
Inverse Reward Design

Dylan Hadfield-Menell Smitha Milli Pieter Abbeel∗ Stuart Russell Anca Dragan
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94709

{dhm, smilli, pabbeel, russell, anca}@cs.berkeley.edu

Abstract

Autonomous agents optimize the reward function we give them. What they don’t
know is how hard it is for us to design a reward function that actually captures
what we want. When designing the reward, we might think of some specific
training scenarios, and make sure that the reward will lead to the right behavior
in those scenarios. Inevitably, agents encounter new scenarios (e.g., new types of
terrain) where optimizing that same reward may lead to undesired behavior. Our
insight is that reward functions are merely observations about what the designer
actually wants, and that they should be interpreted in the context in which they were
designed. We introduce inverse reward design (IRD) as the problem of inferring the
true objective based on the designed reward and the training MDP. We introduce
approximate methods for solving IRD problems, and use their solution to plan
risk-averse behavior in test MDPs. Empirical results suggest that this approach can
help alleviate negative side effects of misspecified reward functions and mitigate
reward hacking.

1 Introduction

Robots2 are becoming more capable of optimizing their reward functions. But along with that comes
the burden of making sure we specify these reward functions correctly. Unfortunately, this is a
notoriously difficult task. Consider the example from Figure 1. Alice, an AI engineer, wants to build
a robot, we’ll call it Rob, for mobile navigation. She wants it to reliably navigate to a target location
and expects it to primarily encounter grass lawns and dirt pathways. She trains a perception system
to identify each of these terrain types and then uses this to define a reward function that incentivizes
moving towards the target quickly, avoiding grass where possible. When Rob is deployed into the
world, it encounters a novel terrain type; for dramatic effect, we’ll suppose that it is lava. The terrain
prediction goes haywire on this out-of-distribution input and generates a meaningless classification
which, in turn, produces an arbitrary reward evaluation. As a result, Rob might then drive to its
demise. This failure occurs because the reward function Alice specified implicitly through the terrain
predictors, which ends up outputting arbitrary values for lava, is different from the one Alice intended,
which would actually penalize traversing lava.

In the terminology from Amodei et al. (2016), this is a negative side effect of a misspecified reward —
a failure mode of reward design where leaving out important aspects leads to poor behavior. Examples
date back to King Midas, who wished that everything he touched turn to gold, leaving out that he
didn’t mean his food or family. Another failure mode is reward hacking, which happens when, e.g., a
vacuum cleaner ejects collected dust so that it can collect even more (Russell & Norvig, 2010), or a
racing boat in a game loops in place to collect points instead of actually winning the race (Amodei
& Clark, 2016). Short of requiring that the reward designer anticipate and penalize all possible
misbehavior in advance, how can we alleviate the impact of such reward misspecification?

∗OpenAI, International Computer Science Institute (ICSI)
2Throughout this paper, we will use robot to refer generically to any artificial agent.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

actual environment+
...

...

�1

�2

10

�100

true reward function intended environment

�1

�2

10
... 0

0

... 0

proxy reward function

Figure 1: An illustration of a negative side effect. Alice designs a reward function so that her robot navigates
to the pot of gold and prefers dirt paths. She does not consider that her robot might encounter lava in the real
world and leaves that out of her reward specification. The robot maximizing this proxy reward function drives
through the lava to its demise. In this work, we formalize the (Bayesian) inverse reward design (IRD) problem
as the problem of inferring (a distribution on) the true reward function from the proxy. We show that IRD can
help mitigate unintended consequences from misspecified reward functions like negative side effects and reward
hacking.

We leverage a key insight: that the designed reward function should merely be an observation about
the intended reward, rather than the definition; and should be interpreted in the context in which it
was designed. First, a robot should have uncertainty about its reward function, instead of treating
it as fixed. This enables it to, e.g., be risk-averse when planning in scenarios where it is not clear
what the right answer is, or to ask for help. Being uncertain about the true reward, however, is only
half the battle. To be effective, a robot must acquire the right kind of uncertainty, i.e. know what it
knows and what it doesn’t. We propose that the ‘correct’ shape of this uncertainty depends on the
environment for which the reward was designed.

