
Reinforcement learning

Stuart Russell, UC Berkeley

Stuart Russell, UC Berkeley 1

Outline

♦ Sequential decision making

♦ Dynamic programming algorithms

♦ Reinforcement learning algorithms
– temporal difference learning for a fixed policy
– Q-learning and SARSA

♦ Function approximation

♦ Exploration

♦ Decomposing agents into modules

Stuart Russell, UC Berkeley 2

Sequential decision problems

Add uncertainty to state-space search → MDP

Add sequentiality to Bayesian decision making → MDP
I.e., any environment in which rewards are not immediate

Examples:
– Tetris, spider solitaire
– Inventory and purchase decisions, call routing, logistics, etc. (OR)
– Elevator control
– Choosing insertion paths for flexible needles
– Motor control (stochastic optimal control)
– Robot navigation, foraging

Stuart Russell, UC Berkeley 3

Example MDP

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.10.1

States s ∈ S, actions a ∈ A

Model T (s, a, s′) ≡ P (s′|s, a) = probability that a in s leads to s′

Reward function R(s) (or R(s, a), R(s, a, s′))

=

−0.04 (small penalty) for nonterminal states
±1 for terminal states

Stuart Russell, UC Berkeley 4

Solving MDPs

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal policy π∗(s)
i.e., best action for every possible state s
(because can’t predict where one will end up)

The optimal policy maximizes (say) the expected sum of rewards

Optimal policy when state penalty R(s) is –0.04:

1 2 3

1

2

3

− 1

+ 1

4

Stuart Russell, UC Berkeley 5

Utility of state sequences

Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences:

[r, r0, r1, r2, . . .] ≻ [r, r′0, r
′
1, r
′
2, . . .] ⇔ [r0, r1, r2, . . .] ≻ [r′0, r

′
1, r
′
2, . . .]

Theorem (Koopmans, 1972): there is only one way to combine rewards
over time:

– Additive discounted utility function:
U ([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where γ ≤ 1 is the discount factor

[Humans may beg to differ]

Stuart Russell, UC Berkeley 6

Utility of states

Utility of a state (a.k.a. its value) is defined to be
U (s) = expected (discounted) sum of rewards (until termination)

assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
maximize the expected utility of the immediate successors

1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.912

0.705

0.660

0.868

 0.388

1 2 3

1

2

3

− 1

+ 1

4

Stuart Russell, UC Berkeley 7

Utilities contd.

Problem: infinite lifetimes ⇒ undiscounted (γ = 1) utilities are infinite

1) Finite horizon: termination at a fixed time T
⇒ nonstationary policy: π(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any π
⇒ expected utility of every state is finite

3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U ([s0, . . . s∞]) = Σ∞t=0γ
tR(st) ≤ Rmax/(1− γ)

Smaller γ ⇒ shorter horizon

4) Maximize average reward per time step
– sometimes more appropriate than discounting

Stuart Russell, UC Berkeley 8

Dynamic programming: the Bellman equation

Definition of utility of states leads to a simple relationship among utilities of
neighboring states:

expected sum of rewards
= current reward

+ γ× expected sum of rewards after taking best action

Bellman equation (1957) (also Shapley, 1953):

U (s) = R(s) + γ max
a

Σs′U (s′)T (s, a, s′)

U (1, 1) = −0.04
+ γ max{0.8U (1, 2) + 0.1U (2, 1) + 0.1U (1, 1), up

0.9U (1, 1) + 0.1U (1, 2) left

0.9U (1, 1) + 0.1U (2, 1) down

0.8U (2, 1) + 0.1U (1, 2) + 0.1U (1, 1)} right

One equation per state = n nonlinear equations in n unknowns

Stuart Russell, UC Berkeley 9

Value iteration algorithm

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn.
Everywhere locally consistent ⇒ global optimality

Repeat for every s simultaneously until “no change”

U (s)← R(s) + γ max
a

Σs′U (s′)T (s, a, s′) for all s

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

Stuart Russell, UC Berkeley 10

Convergence

Define the max-norm ||U || = maxs |U (s)|,
so ||U − V || = maximum difference between U and V

Let U t and U t+1 be successive approximations to the true utility U

Theorem: For any two approximations U t and V t

||U t+1 − V t+1|| ≤ γ ||U t − V t||

I.e., Bellman update is a contraction: any distinct approximations must
get closer to each other
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal solution

But MEU policy using U t may be optimal long before convergence of values
. . .

