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1 Introduction
In future, we hope that robots will be able to operate in unstructured environments such as homes and
hospitals, and endowed with long-horizon planning ability. Despite successes in deep reinforcement
learning (RL) from raw observations, much progress relies on the availability of shaped reward
to guide the learning [31, 34]. On the other hand, over past decades, task and motion planning
has been shown to solve much longer-horizon goal-directed tasks such as making a cup of coffee
from torque control [20, 39, 40, 43]. However, these methods often require pre-specified discrete
abstract states, task representations and transition models, e.g., whether the robot is holding a cup
and what actions (or perturbations) change such an abstract state. In this paper, we aim to learn
discrete representations for high-level abstract planning from video interaction data, combined with
a learned short-horizon controller.

In this work, we propose Discrete Object-factorized Representations for Planning (DORP) – a novel
framework for visual planning and control by learning discrete representations and a low-level con-
troller. DORP learns discrete representations from images that change slowly overtime, such as
whether or not the agent holds a key or which room the agent is in, along with a low-level predictive
model for control. These slow features enable the agent to plan at a low frequency in longer-horizon
tasks. More specifically, DORP represents an abstract state as a set of one-hot vectors, and optimizes
its encoder by maximizing a mutual information lower bound between the current representations to
future observations [36]. In order to train through the discrete layer, we apply the Gumbel-Softmax
reparametrization trick [19, 30]. Using abstract states as nodes, we build an approximate feasibil-
ity graph based on observed transition data. When provided with new start and goal images, the
agent plans the shortest abstract path. Using the next abstractions as waypoints, model-predictive
control maximizes the objective that is 1 if it reaches the target abstraction and 0 otherwise with a
trained video prediction model. Unlike other subgoal planning works [26, 27, 33, 38], which follows
abstract waypoints, DORP avoids unnecessary steps to match exact waypoint states.

In a set of experiments, we demonstrate that DORP learns temporally-consistent and object-
factorized representations suitable for planning. We show that these representations enable DORP
to handle unseen long-horizon tasks more successfully compared to the states-of-the-art in visual
planning. Interestingly, we observe that latent representations show object-level factorization such
as key-and-door.

2 Discrete Object-factorized Representation for Planning
Our objective is to derive representation properties such as object-factorization and temporal-
consistency from an unsupervised learning objective to facilitate long-horizon planning. When
object representations are factorized, the agent can escape the need of combinatorial data config-
urations and can quickly generalize to unseen tasks. The connectivity graph can also be memory-
efficiently represented and combined with a more powerful planning algorithm. Another important
property for a representation is temporal consistency, meaning any two state observations in the
same abstraction should be reachable from one-another by a short sequence of actions. When this
property holds in the latent space, a high-level plan can be successfully executed by a low-level
controller.
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Figure 1: DORP architecture. DORP learns a set of one-hot encodings as the latent representation
for each observation using CPC loss [36]. For a query observation ot, its neighbours ot+k for some
small k are treated as positives, and random other observations are negatives. We propose a learn-
able weight matrix to be diagonally dominant and diagonally positive (DDDP). An object extractor
architecture is applied to learn to extract objects and a shared encoder is applied per channel. Finally,
Gumbel softmax and softmax are used to increase the gradient signal for backpropagation.
Problem Statement We define an unknown, fully-observable, stochastic dynamical system f which
maps input observation ot ∈ O and action at ∈ A to the next observation ot+1. Under this dynam-
ical system, we assume a simple exploration policy πrand which can collect data that characterizes
the dynamics of the system. This is known as self-supervised data or play data [1, 28]. We consider
high-dimensional observation such as images.

Our goal is to learn discrete abstraction zt ∈ Z given observation ot, an abstract feasibility model,
and a low-level local controller. At test time, given start os and goal og observations, we can plan
a sequence of abstract states zs, z1, ..., zg where zs and zg are the representation of os and og , and
apply the low-level controller to reach these abstract waypoints and finally to og .