In Alice’s case, the situations where she tested Rob’s learning behavior did not contain lava. Thus, the
lava-avoiding reward would have produced the same behavior as Alice’s designed reward function in
the (lava-free) environments that Alice considered. A robot that knows the settings it was evaluated
in should also know that, even though the designer specified a lava-agnostic reward, they might have
actually meant the lava-avoiding reward. Two reward functions that would produce similar behavior
in the training environment should be treated as equally likely, regardless of which one the designer
actually specified. We formalize this in a probabilistic model that relates the proxy (designed) reward
to the true reward via the following assumption:

Assumption 1. Proxy reward functions are likely to the extent that they lead to high true utility
behavior in the training environment.

Formally, we assume that the observed proxy reward function is the approximate solution to a reward
design problem (Singh et al., 2010). Extracting the true reward is the inverse reward design problem.

The idea of using human behavior as observations about the reward function is far from new. Inverse
reinforcement learning uses human demonstrations (Ng & Russell, 2000; Ziebart et al., 2008), shared
autonomy uses human operator control signals (Javdani et al., 2015), preference-based reward learning
uses answers to comparison queries (Jain et al., 2015), and even what the human wants (Hadfield-
Menell et al., 2017). We observe that, even when the human behavior is to actually write down a
reward function, this should still be treated as an observation, demanding its own observation model.

Our paper makes three contributions. First, we define the inverse reward design (IRD) problem as the
problem of inferring the true reward function given a proxy reward function, an intended decision
problem (e.g., an MDP), and a set of possible reward functions. Second, we propose a solution to IRD
and justify how an intuitive algorithm which treats the proxy reward as a set of expert demonstrations
can serve as an effective approximation. Third, we show to that this inference approach, combined
with risk-averse planning, leads to algorithms that are robust to misspecified rewards, alleviating
both negative side effects as well as reward hacking. We build a system that ‘knows-what-it-knows’
about reward evaluations that automatically detects and avoids distributional shift in situations with
high-dimensional features. Our approach substantially outperforms the baseline of literal reward
interpretation.

2

2 Inverse Reward Design

Definition 1. (Markov Decision Process Puterman (2009)) A (finite-horizon) Markov decision
process (MDP), M , is a tuple M = 〈S,A, T, r,H〉. S is a set of states. A is a set of actions. T is
a probability distribution over the next state, given the previous state and action. We write this as
T (st+1|st, a). r is a reward function that maps states to rewards r : S 7→ R. H ∈ Z+ is the finite
planning horizon for the agent.

A solution to M is a policy: a mapping from the current timestep and state to a distribution over
actions. The optimal policy maximizes the expected sum of rewards. We will use ξ to represent
trajectories. In this work, we consider reward functions that are linear combinations of feature vectors
φ(ξ). Thus, the reward for a trajectory, given weights w, is r(ξ; w) = w>φ(ξ).

The MDP formalism defines optimal behavior, given a reward function. However, it provides no
information about where this reward function comes from (Singh et al., 2010). We refer to an MDP
without rewards as a world model. In practice, a system designer needs to select a reward function
that encapsulates the intended behavior. This process is reward engineering or reward design:
Definition 2. (Reward Design Problem (Singh et al., 2010)) A reward design problem (RDP) is

defined as a tuple P = 〈r∗,
∼
M,

∼
R, π(·|∼r,

∼
M)〉. r∗ is the true reward function.

∼
M is a world model.

∼
R is a set of proxy reward functions. π(·|∼r,

∼
M) is an agent model, that defines a distribution on

trajectories given a (proxy) reward function and a world model.

In an RDP, the designer believes that an agent, represented by the policy π(·|∼r,
∼
M), will be deployed

in
∼
M . She must specify a proxy reward function

∼
r ∈

∼
R for the agent. Her goal is to specify

∼
r so that

π(·|∼r,
∼
M) obtains high reward according to the true reward function r∗. We let

∼
w represent weights

for the proxy reward function and w∗ represent weights for the true reward function.

