X[2n] = 0. Hence,
we get E[G1] = K1E[S1] = 1

P+σ2

¡
Dc

2

¢
[2P + σ2] and

E[G2] = K1E[S2] = 1
P+σ2

Dc

2 [σ
2].

We now compute the second-order statistics of
(G1, G2). By definition, we have E(G1 − EG1)2 =
K2
1E(S1−ES1)2 and E(G2−EG2)2 = K2

1E(S2−ES2)2.

Now,

ES21

= E

 Dc
2X

n=1

Y 2[2n− 1]
2

=

Dc
2X

n=1

E(Y 4[2n− 1])

+
X
m 6=n

E(Y 2[2n− 1]Y 2[2m− 1]). (26)

Using the fact that Y [2n−1] = X[2n−1]+W [2n−1], we
can easily show that E(Y 4[2n−1]) = 4P 2+12Pσ2+3σ4
and E(Y 2[2n − 1]Y 2[2m − 1]) = 4P 2 + 4Pσ2 + σ4.
Substituting this in (26) we get

ES21 =
Dc

2
[4P 2 + 12Pσ2 + 3σ4]

+
Dc

2

µ
Dc

2
− 1
¶
[4P 2 + 4Pσ2 + σ4].

Therefore,

Var(S1) = ES21 − (ES1)2 =
Dc

2
[8Pσ2 + 2σ4]

⇒ Var(G1) = K2
1Var(S1) =

[8Pσ2 + 2σ4]

(P + σ2)2
.

Identical computations show that Var(G2) = [2σ4]
(P+σ2)2 .

E[S1S2] =

E


 Dc

2X
n=1

(X[2n− 1] +M [2n− 1]− αM [2n− 2])2



Dc
2X

m=1

(M [2m]−M [2m− 1])2

 . (27)

Expanding this product and taking expectations
we get a total of

¡
Dc

2

¢2 terms. The terms
can be grouped into two groups of the form
E
£
(X[3] +M [3]− αM [2])2(M [2]−M [1])2

¤
, and

E
£
(X[3] +M [3]− αM [2])2(M [6]−M [5])2

¤
. The first

group has exactly one M [·] term in common, while
the second group has no M [·] terms in common. By
standard computations, we can see that the expectation
of each term in group one is (2P )σ2 + σ4 + 2α2σ4m
and the expectation of each term in group two is
(2P )σ2 + σ4. The number of terms in group one is
(Dc − 2) and the number of terms in group two is



¡
Dc

2

¢2 − (Dc − 2). Using this in (27), we get
E[S1S2] = (Dc − 2)[(2P )σ2 + σ4 + 2α2σ4m]

+

"µ
Dc

2

¶2
− (Dc − 2)

#
[(2P )σ2 + σ4]

⇒ Cov(G1, G2) = K2
1Cov(S1, S2) =

·
4α2σ4m
(P + σ2)2

¸ ·
Dc − 2
Dc

¸
.

APPENDIX III
PROOF OF LEMMA 3

Let W [n] =M [n]−αM [n−1], where M [n] is an iid
Gaussian noise process with variance σ2m ∈ (λρσ2n, ρλσ2n).
The noise process {W [n]} certainly has a distribution incWρ,λ if

1

λ
≤ |H(f)|2 ≤ λ, ∀f ∈ [−1

2
,
1

2
]. (28)

Here H(f) = 1 − αej2πf , is the DTFT of the discrete
time filter with impulse response h[0] = 1, h[1] = −α.
Thus, we have |H(f)|2 = 1−2α cos(2πf)+α2. Clearly,
we have (1− |α|)2 ≤ |H(f)|2 ≤ (1 + |α|)2. Using this
in (28), we conclude that {W [n]} has a distribution incWρ,λ if

1

λ
≤ (1− |α|)2 ≤ (1 + |α|)2 ≤ λ

⇔ |α| ≤ 1− 1√
λ
=: αmax.
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