Figure 2: DORP planning and control. We build a
graph on each one-hot encoding zi at a time, and
find the shortest path from current zis to the goal
zig . We then apply visual MPC to follow it.

Discrete Representation Learning Our start-
ing point is contrastive predictive coding
(CPC) [36] which learns low-dimensional rep-
resentations that are most predictive of fu-
ture high-dimensional sequential data. A
non-linear encoder qθ : O → Rl,
parametrized by θ, encodes the observation
ot ∈ O to a latent l-dimensional vector
representation zt. Let’s define a similar-
ity score fk(zt, ot+k) = exp(ztψqθ(ot+k))
where ψ is a trainable l-by-l similarity ma-
trix and ot+k is a future observation k steps
ahead of ot. Given the query observa-
tion ot, we aim to classify the key obser-
vations – ot+k as positive and other sam-
ple o from the dataset as negative. For-
mally, we optimize the loss function LCPC =

−Eot,ot+k

[
log fk(zt, ot+k)− log

∑
oj∈X fk(zt, oj)

]
with respect to θ and ψ. This also corre-

sponds to maximizing a lowerbound of the mutual information between the latent representation
zt and the future observation ot+k.

We depart from it by implementing our DORP architecture to encourage object-factorization and
capture discrete representations. The extractor passes an anchor observation through a convolutional
neural network and outputs a c-channel feature map. Each feature map is inputted to a shared
encoder followed by a Gumbel softmax. For a positive and negative pair of images, however, we
opt for a continuous embedding by swapping Gumbel softmax for softmax. Empirically, without
this asymmetry trick, the optimization tends to converge to a poor local optima. Together these
one-hots are flattened into long vectors, and their bilinear product is the similarity score between the
query-key pair (see Figure 1).

We propose an inductive bias in the similarity score function to encourage temporal consistency.
Instead of a fully trainable matrix, we parameterize the similarity matrixψ to be diagonally dominant
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and diagonally positive (DDDP). This property biases the similarity score to be high when the key
embedding zt+k is close to the query embedding zt and maximized when zt+k = zt. In other
words, this incentivizes the representations of positive pairs to share as many one-hots as possible.
We reparameterize the weight matrix as eψ0(−(ψ1)+αIl×l) where Il×l is an identity matrix, α is a
positive constant, is a sigmoid function, ψ0 is a trainable scalar, and ψ1 is a trainable l-by-l matrix.

Abstract Planning A critical component in planning is a connectivity graph that decides whether
two discrete representations are connected. One naive solution is to build such graph from data –
all observed representations as nodes and all observed transitions as edges. However as the number
of independent entities increases, the amount of data required to generate the nodes and edges in
order to cover the state space grows exponentially. To solve this, we propose to reduce the planning
problem by exploiting factorization: 1. Embed the current image os and goal og as zs = qθ(os) and
zg = qθ(og). 2. Pick a random one-hot index i s.t. the current state’s one-hot zis differs from the
goal’s one-hot zig . 3. Build a graph based on how this one-hot transits in the data (ignoring all other
one-hots). 4. Plan a path zi1, ..., z

i
g from zis to zig . If this does not exists, then we fail the task.

5. Execute the low-level controller following the next target zik, k = 1, · · · , g, while keeping other
zj the same. 6. If it doesn’t reach zik, remove the edge from the graph and redo the planning in step
4. 7. If it succeeds, follow the next target until it reaches zig . 8. Repeat step 2 until all the one-hots
match. 9. Finally, execute the low-level controller to the goal image og . (see Figure 2)

To incorporate interactions between one-hots, we can extend this algorithm by building a graph on a
random set of one-hot indices at a time in step 2. When this set contains all the one-hots, the method
is equivalent to the full graph search (complete but expensive). Thus, our extended planning method
trades efficiency for completeness. We demonstrate this further in our experiments.

Low-level Control To achieve different waypoints and goals, we deploy visual model-predictive
controller (MPC) which models the dynamics of the world from past data and minimizes with
the total predicted cost of horizon T at run-time: a∗t , ..., a

∗
t+T−1 =at,...,at+T−1

E
[∑T

i=1 γ
tĉt+i

]
.