In this work, our motivation is that system designers are fallible, so we should not expect that they
perfectly solve the reward design problem. Instead we consider the case where the system designer
is approximately optimal at solving a known RDP, which is distinct from the MDP that the robot
currently finds itself in. By inverting the reward design process to infer (a distribution on) the true
reward function r∗, the robot can understand where its reward evaluations have high variance and
plan to avoid those states. We refer to this inference problem as the inverse reward design problem:
Definition 3. (Inverse Reward Design) The inverse reward design (IRD) problem is defined by a

tuple 〈R,
∼
M,

∼
R, π(·|∼r,

∼
M),

∼
r〉. R is a space of possible reward functions.

∼
M is a world model.

〈−,
∼
M,

∼
R, π(·|∼r,

∼
M)〉 partially specifies an RDP P , with an unobserved reward function r∗ ∈ R.

∼
r ∈

∼
R is the observed proxy reward that is an (approximate) solution to P .

In solving an IRD problem, the goal is to recover r∗. We will explore Bayesian approaches to IRD, so

we will assume a prior distribution on r∗ and infer a posterior distribution on r∗ given
∼
r P (r∗|∼r,

∼
M).

3 Related Work

Optimal reward design. Singh et al. (2010) formalize and study the problem of designing optimal
rewards. They consider a designer faced with a distribution of environments, a class of reward
functions to give to an agent, and a fitness function. They observe that, in the case of bounded agents,
it may be optimal to select a proxy reward that is distinct from the fitness function. Sorg et al. (2010)
and subsequent work has studied the computational problem of selecting an optimal proxy reward.

In our work, we consider an alternative situation where the system designer is the bounded agent. In
this case, the proxy reward function is distinct from the fitness function – the true utility function
in our terminology – because system designers can make mistakes. IRD formalizes the problem
of determining a true utility function given an observed proxy reward function. This enables us to
design agents that are robust to misspecifications in their reward function.

Inverse reinforcement learning. In inverse reinforcement learning (IRL) (Ng & Russell, 2000;
Ziebart et al., 2008; Evans et al., 2016; Syed & Schapire, 2007) the agent observes demonstrations of
(approximately) optimal behavior and infers the reward function being optimized. IRD is a similar

3

problem, as both approaches infer an unobserved reward function. The difference is in the observation:
IRL observes behavior, while IRD directly observes a reward function. Key to IRD is assuming that
this observed reward incentivizes behavior that is approximately optimal with respect to the true
reward. In Section 4.2, we show how ideas from IRL can be used to approximate IRD. Ultimately,
we consider both IRD and IRL to be complementary strategies for value alignment (Hadfield-Menell
et al., 2016): approaches that allow designers or users to communicate preferences or goals.

Pragmatics. The pragmatic interpretation of language is the interpretation of a phrase or utterance
in the context of alternatives (Grice, 1975). For example, the utterance “some of the apples are red”
is often interpreted to mean that “not all of the apples are red” although this is not literally implied.
This is because, in context, we typically assume that a speaker who meant to say “all the apples are
red” would simply say so.

Recent models of pragmatic language interpretation use two levels of Bayesian reasoning (Frank
et al., 2009; Goodman & Lassiter, 2014). At the lowest level, there is a literal listener that interprets
language according to a shared literal definition of words or utterances. Then, a speaker selects
words in order to convey a particular meaning to the literal listener. To model pragmatic inference,
we consider the probable meaning of a given utterance from this speaker. We can think of IRD as
a model of pragmatic reward interpretation: the speaker in pragmatic interpretation of language is
directly analogous to the reward designer in IRD.

4 Approximating the Inference over True Rewards

We solve IRD problems by formalizing Assumption 1: the idea that proxy reward functions are
likely to the extent that they incentivize high utility behavior in the training MDP. This will give us a

probabilistic model for how
∼
w is generated from the true w∗ and the training MDP

∼
M . We will invert

this probability model to compute a distribution P (w = w∗|∼w,
∼
M) on the true utility function.

