
DERAIL: DIAGNOSTIC ENVIRONMENTS FOR REWARD AND
IMITATION LEARNING

Pedro Freire∗
École Polytechnique

pedrofreirex@gmail.com

Adam Gleave
UC Berkeley

gleave@berkeley.edu

Sam Toyer
UC Berkeley

sdt@berkeley.edu

Stuart Russell
UC Berkeley

russell@berkeley.edu

ABSTRACT

The objective of many real-world tasks is complex and difficult to procedurally specify. This makes
it necessary to use reward or imitation learning algorithms to infer a reward or policy directly
from human data. Existing benchmarks for these algorithms focus on realism, testing in complex
environments. Unfortunately, these benchmarks are slow, unreliable and cannot isolate failures.
As a complementary approach, we develop a suite of simple diagnostic tasks that test individual
facets of algorithm performance in isolation. We evaluate a range of common reward and imitation
learning algorithms on our tasks. Our results confirm that algorithm performance is highly sensitive
to implementation details. Moreover, in a case-study into a popular preference-based reward learning
implementation, we illustrate how the suite can pinpoint design flaws and rapidly evaluate candidate
solutions. The environments are available at https://github.com/HumanCompatibleAI/seals.

1 Introduction

Reinforcement learning (RL) optimizes a fixed reward function specified by the designer. This works well in artificial
domains with well-specified reward functions such as games (Silver et al., 2016; Vinyals et al., 2019; OpenAI et al.,
2019). However, in many real-world tasks the agent must interact with users who have complex and heterogeneous
preferences. We would like the AI system to satisfy users’ preferences, but the designer cannot perfectly anticipate
users’ desires, let alone procedurally specify them. This challenge has led to a proliferation of methods seeking to learn
a reward function from user data (Ng and Russell, 2000; Ziebart et al., 2008; Christiano et al., 2017; Fu et al., 2018;
Cabi et al., 2019), or imitate demonstrations (Ross et al., 2011; Ho and Ermon, 2016; Reddy et al., 2020). Collectively,
we say algorithms that learn a reward or policy from human data are Learning from Humans (LfH).

LfH algorithms are primarily evaluated empirically, making benchmarks critical to progress in the field. Histor-
ically, evaluation has used RL benchmark suites. In recognition of important differences between RL and LfH,
recent work has developed imitation learning benchmarks in complex simulated robotics environments with visual
observations (Memmesheimer et al., 2019; James et al., 2020).

In this paper, we develop a complementary approach using simple diagnostic environments that test individual aspects
of LfH performance in isolation. Similar diagnostic tasks have been applied fruitfully to RL (Osband et al., 2020), and
diagnostic datasets have long been popular in natural language processing (Johnson et al., 2017; Sinha et al., 2019;
Kottur et al., 2019; Liu et al., 2019; Wang et al., 2019). Diagnostic tasks are analogous to unit-tests: while less realistic
than end-to-end tests, they have the benefit of being fast, reliable and able to isolate failures (Myers et al., 2011; Wacker,
2015). Isolating failure is particularly important in machine learning, where small implementation details may have
major effects on the results (Islam et al., 2017).

This paper contributes the first suite of diagnostic environments designed for LfH algorithms. We evaluate a range of
LfH algorithms on these tasks. Our results in section 4 show that, like deep RL (Henderson et al., 2018; Engstrom et al.,
2020), imitation learning is very sensitive to implementation details. Moreover, the diagnostic tasks isolate particular
implementation differences that affect performance, such as positive or negative bias in the discriminator. Additionally,

∗Work partially conducted during an internship at UC Berkeley.

https://github.com/HumanCompatibleAI/seals


DERAIL: Diagnostic Environments for Reward And Imitation Learning

s0

s1
s2

s3

r = 1.0

r = −100.0

50
%

50%

Figure 1: RiskyPath: The agent can either take a
long but sure path to the goal (s0 → s1 → s2), or
attempt to take a shortcut (s0 → s2), with the risk of
receiving a low reward (s0 → s3).

r = 1.0 r = 1.0 r = 1.0

r = -1.0 r = -1.0 r = -1.0

Figure 2: EarlyTerm+ (top) or EarlyTerm- (bot-
tom): The agent can either alternate between the first
two states until the horizon ends, or end the episode
early by moving to the terminal state (far right).

our results suggest that a widely-used preference-based reward learning algorithm (Christiano et al., 2017) suffers from
limited exploration. In section 5, we propose and evaluate several possible improvements using our suite, illustrating
how it supports rapid prototyping of algorithmic refinements.