The predicted cost is computed by applying a known cost function on the predicted outcome of
a T -step action sequence from the current observation ot. Specifically, we implement a stochas-
tic video prediction model [4], and define two cost functions for reaching abstract goals and
for reaching the final goal observation. The first cost function is defined to be 1 if the cur-
rent embedding exactly matches the goal embedding (all the one-hots match) and 0 otherwise:
clat(ot, z

′) = 1[qθ(ot) == z′]. The second cost function is defined by its L2 loss in the observation
space to the goal: cobs(ot, og) = ||ot − og||. This cost is versatile for reaching nearby observations
particularly to reach the goal observation once it has reached the goal code.

3 Experiments
We perform experiments aimed at answering the following questions: (1) Are DORP representations
temporally-consistent for high-level planning? (3) Can DORP representations factorize objects that
translate or change in appearances over time? (3) How does DORP compare to the visual planning
SOTA in solving unseen long-horizon goal-directed tasks?

Environments We evaluate DORP on two main environments – object-rearrangement and key-
room. All the observations are provided as color images of size 16× 16× 3.

k-object-rearrangement Multiple (k) 2-by-4 blocks of different colors can each be manipulated
independently by an agent. The tasks require the agent to manipulate these objects from a start
configuration to a goal configuration. In each step, it can manipulate each block by one unit in one
of the 4 directions. The agent collects data by randomly interacting with one object at each timestep
in a purely exploratory manner, without any goal in mind. In this environment our trajectory has
length one. That is, the configuration is randomly reset after every step.

key-room Two variations of key-room depend on the number of rooms – key-corridor (6 rooms and
a corridor) and key-wall (2 rooms). A key and agent are represented by 1 pixel. A key is placed in a
fixed location in a room. If the agent steps on the key, a door will be removed, allowing the agent to
enter a locked room. At each step, the agent can move in one of the four directions by 1 unit. The
agent collects data by a long random walk – 1500 steps for key-corridor and 1000 steps for key-wall.
After each reset the agent will be placed randomly in one of the unlocked rooms. This environment
is inspired by MiniGrid [8].
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Algorithms 1 object 2 objects 3 objects 5 objects
SR # steps SR # steps SR # steps SR # steps

DORP 1.00 25±15 1.00 49±22 1.00 75±28 0.87 200±69

– arbitary weight [36] 0.92 26±19 0.58 52±16 0.26 52±16 0.10 262±61

– identity weight [18] 1.00 34±12 0.94 18±7 0.48 83±23 0.05 224
– full graph 1.00 25±15 1.00 56±17 1.00 76±26 0.00 -
VF-RS [9] 0.83 19±19 0.58 53±25 0.25 93±24 0.00 -
VF-CEM [9] 1.00 12±15 0.60 47±25 0.30 89±27 0.09 150

Table 1: Success rates in k-object-rearrangement across 50 unseen tasks. DORP is able to success-
fully solve most of the tasks as we increase the number of objects while other methods’ performances
degrade rapidly. We terminate when the agent has not reached the goal within the step limits. The
number of steps are averaged only over the successful tasks. See Appendix B for baseline details.

Algorithms key-wall key-corridor
SR # steps SR # steps

DORP .91 74±22 0.98 64±24

VF-RS 0.66 75±34 0.1 101±21

VF-CEM 0.06 104±18 0.02 106±14

Table 2: Success rates in two key-room environ-
ments across 50 sample tasks. For each task, the
key is presented in the start image, but not goal.
DORP is able to successfully solve most of tasks,
while VF-RS and VF-CEM sometimes navigate to
the nearby key but not the goal.