Stuart Russell, UC Berkeley 11

Policy iteration

Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π
update π as if utilities were correct (i.e., local depth-1 MEU)

To compute utilities given a fixed π (value determination):

U (s) = R(s) + γ Σs′U (s′)T (s, π(s), s′) for all s

i.e., n simultaneous linear equations in n unknowns, solve in O(n3)

Stuart Russell, UC Berkeley 12

Q-iteration

Define Q(s, a) = expected value of doing action a in state s
and then acting optimally thereafter

= R(s) + γ Σs′U (s′)T (s, a, s′)
i.e., U (s) = maxa Q(s, a)

Q-iteration algorithm: like value iteration, but do

Q(s, a)← R(s) + γ Σs′T (s, a, s′) max
a′

Q(s′, a′) for all s, a

Q-values represent a policy with no need for transition model (unlike U)

Stuart Russell, UC Berkeley 13

General asynchronous dynamic programming

Local value and policy updates steps can be mixed in any order on any states,
with convergence guaranteed as long as every state gets updated infinitely
often

Reinforcement learning algorithms operate by performing such updates based
on the observed transitions made in an initially unknown environment

Stuart Russell, UC Berkeley 14

Invariance transformations

Nonsequential behaviour invariant under positive affine transform:

U ′(s) = k1U (s) + k2 where k1 > 0

Sequential behaviour with additive utility is invariant
wrt addition of any potential-based reward:

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)

where the added reward must satisfy

F (s, a, s′) = γΦ(s′)− Φ(s)

for some potential function Φ on states [Ng, Harada, Russell, ICML 99]

Often useful to add “shaping rewards” to guide behavior

Stuart Russell, UC Berkeley 15

Partial observability

POMDP has an observation model O(s, e) defining the probability that the
agent obtains evidence e when in state s

Agent does not know which state it is in
⇒ makes no sense to talk about policy π(s)!!

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
π(b) where b is the belief state (P (S|e1, . . . , et))

Can convert a POMDP into an MDP in (continuous, high-dimensional)
belief-state space,
where T (b, a, b′) is essentially a filtering update step

Solutions automatically include information-gathering behavior

The real world is an unknown POMDP

Stuart Russell, UC Berkeley 16

Other Issues

Complexity: polytime in number of states (by linear programming)
but number of states is exponential in number of state variables
→ Boutilier et al, Parr & Koller: use structure of states

(but U , Q summarize infinite sequences, depend on everything)
→ reinforcement learning: sample S, approximate U/Q/π
→ hierarchical methods for policy construction (next lecture)

Unknown transition model: agent cannot solve MDP w/o T (s, a, s′)
→ reinforcement learning

Missing state: there are state variables the agent doesn’t know about
→ [your ideas here]

Stuart Russell, UC Berkeley 17

Reinforcement learning

Agent is in an unknown MDP or POMDP environment

Only feedback for learning is percept + reward

Agent must learn a policy in some form:
– transition model T (s, a, s′) plus value function U (s)
– action-value function Q(a, s)
– policy π(s)

Stuart Russell, UC Berkeley 18

Example: 4×3 world

1 2 3

1

2

3

− 1

+ 1

4

START

(1, 1)-.04→(1, 2)-.04→(1, 3)-.04→(1, 2)-.04→(1, 3)-.04→ · · · (4, 3)+1
(1, 1)-.04→(1, 2)-.04→(1, 3)-.04→(2, 3)-.04→(3, 3)-.04→ · · · (4, 3)+1
(1, 1)-.04→(2, 1)-.04→(3, 1)-.04→(3, 2)-.04→(4, 2)-1 .