4.1 Observation Model

Recall that π(ξ|∼w,
∼
M) is the designer’s model of the probability that the robot will select trajectory

ξ, given proxy reward
∼
w. We will assume that π(ξ|∼w,

∼
M) is the maximum entropy trajectory

distribution from Ziebart et al. (2008), i.e. the designer models the robot as approximately optimal:

π(ξ|∼w,
∼
M) ∝ exp(w> φ(ξ)). An optimal designer chooses

∼
w to maximize expected true value, i.e.

E[w∗>φ(ξ)|ξ ∼ π(ξ|∼w,
∼
M)] is high. We model an approximately optimal designer:

P (
∼
w|w∗,

∼
M) ∝ exp

(
β E

[
w∗>φ(ξ)|ξ ∼ π(ξ|∼w,

∼
M)

])
(1)

with β controlling how close to optimal we assume the person to be. This is now a formal statement of

Assumption 1. w∗ can be pulled out of the expectation, so we let
∼
φ = E[φ(ξ)|ξ ∼ π(ξ|∼w,

∼
M)]. Our

goal is to invert (1) and sample from (or otherwise estimate) P (w∗|∼w,
∼
M) ∝ P (

∼
w|w∗,

∼
M)P (w∗).

The primary difficulty this entails is that we need to know the normalized probability P (
∼
w|w∗,

∼
M).

This depends on its normalizing constant,
∼
Z(w), which integrates over possible proxy rewards.

P (w = w∗|∼w,
∼
M) ∝

exp

(
βw>

∼
φ

)
∼
Z(w)

P (w),
∼
Z(w) =

∫
∼
w

exp

(
βw>

∼
φ

)
d
∼
w. (2)

4.2 Efficient approximations to the IRD posterior

To compute P (w = w∗|∼w,
∼
M), we must compute

∼
Z, which is intractable if

∼
w lies in an infinite or

large finite set. Notice that computing the value of the integrand for
∼
Z is highly non-trivial as it

involves solving a planning problem. This is an example of what is referred to as a doubly-intractable
likelihood (Murray et al., 2006). We consider two methods to approximate this normalizing constant.

4

Figure 2: An example from the Lavaland domain. Left: The training MDP where the designer specifies a proxy
reward function. This incentivizes movement toward targets (yellow) while preferring dirt (brown) to grass
(green), and generates the gray trajectory. Middle: The testing MDP has lava (red). The proxy does not penalize
lava, so optimizing it makes the agent go straight through (gray). This is a negative side effect, which the IRD
agent avoids (blue): it treats the proxy as an observation in the context of the training MDP, which makes it
realize that it cannot trust the (implicit) weight on lava. Right: The testing MDP has cells in which two sensor
indicators no longer correlate: they look like grass to one sensor but target to the other. The proxy puts weight
on the first, so the literal agent goes to these cells (gray). The IRD agent knows that it can’t trust the distinction
and goes to the target on which both sensors agree (blue).
Sample to approximate the normalizing constant. This approach, inspired by methods in ap-
proximate Bayesian computation (Sunnåker et al., 2013), samples a finite set of weights {wi} to
approximate the integral in Equation 2. We found empirically that it helped to include the candidate
sample w in the sum. This leads to the normalizing constant

Ẑ(w) = w>φw +

N−1∑
i=0

exp
(
βw>φi

)
. (3)

Where φi and φw are the vector of feature counts realized optimizing wi and w respectively.

Bayesian inverse reinforcement learning. During inference, the normalizing constant serves a
calibration purpose: it computes how good the behavior produced by all proxy rewards in that
MDP would be with respect to the true reward. Reward functions which increase the reward for all
trajectories are not preferred in the inference. This creates an invariance to linear shifts in the feature
encoding. If we were to change the MDP by shifting features by some vector φ0, φ← φ+ φ0, the
posterior over w would remain the same.