2 Designing Diagnostic Tasks

In principle, LfH algorithms can be evaluated in any Markov decision process. Designers of benchmark suites must
reduce this large set of possibilities to a small set of tractable tasks that discriminate between algorithms. We propose
three key desiderata to guide the creation of diagnostic tasks.

Isolation. Each task should test a single dimension of interest. The dimension could be a capability, such as robustness
to noise; or the absence of a common failure mode, such as episode termination bias Kostrikov et al. (2018). Keeping
tests narrow ensures failures pinpoint areas where an algorithm requires improvement. By contrast, an algorithm’s
performance on more general tasks has many confounders.

Parsimony. Tasks should be as simple as possible. This maintains compatibility with a broad range of algorithms.
Furthermore, it ensures the tests run quickly, enabling a more rapid development cycle and sufficient replicas to achieve
low-variance results. However, tasks may need to be computationally demanding in special cases, such as testing if an
algorithm can scale to high-dimensional inputs.

Coverage. The benchmark suite should test a broad range of capabilities. This gives confidence that an algorithm
passing all diagnostic tasks will perform well on general-purpose tasks. For example, a benchmark suite might want to
test categories as varied as exploration ability, the absence of common design flaws and bugs, and robustness to shifts in
the transition dynamics.

3 Tasks

In this section, we outline a suite of tasks we have developed around the guidelines from the previous section. Some of
the tasks have configuration parameters that allow the difficulty of the task to be adjusted. A full specification of the
tasks can be found in appendix A.

3.1 Design Flaws and Implementation Bugs

First, we describe tasks that check for fundamental issues in the design and implementation of algorithms.

3.1.1 RiskyPath: Stochastic Transitions

Many LfH algorithms are derived from Maximum Entropy Inverse Reinforcement Learning (Ziebart et al., 2008),
which models the demonstrator as producing trajectories with probability p(τ) ∝ expR(τ). This model implies
that a demonstrator can “control” the environment well enough to follow any high-reward trajectory with high
probability (Ziebart, 2010). However, in stochastic environments, the agent cannot control the probability of each
trajectory independently. This misspecification may lead to poor behavior.

2



DERAIL: Diagnostic Environments for Reward And Imitation Learning

(a) Underlying state space

0.00 0.00 −1.27 ... 0.10

move down

0.00 1.00 0.32 ... 1.45

(b) Observation vector

Figure 3: NoisyObs: Agent starts at a random corner
and gets a reward for staying at the center of the grid.
The observation consists of the agent’s x-y coordi-
nates concatenated with Gaussian noise.

...

Figure 4: Branching: Hard-exploration problem.
Agent must follow a long path without taking any
wrong actions; the agent only gets a non-zero reward
by performing the optimal trajectory.

To demonstrate and test for this issue, we designed RiskyPath, illustrated in Figure 1. The agent starts at s0 and can
reach the goal s2 (reward 1.0) by either taking the safe path s0 → s1 → s2, or taking a risky action, which has equal
chances of going to either s3 (reward −100.0) or s2. The safe path has the highest expected return, but the risky action
sometimes reaches the goal s2 in fewer timesteps, leading to higher best-case return. Algorithms that fail to correctly
handle stochastic dynamics may therefore wrongly believe the reward favors taking the risky path.

3.1.2 EarlyTerm: Early Termination

Many implementations of imitation learning algorithms incorrectly assign a value of zero to terminal states (Kostrikov
et al., 2018). Depending on the sign of the learned reward function in non-terminal states, this can either bias the agent
to end episodes early or prolong them as long as possible. This confounds evaluation as performance is spuriously high
in tasks where the termination bias aligns with the task objective. Kostrikov et al. demonstrate this behavior with a
simple example, which we adapt here as the tasks EarlyTerm+ and EarlyTerm-.

The environment is a 3-state MDP, in which the agent can either alternate between two initial states until reaching
the time horizon, or they can move to a terminal state causing the episode to terminate early. In EarlyTerm+, the
rewards are all +1, while in EarlyTerm-, the rewards are all −1. Algorithms that are biased towards early termination
(e.g. because they assign a negative reward to all states) will do well on EarlyTerm- and poorly on EarlyTerm+.
Conversely, algorithms biased towards late termination will do well on EarlyTerm+ and poorly on EarlyTerm-.

3.2 Core Capabilities

In this subsection, we consider tasks that focus on a core algorithmic capability for reward and imitation learning.

3.2.1 NoisyObs: Robust Learning

NoisyObs, illustrated in Figure 3, tests for robustness to noise. The agent randomly starts at the one of the corners of an
M ×M grid (default M = 5), and tries to reach and stay at the center. The observation vector consists of the agent’s
(x, y) coordinates in the first two elements, and L “distractor” samples of Gaussian noise as the remaining elements
(default L = 20). The challenge is to select the relevant features in the observations, and not overfit to noise (Guyon
and Elisseeff, 2003).