Stuart Russell, UC Berkeley 19

Example: Backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Reward for win/loss only in terminal states, otherwise zero

TDGammon learns Û (s), represented as 3-layer neural network

Combined with depth 2 or 3 search, one of top three players in world
(after 2 million games)

Stuart Russell, UC Berkeley 20

Example: Animal learning

RL studied experimentally for more than 60 years in psychology

Rewards: food, pain, hunger, recreational pharmaceuticals, etc.

[Details in later lectures]

Digression: what is the animal’s reward function?

Inverse reinforcement learning [Ng & Russell, 2000; Sargent, 1978]:
estimate R given samples of (presumably) optimal behavior

Issue: degenerate solutions (e.g., R = 0)

Choose R to make observed π “very optimal” or “likely assuming noisy
selection”

Stuart Russell, UC Berkeley 21

Example: Autonomous helicopter

Reward = – squared deviation from desired state

Stuart Russell, UC Berkeley 22

Temporal difference learning

Fix a policy π, execute it, learn Uπ(s)

Bellman equation:

Uπ(s) = R(s) + γ
∑

s′
T (s, π(s), s′)Uπ(s′)

TD update adjusts utility estimate to agree with Bellman equation:

Uπ(s)← Uπ(s) + α(R(s) + γ Uπ(s′)− Uπ(s))

Essentially using sampling from the environment instead of exact summation

Stuart Russell, UC Berkeley 23

TD performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)

(1,3)

(2,1)

(3,3)
(4,3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

til
ity

Number of trials

Stuart Russell, UC Berkeley 24

Q-learning [Watkins, 1989]

One drawback of learning U (s): still need T (s, a, s′) to make decisions

Learning Q(a, s) directly avoids this problem

Bellman equation:

Q(a, s) = R(s) + γ
∑

s′
T (s, π(s), s′) max

a′
Q(a′, s′)

Q-learning update:

Q(a, s)← Q(a, s) + α(R(s) + γ max
a′

Q(a′, s′)−Q(a, s))

Q-learning is a model-free method for learning and decision making

Q-learning is a model-free method for learning and decision making
(so cannot use model to constrain Q-values, do mental simulation, etc.)

Stuart Russell, UC Berkeley 25

SARSA [Rummery & Niranjan, 1994]

Instead of using maxa′Q(a′, s′), use actual action a′ taken in s′

SARSA update:

Q(a, s)← Q(a, s) + α(R(s) + γ Q(a′, s′)−Q(a, s))

Q-learning can execute any policy it wants while still learning the optimal Q

SARSA learns the Q-value for the policy the agent actually follows

Stuart Russell, UC Berkeley 26

Function approximation

For real problems, cannot represent U or Q as a table!!

Typically use linear function approximation (but could be anything):

Ûθ(s) = θ1 f1(s) + θ2 f2(s) + · · · + θn fn(s) .

Use a gradient step to modify θ parameters:

θi ← θi + α [R(s) + γ Ûθ(s
′)− Ûθ(s)]

∂Ûθ(s)

∂θi

θi ← θi + α [R(s) + γ max
a′

Q̂θ(a
′, s′)− Q̂θ(a, s)]

∂Q̂θ(a, s)

∂θi

Often very effective in practice, but convergence not guaranteed
(Some narrow results for linear and instance-based approximators)

Stuart Russell, UC Berkeley 27

Policy search

Simplest possible method:
– parameterized policy πtheta(s)
– try it out, see how well it does
– try out nearby values of θ, see how well they do
– follow the empirical gradient

Problems: local maxima, uncertainty in policy value estimates

Useful idea [Ng & Jordan, 2000; Hammersley, 1960s]: (in simulated domains)
reuse random seed across trial sets for different values of θ, thereby reducing
variance in estimate of value differences

Stuart Russell, UC Berkeley 28

Exploration

How should the agent behave? Choose action with highest expected utility?