We can achieve a similar calibration and maintain the same property by directly integrating over the
possible trajectories in the MDP:

Z(w) =

(∫
ξ

exp(w>φ(ξ))dξ

)β
; P̂ (w|∼w) ∝

exp

(
βw>

∼
φ

)
Z(w)

(4)

Proposition 1. The posterior distribution that the IRD model induces on w∗ (i.e., Equation 2) and
the posterior distribution induced by IRL (i.e., Equation 4) are invariant to linear translations of the
features in the training MDP.

Proof. See supplementary material.

This choice of normalizing constant approximates the posterior to an IRD problem with the posterior
from maximum entropy IRL (Ziebart et al., 2008). The result has an intuitive interpretation. The
proxy

∼
w determines the average feature counts for a hypothetical dataset of expert demonstrations

and β determines the effective size of that dataset. The agent solves
∼
M with reward

∼
w and computes

the corresponding feature expectations
∼
φ. The agent then pretends like it got β demonstrations with

features counts
∼
φ, and runs IRL. The more the robot believes the human is good at reward design, the

more demonstrations it pretends to have gotten from the person. The fact that reducing the proxy to

behavior in
∼
M approximates IRD is not surprising: the main point of IRD is that the proxy reward is

merely a statement about what behavior is good in the training environment.

5

µk

⌃k �s

Is

Is 2 {grass, dirt, target, unk}
�s ⇠ N (µIs

,⌃Is
)

Figure 3: Our challenge domain with latent rewards. Each terrain type (grass, dirt, target, lava) induces a
different distribution over high-dimensional features: φs ∼ N (µIs ,ΣIs). The designer never builds an indicator
for lava, and yet the agent still needs to avoid it in the test MDPs.

5 Evaluation

5.1 Experimental Testbed

We evaluated our approaches in a model of the scenario from Figure 1 that we call Lavaland. Our
system designer, Alice, is programming a mobile robot, Rob. We model this as a gridworld with
movement in the four cardinal direction and four terrain types: target, grass, dirt, and lava. The true
objective for Rob, w∗, encodes that it should get to the target quickly, stay off the grass, and avoid
lava. Alice designs a proxy that performs well in a training MDP that does not contain lava. Then, we
measure Rob’s performance in a test MDP that does contain lava. Our results show that combining
IRD and risk-averse planning creates incentives for Rob to avoid unforeseen scenarios.

We experiment with four variations of this environment: two proof-of-concept conditions in which
the reward is misspecified, but the agent has direct access to feature indicators for the different
categories (i.e. conveniently having a feature for lava); and two challenge conditions, in which the
right features are latent; the reward designer does not build an indicator for lava, but by reasoning in
the raw observation space and then using risk-averse planning, the IRD agent still avoids lava.

5.1.1 Proof-of-Concept Domains

These domains contain feature indicators for the four categories: grass, dirt, target, and lava.

Side effects in Lavaland. Alice expects Rob to encounter 3 types of terrain: grass, dirt, and target,
and so she only considers the training MDP from Figure 2 (left). She provides a

∼
w to encode a

trade-off between path length and time spent on grass.

The training MDP contains no lava, but it is introduced when Rob is deployed. An agent that treats
the proxy reward literally might go on the lava in the test MDP. However, an agent that runs IRD will
know that it can’t trust the weight on the lava indicator, since all such weights would produce the
same behavior in the training MDP (Figure 2, middle).

Reward Hacking in Lavaland. Reward hacking refers generally to reward functions that can be
gamed or tricked. To model this within Lavaland, we use features that are correlated in the training
domain but are uncorrelated in the testing environment. There are 6 features: three from one sensor
and three from another sensor. In the training environment the features from both sensors are correct
indicators of the state’s terrain category (grass, dirt, target).

