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Outline

¢ Search vs. planning
& STRIPS operators

¢ Partial-order planning
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Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

Talk to Parrot

Go To Pet Store Buy a Dog
Go To School Go To Class
Start Go To Supermarket N Buy Tuna Fish
/ Go To Sleep Buy Arugula

Read A Book Buy Milk

Y

Sit in Chair Sit Some More

Etc. Etc. ... o \ Read A Book

After-the-fact heuristic/goal test inadequate
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Search vs.

planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search

Planning

States | Lisp data structures
Actions | Lisp code

Goal Lisp code

Plan Sequence from .S
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Logical sentences
Preconditions/outcomes
Logical sentence (conjunction)
Constraints on actions
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Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
PlanResult([], s) = s

PlanResult([a|p], s) = PlanResult(p, Result(a, s))
Initial state At(Home, Sy) A ~Have(Milk, Sy) A ...

Actions as Successor State axioms
Have(Milk, Result(a, s)) <
[((a = Buy(Milk) N At(Supermarket, s))V (Have(Milk,s)Na # .. .)]

Query
s = PlanResult(p, So) N At(Home, s) N Have(Milk,s) A ...

Solution

p = |Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), .

Principal difficulty: unconstrained branching, hard to apply heuristics
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STRIPS operators

Tidily arranged actions descriptions, restricted language

AcTION: Buy(x)
PRECONDITION: At(p), Sells(p, x)
ErrEcT: Have(z)

[Note: this abstracts away many important details!]

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

At(p) Sells(p,x)

Buy(x)

Have(x)
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State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:

add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another

“sradually move from incomplete /vague plans to complete, correct plans
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Partially ordered plans

Start

Start Le
Sock
LeftShoeOn, ¢ RightShoeOn _.mzmwoxos
Left
Finish Shoe

LeftShoeOn, RightShoeOn

/

RightSockOn

N\

Right
Sock

k

Right
Shoe

Finish

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step

and no possibly intervening step undoes it
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POP algorithm sketch

function POP (initial, goal, operators) returns plan

plan + MAKE-MINIMAL-PLAN(#nitial, goal)

loop do
if SoLuTIiON?( plan) then return plan
Sheeds €< SELECT-SUBGOAL( plan)
CHOOSE-OPERATOR( plan, operators, Speed, ¢)
RESOLVE-THREATS( plan)

end

function SELECT-SUBGOAL( plan) returns S,..q, ¢

pick a plan step Sy..q from STEPS( plan)
with a precondition ¢ that has not been achieved
return S,..q, ¢
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POP algorithm contd.

procedure CHOOSE-OPERATOR(plan, operators, Syeed, ¢)

choose a step S, from operators or STEPS( plan) that has ¢ as an effect
if there is no such step then fail
add the causal link Sqqq —%3 Speeq to LINKS( plan)
add the ordering constraint S,qq < Speed t0 ORDERINGS( plan)
if S,qq 1s a newly added step from operators then
add Sgqq to STEPS( plan)
add Start < S,4q < Finish to ORDERINGS( plan)

procedure RESOLVE-THREATS(plan)

for each S;j,cq that threatens a link S; ¢y S; in LINKS( plan) do
choose either
Demotion: Add Sippeqt < S; to ORDERINGS( plan)
Promotion: Add S; < Siprear to ORDERINGS( plan)
if not CONSISTENT( plan) then fail
end

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals
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Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(HW S):

—_ -

a ~
¥ \ DEMOTION Demotion: put before Go(HW S)
Go(HWS) _
_
\
N
=t Go(Home)
\\ At(Home)
y \
At(HWS . .
{HWS) | Promotion: put after Buy(Drill)
Buy(Drill) |
_ /
~__ 7
PROMOTION AttHlme)
Finish
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Example: Blocks world

"Sussman anomaly" problem E
c B
N C

I
Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0n(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y)

+ several inequality constraints
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Example contd.

START

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

On(A,B) 0On(B,C)

FINISH
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Example contd.

START >

> ] o

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

\\

O_va On(B,z) O_@

PutOn(B,C)

Vg
On(A,B) 0On(B,C)

FINISH

o] =] >
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Example contd.

START

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

\\

O_va On(B,z) O_@

Cl(A) os&_u o_Amv

-
\\

PutOn(B,C)

Puton(A,B) =~

\

\ #
On(A,B) 0On(B,C)

FINISH
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PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)
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Example contd.

C
START 1l
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)
U_Emui?_muv_
B
/ e— | — | mvooq%mw m:Amqv
on(C,z) CI(C) Puton(B,C)
PUtONTable(C) N _ b A
AN - PO TARISO)
~ utOnTable
A M /M/l O_.Ava O:Mw_NV O_MQ
CI(A) On(A,z) CI(B) ~~us
_—| PutOn(B,C)
Puton(A,B) ==~
o:.u?mv osﬁm‘ov m
FINISH C|
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