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

1 2 3

1

2

3

–1

+1

4

Exploration vs. exploitation: occasionally try “suboptimal” actions!!

Really an (intractable) “exploration POMDP” where observations give the
agent information about which MDP it’s in

Stuart Russell, UC Berkeley 29

Functional decomposition

Do RL agents have to be monolithic?

Is it possible to have modules for different functions,
e.g., navigation, eating, obstacle avoidance, etc.?

. . . whilst retaining global optimality?

Stuart Russell, UC Berkeley 30

Command arbitration

Each sub-agent recommends an action,
arbitration logic selects among recommended actions
(e.g., subsumption architecture (Brooks, 1986))

State

π1

π

π2

3

Arbitrator

a1

a2

a3

s
Action
a

Stuart Russell, UC Berkeley 31

Command arbitration contd.

Problem: Each recommendation ignores other sub-agents
⇒ arbitrarily bad outcomes

Problem: Arbitration is difficult, domain-specific

Why not “blend” the recommendations?

Problem: Blending “swerve left” and “swerve right” is a bad idea
and blending “Ra6” and “Qg7” is meaningless

Stuart Russell, UC Berkeley 32

Q-decomposition [Russell & Zimdars, 2003]

A very obvious idea:
♦ Each sub-agent embodies a local Qj function

♦ Given current state s, sends Qj(s, a) for each a
♦ Arbitrator chooses arg maxa

∑

j Qj(s, a)

State
2

3

Arbitrators
Action
a

1Q

Q

Q

1Q () . , s

3Q () . , s

2Q () . , s

Stuart Russell, UC Berkeley 33

Additive rewards

Each sub-agent aims to maximize own Rj(s, a, s′)

Additive decomposition: R = ∑

j Rj

Trivially achievable (not relying on any state decomposition)
but often Rj may depend on subset of state variables
while Qj depends on all state variables

Stuart Russell, UC Berkeley 34

What are the Qjs?

Qj = expected sum of Rj rewards under globally optimal policy

Define Qπ
j (s, a) = Es′

[

Rj(s, a, s′) + γQπ
j (s′, π(s′))

]

⇒ Qπ(s, a) = Es′ [R(s, a, s′) + γQπ(s′, π(s′))]
= ∑

j Qπ
j (s, a)

⇒ arg maxa
∑

j Qπ∗
j (s, a) = arg maxa Qπ∗(s, a)

I.e., arbitrator decision is globally optimal when
local Qj functions anticipate globally optimal behavior

Theorem: Local SARSA converges to globally optimal Qj

(whereas local Q-learning yields greedy sub-agents)

Stuart Russell, UC Berkeley 35

Example: Fisheries

Fleet of boats, each has to decide how much to catch

50000

100000

150000

200000

250000

300000

350000

0 100 200 300 400 500 600 700 800 900 1000

Po
lic

y
va

lu
e

Training episode

Local SARSA
Global SARSA

Local Q

Stuart Russell, UC Berkeley 36

Fisheries results contd.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70 80 90

Fi
sh

 p
op

ul
at

io
n

Season

Local SARSA
Local Q

Stuart Russell, UC Berkeley 37

Summary

MDPs are models of sequential decision making situations

Dynamic programming (VI, PI, QI) finds exact solutions for small MDPs

Reinforcement learning finds approximate solutions for large MDPs

Work directly from experience in the environment, no initial model

Q-learning, SARSA, policy search are completely model-free

Function approximation (e.g., linear combination of features) helps RL scale
up to very large MDPs

Exploration is required for convergence to optimal solutions

Agents can be decomposed into modules and still be globally optimal

Stuart Russell, UC Berkeley 38

