Complex decisions

CHAPTER 17, SECTIONS 1-3
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Sequential decision problems

Search

explicit actions
and subgoals

uncertainty
and utility

Markov decision

Planning problems (MDPs) =~

\

explicit actions

uncertainty and subgoals uncertain | (belief states)
and utility sensing |
/
Decision-theoretic Partially observable 7/
planning MDPs (POMDPs)
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Example MDP

0.8

1 START 0.1 0.1

Model M = P(jli,a) = probability that doing a in ¢ leads to j

Each state has a reward R(7)
= -0.04 (small penalty) for nonterminal states
= %1 for terminal states
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Solving MDPs

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal policy
I.e., best action for every possible state
(because can't predict where one will end up)

Optimal policy and state values for the given R(7):

3 — — — +1 3 0.812 0.868 0.912 +1

y) » » —1 2 0.762 0.660 -1
1 » - - - 1 0.705 | 0.655 0.611 | 0.388
1 2 3 4 1 2 3 4
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Utility

In sequential decision problems, preferences are expressed
between sequences of states

Usually use an additive utility function:
U([s1,52,83,...,8,]) = R(s1) + R(s2) + R(s3) + - + R(s,)
(cf. path cost in search problems)

Utility of a state (a.k.a. its value) is defined to be
U(s;) = expected sum of rewards until termination
assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
choose the action such that the expected utility of the immediate suc-
cessors is highest.
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Bellman equation

Definition of utility of states leads to a simple relationship among utilities

of neighboring states:

expected sum of rewards
= current reward

+ expected sum of rewards after taking best action

Bellman equation (1957):
U(i) = R(i) + max ;U (j) M

)
U(1,1) = —0.04

+ max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1, 1),
0.9U(1,1) + 0.1U(1, 2)
0.9U(1,1) +0.1U(2,1)
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)}

up

left
down
right

One equation per state = n nonlinear equations in n unknowns
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Value iteration algorithm

|dea: S

tart with arbitrary utility values

Update to make them locally consistent with Bellman eqn.

Everywhere locally consistent = global optimality

repeat until “no change”

U(i) < R(i) + max 23U (j) M,
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Policy iteration (Howard, 1960)

|dea: search for optimal policy and utility values simultaneously

Algorithm:
7 <— an arbitrary initial policy
repeat until no change in 7
compute utilities given 7
update 7 as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed 7
U(i) = R(i) + S;U()M"  for all i

i.e., n simultaneous linear equations in n unknowns, solve in O(n?)
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What if I live forever? (digression)

Using the additive definition of utilities, U(7)s are infinite!
Moreover, value iteration fails to terminate
How should we compare two infinite lifetimes?

1) Discounting: future rewards are discounted at rate v <1
Ullso, - 5x]) = Sy R(st)

Maximum utility bounded above by R.,../(1 — )
Smaller v = shorter horizon

2) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’'s daily scheme cruising for passengers
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