CHAPTER 7

FIRST-ORDER LOGIC
Outline

- Wumpus world in FOL
- Fun with sentences
- Syntax and semantics of FOL
\[\exists A \equiv \text{Equality} \]
\[\equiv \ \left\langle \land \land x, y, a, b \right\rangle \]
\[\left\langle \land \land \text{Variables} \right\rangle \]
\[\left\langle \land \land \text{Functions} \right\rangle \]
\[\left\langle \land \land \text{Predicates} \right\rangle \]
\[\left\langle \land \land \text{Constants} \right\rangle \]

Syntax of FOL: Basic Elements
\[
\begin{align*}
(\text{King of France}) & < (\text{Father of Richard}) \\
E.G., \text{ Brother (King John, Richard, The Lionheart)} & \\
\text{or constant or variable} & \\
\text{Term} = \text{function} (\text{term}_1, \ldots, \text{term}_n) \\
\text{or term}_1 = \text{term}_2 \\
\text{Atomic sentence} = \text{predicate} (\text{term}_1, \ldots, \text{term}_n) \\
\end{align*}
\]
Complex sentences

Complex sentences are made from atomic sentences using connectives

\[\neg S, \ S_1 \land S_2, \ S_1 \lor S_2, \ S_1 \Rightarrow S_2, \ S_1 \Leftrightarrow S_2 \]

E.g. \(\text{Sibling}(\text{King John}, \text{Richard}) \Rightarrow \text{Sibling}(\text{Richard}, \text{King John}) \)
\[> (1, 2) \lor \leq (1, 2) \]
\[> (1, 2) \land \neg > (1, 2) \]
An atomic sentence \(\text{predicate}(\text{term}_1, \ldots, \text{term}_n) \) is true if the objects referred to by \(\text{term}_1, \ldots, \text{term}_n \) are in the relation referred to by \(\text{predicate} \).

Interpretation specifies referents for constants, symbols, objects, relations, and function symbols.

A model contains objects and relations among them.

Sentences are true with respect to a model and an interpretation.

Truth in first-order logic
relations: sets of tuples of objects

\{ \ldots \} \\

functional relations: all tuples of objects + "value" object

\{ \ldots \} \\

relations: sets of tuples of objects

\{ \ldots \}
Everyone is at Berkeley and everyone is smart:

\[
A \forall x (A(t,x, \text{Berkeley}) \land \text{smart}(x))
\]

Typically, is the main connective with \(\forall\).

\[
\ldots \forall
\]

\[
A(t, \text{Berkeley}, \text{Berkeley}) \land \text{smart}(\text{Richard}) \land \text{smart}(\text{Richard}) \land \text{smart}(\text{Richard}) \land \text{smart}(\text{Richard})
\]

is equivalent to the conjunction of instantiations of \(P\):

\[
A \forall x (A(t, x, \text{Berkeley}) \land \text{smart}(x))
\]

Everyone at Berkeley is smart:

\[
A(t, \text{sentence}) \land \text{variables}
\]

universal quantification
Is true if there is anyone who is not at Stanford:

\[
\exists x \in \text{At}(x, \text{Stanford}) \quad \iff \quad \text{Smart}(x)
\]

Common mistake: using as the main connective with \(\exists\).

Typically, \(\forall\) is the main connective with \(\exists\).

\[
\ldots \land \text{At}(\text{Richard}, \text{Stanford}) \land \text{Smart}(\text{Richard})
\]

\[
\text{At}(\text{John}, \text{Stanford}) \land \text{Smart}(\text{John})
\]

is equivalent to the disjunction of instantiations of \(\exists x \in \text{At}(x, \text{Stanford}) \land \text{Smart}(x)\).