3.2.2 Branching: Exploration

We include the Branching task to test LfH algorithms’ exploration ability. The agent must traverse a specific path of
length L to reach a final goal (default L = 10), with B choices at each step (default B = 2). Making the wrong choice
at any of the L decision points leads to a dead end with zero reward.

3.2.3 Parabola: Continuous Control

Parabola tests algorithms’ ability to learn in continuous action spaces, a challenge forQ-learning methods in particular.
The goal is to mimic the path of a parabola p(x) = Ax2+Bx+C, where A, B and C are constants sampled uniformly
from [−1, 1] at the start of the episode. The state at time t is st = (xt, yt, A,B,C). Transitions are given by
xt+1 = xt + dx (default dx = 0.05) and yt+1 = yt + at. The reward at each timestep is the negative squared error,
− (yt − p(xt))2.

3



DERAIL: Diagnostic Environments for Reward And Imitation Learning

Figure 5: Parabola: A random parabola is sampled
at the start of the episode; the agent moves horizon-
tally at a constant speed, and must adjust its y coordi-
nate to match the curve.

x1 x2 ... x2L−1 x2L

L∑
j=1

sj ≤
2L∑

j=L+1

sj ?

Figure 6: LargestSum: Simple linear classification
problem. The state is a high-dimensional vector and
the goal is to output which half of the vector has the
largest sum.

3.2.4 LargestSum: High Dimensionality

Many real-world tasks are high-dimensional. LargestSum evaluates how algorithms scale with increasing dimensional-
ity. It is a classification task with binary actions and uniformly sampled states s ∈ [0, 1]2L (default L = 25). The agent
is rewarded for taking action 1 if the sum of the first half x0:L is greater than the sum of the second half xL:2L, and
otherwise is rewarded for taking action 0.

3.3 Ability to Generalize

In complex real-world tasks, it is impossible for the learner to observe every state during training, and so some degree
of generalization will be required at deployment. These tasks simulate this challenge by having a (typically large) state
space which is only partially explored at training.

3.3.1 InitShift: Distribution Shift

Many LfH algorithms learn from expert demonstrations. This can be problematic when the environment the demonstra-
tions were gathered in differs even slightly from the learner’s environment.

To illustrate this problem, we introduce InitShift, a depth-2 full binary tree where the agent moves left or right until
reaching a leaf. The expert starts at the root s0, whereas the learner starts at the left branch s1 and so can only reach
leaves s3 and s4. Reward is only given at the leaves. The expert always move to the highest reward leaf s6, so any
algorithm that relies on demonstrations will not know whether it is better to go to s3 or s4. By contrast, feedback such
as preference comparison can disambiguate this case.

3.3.2 ProcGoal: Procedural Generation

In this task, the agent starts at a random position in a large grid, and must navigate to a goal randomly placed in a
neighborhood around the agent. The observation is a 4-dimensional vector containing the (x, y) coordinates of the
agent and the goal. The reward at each timestep is the negative Manhattan distance between the two positions. With a
large enough grid, generalizing is necessary to achieve good performance, since most initial states will be unseen.

3.3.3 Sort: Algorithmic Complexity

In Sort, the agent must sort a list of random numbers by swapping elements. The initial state is a vector x sampled
uniformly from [0, 1]n (default n = 4), with actions a = (i, j) swapping xi and xj . The reward is given according to
the number of elements in the correct position. To perform well, the learned policy must compare elements, otherwise it
will not generalize to all possible randomly selected initial states.

4



DERAIL: Diagnostic Environments for Reward And Imitation Learning

s0

s∗0

r = +1.0

r = −1.0

r = −1.0

r = +2.0

Figure 7: InitShift: Expert starts
at root s0, learner starts at s∗0. Op-
timal expert demonstrations go to
lower branch and so are uninforma-
tive about the uppper branch s∗0.

Figure 8: ProcGoal: Agent (robot)
and goal (green cell) are randomly
positioned in a large grid. The agent
sees only a small fraction of possi-
ble states during training.

0.170.31 0.540.80

0.17 0.310.540.80

0.17 0.31 0.54 0.80

Figure 9: Sort: The agent has to
sort a list by swapping elements; to
perform well, policies and rewards
must learn to perform comparisons
between elements.