Long-horizon planning We test the agent by
its ability to solve unseen goal-directed tasks.
In k-object-rearrangement, we can study the ef-
fect of increasing the length and complexity of
the tasks by increasing the number of objects.
In Table 1, we demonstrate that even as the
number of objects increases, DORP is able to
succeed in most of the tasks while other meth-
ods’ performances degrade quickly. Note that
when faced with 5 objects DORP employs the
extended planning version by grouping the 5
one-hots into two groups of 2 and 3 one-hots.
By considering more that one object at a time,
the agent is able to perform non-myopic plan-
ning and achieve 87% success rate. We see similar trend in key-room, as longer planning horizon is
required in key-corridor, visual foresight methods perform poorly compared to DORP (Table 2).

Temporal consistency We investigate DORP representations by color-coding the discrete embed-
dings on the configuration map of the environments. For visualization simplicity, we choose 1-
object-rearrangement to visualize the learned code map. In this environment we have a single
one-hot code for representing the object. We demonstrate that DORP learns temporally consistent
representations in which two states from the same discrete code are connected by a short-horizon
controller (see Figure 4(a)). Similarly, we observe the same property in the key-wall environment
(see Figure 5).

Object factorization We evaluate the behavior of the one-hot codes by changing one property of
the agent at a time such as positions or whether the agent has a key. In Figure 3(c) we observe that by
moving one object at a time only at most one one-hot code changes its value k-object-rearrangement.
In key-room, we formulate the discrete representation as follows: of the two output one-hot latents,
the first is set to a size z0 and the other is set to size 2. Our aim is for each latent to encode the
key and agents’ abstract states, respectively. In Figure 5, we demonstrate that the learned abstract
representations are factorized as desired by observing (1) the size z0 one-hot changes when the agent
moves with no key interactions and (2) the binary one-hot changes when removing and adding the
key while maintaining the agent position.

Weight Ablation We study the effect of the proposed similarity matrix against commonly-used
similarity matrices [18, 36] in unsupervised representation learning. In Figure 4, we demonstrate
that DORP is able to exploit more available latent codes, therefore helping the latent space be more
temporally consistent.

4 Conclusion and Future Directions
In this paper, we propose an unsupervised discrete representation learning method for long term
planning, which can extract high level abstract states that are good for planning in an purely unsu-
pervised manner. We demonstrate DORP’s effectiveness over other methods on challenging long
horizon tasks. We note that our method generate approximate plans more tractably and hence trades
off optimality for efficiency, like other state abstraction works [10, 27, 38]. Those approximate solu-
tions can be used to initialize a model-free policy which can be later fine-tuned to reach optimality.
We leave this as our future work.
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A Related Work

Object Discovery Recent work has studied unsupervised object segmentations from visual inputs
[7, 14], and entity-factorized representations and models for predictions [23]. However, these studies
have not been demonstrated to directly solve the task. In this work, we take a step further to evaluate
the representations in downstream tasks. While other work [41, 45] shows how the MPC agents
benefit from object-factorized models, they require shaped rewards for the tasks. In contrast, we
consider a long-horizon task in which the agent only receives its reward when it has reached the goal.
A large body of work in computer vision has studied unsupervised video object segmentation [2, 5,
6, 12, 13, 17, 22] and unsupervised object detection [25, 42, 46]. However, semantic segmentation
and object detection might not be the correct representation for the end-task. In this work, we learn
representations that are more ready to use for planning without explicit segmentation or detection.

World models Much previous work has applied generative models of the world to visual control
tasks [15, 16, 44]. Other work [29, 35, 47] leverages a contrastive objective to learn a latent world
model. These methods however require dense reward signals for most tasks. Visual foresight meth-
ods [9, 11] demonstrate impressive results on real robots using unshaped reward such as pixel dis-
tance to the goal, but it still remains limited to short-horizon object pushing tasks. In our work,
we borrow these methods for low-level controllers. Asai & Fukunaga [3] learn discrete abstraction
of the system such as an 8-piece puzzle, but do not consider temporal abstraction. Kansky et al.
[21] demonstrate that discrete object-factorized representations can be used to learn logic-based
transitions. In combination with powerful planning, it improves generalization and data efficiency.
However, it assumes supervised ground-truth labels for representation learning. In this work, we
aim to learn this in an unsupervised manner.