At test time, this correlation gets broken: lava looks like the target category to the second sensor, but
the grass category to the first sensor. This is akin to how in a racing game (Amodei & Clark, 2016),
winning and game points can be correlated at reward design time, but test environments might contain
loopholes for maximizing points without winning. We want agents to hedge their bets between
winning and points, or, in Lavaland, between the two sensors. An agent that treats the proxy reward
function literally might go to the these new cells if they are closer. In contrast, an agent that runs IRD
will know that a reward function with the same weights put on the first sensor is just as likely as the
proxy. Risk averse planning makes it go to the target for which both sensors agree (Figure 2, right).

6

Negative Side Effects Reward Hacking
0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

of
ξ

w
it

h
La

va

Proof-of-Concept

MaxEnt Z Sample Z Proxy

Raw Observations Classifier Features
0.0

0.2

0.4

0.6

0.8

Latent Rewards

Figure 4: The results of our experiment comparing our proposed method to a baseline that directly plans with the
proxy reward function. By solving an inverse reward design problem, we are able to create generic incentives to
avoid unseen or novel states.

5.1.2 Challenge Domain: Latent Rewards, No More Feature Indicators

The previous examples allow us to explore reward hacking and negative side effects in an isolated
experiment, but are unrealistic as they assume the existence of a feature indicator for unknown,
unplanned-for terrain. To investigate misspecified objectives in a more realistic setting, we shift to the
terrain type being latent, and inducing raw observations: we use a model where the terrain category
determines the mean and variance of a multivariate Gaussian distribution over observed features.
Figure 3 shows a depiction of this scenario. The designer has in mind a proxy reward on dirt, target,
and grass, but forgets that lava might exist. We consider two realistic ways through which a designer
might actually specify the proxy reward function, which is based on the terrain types that the robot
does not have access to: 1) directly on the raw observations — collect samples of the training terrain
types (dirt, grass, target) and train a (linear) reward predictor; or 2) classifier features — build a
classifier to classify terrain as dirt, grass, or target, and define a proxy on its output.

Note that this domain allows for both negative side effects and reward hacking. Negative side effects
can occur because the feature distribution for lava is different from the feature distribution for the
three safe categories, and the proxy reward is trained only on the three safe categories. Thus in the
testing MDP, the evaluation of the lava cells will be arbitrary so maximizing the proxy reward will
likely lead the agent into lava. Reward hacking occurs when features that are correlated for the safe
categories are uncorrelated for the lava category.

5.2 Experiment

Lavaland Parameters. We defined a distribution on map layouts with a log likelihood function
that prefers maps where neighboring grid cells are the same. We mixed this log likelihood with a
quadratic cost for deviating from a target ratio of grid cells to ensure similar levels of the lava feature
in the testing MDPs. Our training MDP is 70% dirt and 30% grass. Our testing MDP is 5% lava,
66.5% dirt, and 28.5% grass.

In the proof-of-concept experiments, we selected the proxy reward function uniformly at random.
For latent rewards, we picked a proxy reward function that evaluated to +1 for target, +.1 for dirt,
and −.2 for grass. To define a proxy on raw observations, we sampled 1000 examples of grass, dirt,
and target and did a linear regression. With classifier features, we simply used the target rewards as
the weights on the classified features. We used 50 dimensions for our feature vectors. We selected
trajectories via risk-averse trajectory optimization. Details of our planning method, and our approach
and rationale in selecting it can be found in the supplementary material.

IVs and DVs. We measured the fraction of runs that encountered a lava cell on the test MDP as our
dependent measure. This tells us the proportion of trajectories where the robot gets ’tricked’ by the
misspecified reward function; if a grid cell has never been seen then a conservative robot should plan
to avoid it. We manipulate two factors: literal-optimizer and Z-approx. literal-optimizer is true if
the robot interprets the proxy reward literally and false otherwise. Z-approx varies the approximation
technique used to compute the IRD posterior. It varies across the two levels described in Section 4.2:
sample to approximate the normalizing constant (Sample-Z) or use the normalizing constant from
maximum entropy IRL (MaxEnt-Z) (Ziebart et al., 2008).