Someone at Stanford is smart:

\[
\exists \text{sentence} \langle \text{variables} \rangle
\]

Existential quantification
Quantifier duality: each can be expressed using the other

Everyone in the world is loved by at least one person

$(\forall x \in \text{People}(x), \exists y \in \text{People}(y))$

There is a person who loves everyone in the world

$(\exists y \in \text{People}(y), \forall x \in \text{People}(x))$

$x \in \text{People}(x)$ is not the same as $x \in \text{People}(x)$

$(\exists y \in \text{People}(y), x \in \text{People}(x)$ is the same as $y \in \text{People}(y)$

$(\exists y \in \text{People}(y), x \in \text{People}(x)$ is the same as $x \in \text{People}(x)$

Properties of quantifiers
A first cousin is a child of a parent’s sibling.

One’s mother is one’s female parent.

“Sibling” is reflexive.

Brothers are siblings.

Fun with sentences.
\[\forall (d', p', \text{parent}(d') \land \text{sibling}(d')) \land \exists p', p \in [p'] \Rightarrow (\forall x, y. \text{Question}(x, y) \land \text{parent}(x) \land \text{parent}(y) \Rightarrow \text{made}(x, y) \land \text{parent}(x, y)) \land \forall x, y. \text{parent}(x, y) \Rightarrow (\text{mother}(x, y) \land \text{parent}(x, y)) \land (\text{sibling}(x, y) \land \text{parent}(x, y)) \land (\text{brother}(x, y) \land \text{parent}(x, y)) \]
\[((\text{parent}^f, f) \land (\text{parent}^{m, x} \land (x, f) \land \text{parent}^m) \land (f = m) \land f, m \in x \lor (x = x)) \] \[\iff (x, y \in \text{siblings}, x, y) \land \text{A x, y} \text{ siblings in terms of parent:} \]

E.g. definition of (full) siblings in terms of parent:

\[\exists 2 = 2 \text{ is valid} \]

E.g. 1 = 2 and \(x = (x) \times (x) \times \) are satisfiable

E.g. 1 = 2 and \(x \quad \) and \(x \quad \) refer to the same object

it and only if \(\text{term} \quad \) and \(\text{term} \quad \) refer to the same object

\[\text{term} \quad \text{term} \quad \text{true under a given interpretation} \]

Equality
ASK(KB, S) returns some/all o such that KB |= S

\[S \circ = \text{Simulate}(H \\
\{x/x, y/y \} = o \\
S = \text{Simulate}(x, y) \]

\^ denotes the result of plugging o into S.

Given a sentence S and a substitution o,

\text{substitution}(binding \ list) \rightarrow \{a/\text{Shoot} \}

Answer: yes.

L.e., does the KB entail any particular actions at t = 5?

\(\text{ASK}(KB, \text{Action}(a, 5)) \)

\(\text{TTL}(KB, \text{Precept}(\text{Small, breeze, None}, 5)) \)

Suppose a wumpus-world agent is using an FOL KB and perceives a small and a breeze (but no glitter) at t = 5:

Interacting with FOL KBS
Keeping track of changes is essential.

\[\text{Holding}(\text{Gold}, t) \iff \text{Action}(\text{Grab}, t) \]

At \(\text{ActGold}(t) \land \neg \text{Holding}(\text{Gold}, t) \)

Reflex with internal state: do we have the gold already?

\[\text{Reflex: ActGold}(t) \iff \text{Action}(\text{Grab}, t) \]

At \(q, l \rightarrow \text{Perception}(\text{Scent}, q, l) \)

At \(q, g \rightarrow \text{Perception}(\text{Smell}, q, g) \)

"Perception" knowledge base for the Wumpus world.
\[
[(y \land \text{Breezy}(y)) \lor (x \land \text{Pit}(x, y) \land \text{Adjacent}(x, y))] \iff (\forall y \text{ Breezy}(y)),
\]

Definition for the Breezy predicate:

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy.

\[
(\forall x, y \text{ Breezy}(y) \land \text{Adjacent}(x, y)) \iff (\forall x \text{ Pit}(x, y) \lor \text{Adjacent}(x, y)),
\]

Causal rule—infer effect from cause.

\[
(\forall y \text{ Breezy}(y) \land \text{Adjacent}(x, y) \land \text{Pit}(x, y)) \iff (\forall y \text{ Breezy}(y)),
\]

Diagnostic rule—infer cause from effect.