Hierarchial RL Recent work has tried to approach long-horizon visual planning by breaking down
tasks using skills [23, 28]. Our approach is orthogonal and may deploy such action abstractions as
a low-level controller. Other methods propose to plan subgoals and attempt to follow them either in
the latent space [24, 32, 33] or in the visual space [10, 27, 38]. However, such methods require labor-
intensive engineering to tune the threshold on when to move on to pursue the next subgoal [27, 38]
because the observations or the latent states can never exactly match. Imagine bringing a chair from
one office to another. It would be time consuming to match all the positions and orientations of
the chair along the way. Rather we should care about rough area the chair has to go through in
order to reach the goal. In our work, by learning the discrete codes, our method do not require such
threshold as it exactly knows when it has reached the target discrete representation. Additionally,
it avoids aiming to match a specific waypoint observation. Instead of planning to the goal, Pertsch
et al. [37] predict intermediate images iteratively to construct a subgoal tree. However in order to
train such prediction model a long-sequential training data are required. Instead our work can be
applied to short-horizon or long-horizon trajectories.

B Experimental Details

Baselines We choose the state-of-the-arts visual foresight (VF) [9] implemented using SV2P archi-
tecture [4] as our baseline for two reasons. First, VF only requires self-supervised data collection and
is applicable to unseen tasks – thus aligning with goal-directed visual planning problems. Second,
Visual Foresight is a low-level controller of DORP. By sharing the same video model as baseline, we
show a direct improvement of abstract planning for temporally-extended tasks. Two optimization
variations of VF – VF with random shooting (VF-RS) and VF with cross-entropy method (VF-CEM)
– both share the same video prediction model. Their objective is to minimize its L2 distance from
the current image to the goal image. While DORP deploys VF-RS for its low-level control, VF-
CEM comparision are provided for an improved baseline. VF-RS randomizes 1000 trajectories and
take the full action sequence that achieves the minimum cost. VF-CEM randomizes 1000 samples
per iteration. We pick the top 2% to refit a distribution over sequence and repeat for 3 iterations.

To understand DORP representation learning improvement, we evaluate DORP when replacing its
DDDP similarity matrix by an arbitrary weight [36] or an identity matrix [18] which have been
used extensively in unsupervised representation learning. To understand the benefits of factorized
planning, we replace it with the full graph planning with a maximum limit on the number of steps
allowed.
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C Additional Results

Figure 3: DORP in 5-object-rearrangement. In (a), we present DORP with random unseen start and
goal images which require temporal-extended planning. In (b), when presenting the same task to
VF-CEM we find that the objects are stuck in an awkward configuration where 4 blocks (except the
purple) are blocking to reach their goal positions. Finally, in (c), we visualize the representation
factorization by randomly moving one of the five object while maintaining the positions of the
others. We plot a histogram of which one-hots have been changed per object. We find that with high
probability only the one-hot that corresponds to the moving object is modified.

(a) DDDP matrix (b) No constraint (c) Identity matrix

Figure 4: Discrete Embedding Comparison. We visualize the color codes of different object posi-
tions in 1-object-rearrangement per similarity matrix type. Each color shows different discrete code.
The one-hot embedding has size 16 for all settings. In (a), we find that DORP discrete representation
is temporally-consistent, i.e., two states that map to the same embedding are connected by a short
sequence of actions. In (b), when using an arbitrary weight matrix the embedding is less temporally
consistent. In (c), when using an identity matrix the, the embedding uses only 3 out of 16 available
codes
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Figure 5: Key-Wall Representations. In (a) and (b), we demonstrate the discrete code of the agent
at different positions. Each color represents the same code. The grids in black are invalid states (the
wall that blocks the agent and separates the two rooms). We demonstrate temporal consistency in
the latent space both when the object has the key as not. In (c) and (d), we confirm that two one-
hot codes are factorized by observing that only one one-hot changes when removing the key while
maintaining the agent position and only the other one-hot changes when the agent moves without
interacting with the key.
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