7

Results. Figure 4 compares the approaches. On the left, we see that IRD alleviates negative side
effects (avoids the lava) and reward hacking (does not go as much on cells that look deceptively like
the target to one of the sensors). This is important, in that the same inference method generalizes
across different consequences of misspecified rewards. Figure 2 shows example behaviors.

In the more realistic latent reward setting, the IRD agent avoids the lava cells despite the designer
forgetting to penalize it, and despite not even having an indicator for it: because lava is latent in the
space, and so reward functions that would implicitly penalize lava are as likely as the one actually
specified, risk-averse planning avoids it.

We also see a distinction between raw observations and classifier features. The first essentially
matches the proof-of-concept results (note the different axes scales), while the latter is much more
difficult across all methods. The proxy performs worse because each grid cell is classified before
being evaluated, so there is a relatively good chance that at least one of the lava cells is misclassified
as target. IRD performs worse because the behaviors considered in inference plan in the already
classified terrain: a non-linear transformation of the features. The inference must both determine a
good linear reward function to match the behavior and discover the corresponding uncertainty about
it. When the proxy is a linear function of raw observations, the first job is considerably easier.

6 Discussion

Summary. In this work, we motivated and introduced the Inverse Reward Design problem as an
approach to mitigate the risk from misspecified objectives. We introduced an observation model,
identified the challenging inference problem this entails, and gave several simple approximation
schemes. Finally, we showed how to use the solution to an inverse reward design problem to avoid
side effects and reward hacking in a 2D navigation problem. We showed that we are able to avoid
these issues reliably in simple problems where features are binary indicators of terrain type. Although
this result is encouraging, in real problems we won’t have convenient access to binary indicators for
what matters. Thus, our challenge evaluation domain gave the robot access to only a high-dimensional
observation space. The reward designer specified a reward based on this observation space which
forgets to penalize a rare but catastrophic terrain. IRD inference still enabled the robot to understand
that rewards which would implicitly penalize the catastrophic terrain are also likely.

Limitations and future work. IRD gives the robot a posterior distribution over reward functions,
but much work remains in understanding how to best leverage this posterior. Risk-averse planning
can work sometimes, but it has the limitation that the robot does not just avoid bad things like lava,
it also avoids potentially good things, like a giant pot of gold. We anticipate that leveraging the
IRD posterior for follow-up queries to the reward designer will be key to addressing misspecified
objectives.

Another limitation stems from the complexity of the environments and reward functions considered
here. The approaches we used in this work rely on explicitly solving a planning problem, and this is a
bottleneck during inference. In future work, we plan to explore the use of different agent models that
plan approximately or leverage, e.g., meta-learning (Duan et al., 2016) to scale IRD up to complex
environments. Another key limitation is the use of linear reward functions. We cannot expect IRD
to perform well unless the prior places weights on (a reasonable approximation to) the true reward
function. If, e.g., we encoded terrain types as RGB values in Lavaland, there is unlikely to be a
reward function in our hypothesis space that represents the true reward well.

Finally, this work considers one relatively simple error model for the designer. This encodes some
implicit assumptions about the nature and likelihood of errors (e.g., IID errors). In future work, we
plan to investigate more sophisticated error models that allow for systematic biased errors from the
designer and perform human subject studies to empirically evaluate these models.

Overall, we are excited about the implications IRD has not only in the short term, but also about its
contribution to the general study of the value alignment problem.

Acknowledgements

This work was supported by the Center for Human Compatible AI and the Open Philanthropy Project,
the Future of Life Institute, AFOSR, and NSF Graduate Research Fellowship Grant No. DGE
1106400.

8

References

Amodei, Dario and Clark, Jack. Faulty Reward Functions in the Wild. https://blog.openai.
com/faulty-reward-functions/, 2016.

Amodei, Dario, Olah, Chris, Steinhardt, Jacob, Christiano, Paul, Schulman, John, and Mané, Dan.
Concrete Problems in AI Safety. CoRR, abs/1606.06565, 2016. URL http://arxiv.org/abs/
1606.06565.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L., Sutskever, Ilya, and Abbeel, Pieter. RL2:
Fast Reinforcement Learning via Slow Reinforcement Learning. CoRR, abs/1611.02779, 2016.
URL http://arxiv.org/abs/1611.02779.