4 Benchmarking Algorithms

4.1 Experimental Setup

We evaluate a range of commonly used LfH algorithms: Maximum Entropy IRL (MaxEnt_IRL; Ziebart et al., 2008),
Maximum Causal Entropy IRL (MCE_IRL; Ziebart, 2010), Behavioral Cloning (BC), Generative Adversarial Imitation
Learning (GAIL; Ho and Ermon, 2016), Adversarial IRL (AIRL; Fu et al., 2018) and Deep Reinforcement Learning
from Human Preferences (DRLHP; Christiano et al., 2017). We also present an RL baseline using Proximal Policy
Optimization (PPO; Schulman et al., 2017).

We test several variants of these algorithms. We compare multiple implementations of AIRL (AIRL_IM and AIRL_FU)
and GAIL (GAIL_IM, GAIL_FU and GAIL_SB). We also vary whether the reward function in AIRL_IM and DRLHP
is state-only (AIRL_IM_SO and DRLHP_SO) or state-action (AIRL_IM_SA and DRLHP_SA). All other algorithms use
state-action rewards.

We train DRLHP using preference comparisons from the ground-truth reward, and train all other algorithms using demon-
strations from an optimal expert policy. We compute the expert policy using value iteration in discrete environments, and
procedurally specify the expert in other environments. See appendix B for a complete description of the experimental
setup and implementations.

4.2 Experimental Results

For brevity, we highlight a few notable findings, summarizing our results in Figure 10. See appendix C for the full
results and a more comprehensive analysis.

Implementation Matters. Our results show that GAIL_IM and GAIL_SB are biased towards prolonging episodes: they
achieve worse than random return on EarlyTerm-, where the optimal action is to end the episode, but match expert
performance in EarlyTerm+. By contrast, GAIL_FU is biased towards ending the episode, succeeding in EarlyTerm-
but failing in EarlyTerm+. This termination bias can be a major confounder when evaluating on variable-horizon tasks.

We also observe several other differences between implementations of the same algorithm. GAIL_SB achieves signif-
icantly lower return than GAIL_IM and GAIL_FU on NoisyObs, Parabola, LargestSum and ProcGoal. Moreover,
AIRL_IM attains near-expert return on Parabola while AIRL_FU performs worse than random. These results confirm
that implementation matters (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020), and illustrate how
diagnostic tasks can pinpoint how performance varies between implementations.

Rewards vs Policy Learning. Behavioral cloning (BC), fitting a policy to demonstrations using supervised learning,
exhibits bimodal performance. BC often attains near-optimal returns. However, in tasks with large continuous state
spaces such as Parabola and Sort, BC performs close to random. We conjecture this is because BC has more difficulty
generalizing to novel states than reward learning algorithms, which have an inductive bias towards goal-directed
behavior.

Exploration in Preference Comparison. We find DRLHP, which learns from preference comparisons, achieves lower
returns in Branching than algorithms that learn from demonstrations. This is likely because Branching is a hard-

5



DERAIL: Diagnostic Environments for Reward And Imitation Learning

PPO BC

GAIL_IM

GAIL_SB

GAIL_FU

AIRL_FU

AIRL_IM_SA

AIRL_IM_SO

DRLHP_SA

DRLHP_SO

MaxEnt_IRL

MCE_IRL

RiskyPath

EarlyTerm+

EarlyTerm-

Branching

InitShift

NoisyObs

Parabola

LargestSum

ProcGoal

Sort

0.99 1.00 1.00 0.60 1.00 1.00 1.00 0.79 1.00 0.98 -0.01 1.00

1.00 1.00 1.00 1.00 -0.31 1.00 1.00 1.00 0.45 0.21

1.00 1.00 -1.98 -2.84 1.00 1.00 1.00 1.00 -1.22 -1.29

1.00 1.00 1.00 0.80 1.00 0.97 0.99 0.99 0.53 0.53 1.00 1.00

1.00 -0.88 -0.60 -0.73 -0.88 -0.87 -0.25 0.03 1.00 1.00 0.06 0.20

0.95 1.00 0.94 0.20 0.91 0.92 0.96 0.81 0.85 0.94

1.00 0.22 1.00 0.38 0.45 -0.14 0.95 0.96 0.97 0.95

0.98 0.98 0.27 -0.01 0.37 0.44 0.58 -0.02 0.60 0.11

0.91 1.00 0.59 -0.03 0.73 0.75 0.59 0.54 0.48 0.47

0.78 0.01 0.67 0.56 0.62 0.36 0.66 0.85

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: Mean episode return (across 15 seeds) of policy learned by each algorithm (x-axis) on each task (y-axis).
Returns are normalized between 0.0 for a random policy and 1.0 for an optimal policy. Grey cells denote the algorithm
being unable to run on that task (e.g. MaxEnt_IRL and MCE_IRL only run on small tabular tasks). See appendix C for
full results and confidence intervals.