Squares are breezy near a pit:

\[
(\forall x \text{ Pit}(x) \land \text{Agent}(x)) \iff (\forall t \text{ Breezy}(t)),
\]

\[
(\forall t \text{ Agent}(t), \text{Pit}(t) \land \text{Smelly}(t)) \iff (\forall t \text{ Smelly}(t)),
\]

Properties of locations:

\[
\text{Breezing hidden properties}
\]
Situations are connected by the \textit{Result} function. Result \((a, s)\) is the situation that results from doing \(a\) in \(s\).

Add a situation argument to each non-external predicate.

\textit{E.g.}, \(\text{Hold}(\text{gold}, \text{now})\) rather than just \(\text{Hold}(\text{gold})\). Facts hold in situations, rather than externally.

\textbf{Keeping track of change}
... what about the dust on the gold, wear and tear on gloves,

Ramiﬁcation problem: real actions have many secondary consequences—

... caveats—what if gold is slippery or nailed down or ...

Qualiﬁcation problem: true descriptions of real actions require endless

\[(b) \text{ inference—avoid repeated "copy-overs" to keep track of state} \]

\[(a) \text{ representation—avoid frame axioms} \]

Frame problem: find an elegant way to handle non-change

\[(\text{HaveAction RESULT (Crab, s)}) \iff (\text{HaveAction \{ s \}) \text{ result\{Crab, s\}}) \]

"Frame" axiom—describe non-changes due to action

\[(\text{HaveAction RESULT (Crab, s)}) \iff (\text{ActGold \{ s \}) \text{ result\{Crab, s\}}) \]

"Effect" axiom—describe changes due to action

Describing actions
\[[(\text{Holding}(\text{Gold}, s) \lor \text{Release}) \wedge \\
(\text{Grad} \lor \text{AIGold}(s)) \Rightarrow ((\text{Grad}, \text{Result}(a,s)) \wedge \text{A's Holding}(\text{Gold}, \text{Result}(a,s)))]\\
\Rightarrow (\text{For holding the Gold:})\\
\]

\[p \text{ true already and no action made} \quad \wedge \quad \\
\left[p \text{ true afterwards, an action made} \right] \quad \Rightarrow \quad \text{p true afterwards}
\]

Each axiom is "about a predicate (not an action per se):"

Successor-state axioms solve the representational frame problem

Describing actions II
that \(S_0 \) is the only situation described in the KB. This assumes that the agent is interested in plans starting at \(S_0 \) and

i.e. 'Go forward and then grab the gold'

\[
\{ \text{Result(Grab, Result(Forward, S_0))} \}
\]

Answer: \(s' \in \text{Result(Grab, Result(Forward, S_0))} \)

i.e. 'In what situation will I be holding the gold?'

\[
\text{Query: ASK} \{ \text{KB} \models \exists s' \in \text{Result(Grab, Result(Forward, S_0))} \}
\]

Initial condition in KB: \(\forall t' [t', T \models \text{Gold}(T, t')] \) \(\forall t' [t', T \models \text{Agent}(T, t')] \)
Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner.

Given a plan \(P \) and a state \(s \), the \(PlanResult(p, s) \) is the result of executing \(P \) in \(s \). The \(PlanResult(p, s) \) is the result of executing \(P \) in \(s \).

Represent plans as action sequences [\(a_1, a_2, \ldots, a_n \)]

Making plans: a better way
can formulate planning as inference on a situation calculus KB

- conventions for describing actions and change in FOL

Situational calculus:

- increased expressive power: sufficient to define wumpus world

- syntax: constants, functions, predicates, equality, quantifiers

- objects and relations are semantic primitives

First-order logic:

Summary