Evans, Owain, Stuhlmüller, Andreas, and Goodman, Noah D. Learning the Preferences of Ignorant,
Inconsistent Agents. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pp. 323–329. AAAI Press, 2016.

Frank, Michael C, Goodman, Noah D, Lai, Peter, and Tenenbaum, Joshua B. Informative Communi-
cation in Word Production and Word Learning. In Proceedings of the 31st Annual Conference of
the Cognitive Science Society, pp. 1228–1233. Cognitive Science Society Austin, TX, 2009.

Goodman, Noah D and Lassiter, Daniel. Probabilistic Semantics and Pragmatics: Uncertainty in
Language and Thought. Handbook of Contemporary Semantic Theory. Wiley-Blackwell, 2, 2014.

Grice, H. Paul. Logic and Conversation, pp. 43–58. Academic Press, 1975.

Hadfield-Menell, Dylan, Dragan, Anca, Abbeel, Pieter, and Russell, Stuart. Cooperative Inverse
Reinforcement Learning. In Proceedings of the Thirtieth Annual Conference on Neural Information
Processing Systems, 2016.

Hadfield-Menell, Dylan, Dragan, Anca D., Abbeel, Pieter, and Russell, Stuart J. The Off-Switch
Game. In Proceedings of the International Joint Conference on Artificial Intelligence, 2017.

Jain, Ashesh, Sharma, Shikhar, Joachims, Thorsten, and Saxena, Ashutosh. Learning Preferences
for Manipulation Tasks from Online Coactive Feedback. The International Journal of Robotics
Research, 34(10):1296–1313, 2015.

Javdani, Shervin, Bagnell, J. Andrew, and Srinivasa, Siddhartha S. Shared Autonomy via Hindsight
Optimization. In Proceedings of Robotics: Science and Systems XI, 2015. URL http://arxiv.
org/abs/1503.07619.

Murray, Iain, Ghahramani, Zoubin, and MacKay, David. MCMC for Doubly-Intractable Distributions.
In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, 2006.

Ng, Andrew Y and Russell, Stuart J. Algorithms for Inverse Reinforcement Learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, pp. 663–670, 2000.

Puterman, Martin L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2009.

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach. Pearson, 2010.

Singh, Satinder, Lewis, Richard L., , and Barto, Andrew G. Where do rewards come from? In
Proceedings of the International Symposium on AI Inspired Biology - A Symposium at the AISB
2010 Convention, pp. 111–116, 2010. ISBN 1902956923.

Sorg, Jonathan, Lewis, Richard L, and Singh, Satinder P. Reward Design via Online Gradient Ascent.
In Proceedings of the Twenty-Third Conference on Neural Information Processing Systems, pp.
2190–2198, 2010.

Sunnåker, Mikael, Busetto, Alberto Giovanni, Numminen, Elina, Corander, Jukka, Foll, Matthieu, and
Dessimoz, Christophe. Approximate Bayesian Computation. PLoS Comput Biol, 9(1):e1002803,
2013.

9

https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1503.07619
http://arxiv.org/abs/1503.07619

Syed, Umar and Schapire, Robert E. A Game-Theoretic Approach to Apprenticeship Learning. In
Proceedings of the Twentieth Conference on Neural Information Processing Systems, pp. 1449–
1456, 2007.

Ziebart, Brian D, Maas, Andrew L, Bagnell, J Andrew, and Dey, Anind K. Maximum Entropy Inverse
Reinforcement Learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, pp. 1433–1438, 2008.

10

	Introduction
	Inverse Reward Design
	Related Work
	Approximating the Inference over True Rewards
	Observation Model
	Efficient approximations to the IRD posterior

	Evaluation
	Experimental Testbed
	Proof-of-Concept Domains
	Challenge Domain: Latent Rewards, No More Feature Indicators

	Experiment

	Discussion

