What could we do about intelligence explosion?
Intelligence as “cognitive skills”

SEARCH

TRANSFER

PLANNING

OPTIMIZATION

PERCEPTION

CONTRAINT-SAT

INFEERENCE

BOUNDED REASONING

LOGIC + PROOF
Self-improvement

design of systems with new cognitive skills
Intelligence explosion

fast, repeated self-improvement to super-intelligence
Catastrophic accident pathway:

1. super-powerful inference & planning
2. accidental misuse
3. convergent instrumental goals (self-improvement, resource acquisition, self-preservation, etc.)
4. global side-effects (infrastructure proliferation, threat neutralization)
Over many uses, accidental catastrophe via misuse becomes likely
Supposing this, what could we do?

Option A: Future solutions
1: Safety engineering

Reduce risk of catastrophic misuse to acceptable levels
2: Regulation of (some kinds of) AI

Centralize, control, or otherwise regulate research or use of some kinds of AI
3: Radical solutions

E.g.:

- Extreme regulation (surveillance)
- Controlled, humane-valued explosion
Plan out & enact complete solutions: probably too hard

We lack sufficient information
• ...about intelligence explosion
• ...about future AI
• ...about future society
Option B: Act incrementally to improve future people’s chances of avoiding accidental misuse
How well-informed are future people about the risks?
How coordinated are future people w.r.t. this issue?
What technical safety knowledge do future people have?

Mostly scientifically addressable! (with a dash of technological risk management policy)
Digression: climate science

Milestones in Climate Science

- Fourier describes atmosphere's contribution to planetary temperature
- Tyndall describes CO$_2$'s blocking of infrared
- Arrhenius calculates warming from doubling of CO$_2$
- Callendar proposes that warming is occurring
- Angstrom counters CO$_2$ warming hypothesis proposing that CO$_2$ absorption bands are saturated by H$_2$O
- Hulburc calculates 4°C warming from doubling of CO$_2$ with H$_2$O feedback, and refutes Angstrom
- CO$_2$ sources identified; Models describe Earth systems, feedbacks, carbon cycle and climate

Source: All events are from Spencer Weart's The Discovery of Global Warming unless noted otherwise: www.aip.org/history/climate/timeline.htm.
* Pierrehumbert, Principles of Planetary Climate
** Nature, 15 March 2001

Satellite observation of enhanced greenhouse effect**
Lessons

- “Near-sighted”, i.e. non-solution-proposing, work on important problems can be valuable

- Part-time academic work can be critical, especially in the early life of a field

- Simplistic models have long-term value

- The process may take tens to hundreds of years
Intelligence explosion & safety knowledge

1. intelligence explosion
2. powerful inference & planning
3. convergent instrumental goals
4. global side-effects
5. control
1. intelligence explosion:
 • more concrete mechanisms;
 • better models: what resources are how important?

 “more research needs to be done to better define ‘intelligence explosion,’
 and also to better formulate different classes of such accelerating
 intelligences.” *

2. powerful inference & planning:
 • how good is possible with how much resources?
 • what resources are bottlenecks?

*Interim Report, AAAI Presidential Panel on Long-Term AI Futures, 2009
3. convergent instrumental goals:
 • better models of how these arise;
 • could these be mitigated or avoided somehow?

4. global side-effects:
 • can ClGs be rendered non-global?
 • what pathways to harm would be most promising?
 how thoroughly can we block them?
5. control:
 - how reliably can explosions be predicted, prevented, or contained in early stages?
 - how predictable and “stable” could an intelligence explosion be?
 - could we encode humane values, means to learn humane values, or “domesticity” values?
 - what kinds of explosion-resistant systems could be built?

“additional research... on methods for understanding and verifying the range of behaviors of complex computational systems to minimize unexpected outcomes”*

*Interim Report, AAAI Presidential Panel on Long-Term AI Futures, 2009
Summary

Act incrementally to improve future people’s chances of avoiding accidental misuse...

...by improving scientific knowledge of intelligence explosion, powerful inference & planning, global side-effects, and control...

...so that future people will be well-informed about risks, able & willing to coordinate, and will have the technical knowledge necessary.