L=5 L=50 L=500

0.0

0.5

1.0

0.74 0.93 0.39

Figure 11: DRLHP_SA return on NoisyObs for varying numbers of noise dimensions L (grid size M = 7). We evaluate
across 24 seeds trained for 3M timesteps. Mean returns are depicted as horizontal lines inside the boxes and reported
underneath x-axis labels. Boxes span the 95% confidence intervals of the means; whiskers span the range of returns.

6



DERAIL: Diagnostic Environments for Reward And Imitation Learning

exploration task: a specific sequence of actions must be taken in order to achieve a reward. For DRLHP to succeed, it
must first discover this sequence, whereas algorithms that learn from demonstrations can simply mimic the expert.

While this problem is particularly acute in Branching, exploration is likely to limit the performance of DRLHP in other
environments. To investigate this further, we varied the number of noise dimensions L in NoisyObs from 5 to 500,
reporting the performance of DRLHP_SA in Figure 11. Increasing L decreases both the maximum and the variance of
the return. This causes a higher mean return in L = 50 than in L = 5 (high variance) or L = 500 (low maximum).

We conjecture this behavior is partly due to DRLHP comparing trajectories sampled from a policy optimized for its
current best-guess reward. If the policy becomes low-entropy too soon, then DRLHP will fail to sufficiently explore.
Adding stochasticity stabilizes the training process, but makes it harder to recover the true reward.

5 Case Study: Improving Implementations

In the previous section, we showed how DERAIL can be used to compare existing implementations of reward and
imitation learning algorithms. However, benchmarks are also often used during the development of new algorithms
and implementations. We believe diagnostic task suites are particularly well-suited to rapid prototyping. The tasks are
lightweight so tests can be conducted quickly. Yet they are sufficiently varied to catch a wide range of bugs, and give
a glimpse of effects in more complex environments. To illustrate this workflow, we present a case study refining an
implementation of Deep Reinforcement Learning from Human Preferences (Christiano et al., 2017, DRLHP).

As discussed in section 4.2, the implementation we experimented with, DRLHP, has high-variance across random seeds.
We conjecture this problem occurs because the preference queries are insufficiently diverse. The queries are sampled
from rollouts of a policy, and so their diversity depends on the stochasticity of the environment and policy. Indeed, we
see in Figure 11 that DRLHP is more stable when environment stochasticity increases.

The fundamental issue is that DRLHP’s query distribution depends on the policy, which is being trained to maximize
DRLHP’s predicted reward. This entanglement makes the procedure liable to get stuck in local minima. Suppose that,
mid-way through training, the policy chances upon some previously unseen, high-reward state. The predicted reward at
this unseen state will be random – and so likely worse than a previously seen, medium-reward state. The policy will
thus be trained to avoid this high-reward state – starving DRLHP of the queries that would allow it to learn in this region.

In an attempt to address this issue, we experiment with a few simple modifications to DRLHP:

• DRLHP_SLOW. Reduce the learning rate for the policy. The policy is initially high-entropy; over time, it learns to
only take actions with high predicted reward. By slowing down policy learning, we maintain a higher-entropy
query distribution.

• DRLHP_GREEDY. When sampling trajectories for preference comparison, use an ε-greedy version of the current
policy (with ε = 0.1). This directly increases the entropy of the query distribution.

• DRLHP_BONUS. Add an exploration bonus using random network distillation (Burda et al., 2019). Distillation
steps are performed only on trajectories submitted for preference comparison. This has the effect of giving a
bonus to state-action pairs that are uncommon in preference queries (even if they occurred frequently during
policy training).

We report the return achieved with these modifications in Figure 12. DRLHP_GREEDY produces the most stable results:
the returns are all comparable to or substantially higher than the original DRLHP_SA. However, all modifications increase
returns on hard-exploration task Branching, although for DRLHP_SLOW the improvement is modest. DRLHP_GREEDY
and DRLHP_BONUS also enjoy significant improvements on high-dimensional classification task LargestSum, which
likely benefits from more balanced labels. DRLHP_BONUS performs poorly on Parabola and ProcGoal: we conjecture
that the large state space caused DRLHP_BONUS to explore excessively.

This case study shows how DERAIL can help rapidly test new prototypes, quickly confirming or discrediting a
hypothesis of a how a change will affect a given algorithm. Moreover, we can gain a fine-grained understanding of
performance along different axes. For example, we could conclude that DRLHP_BONUS does increase exploration (higher
return on Branching) but may over-explore (lower return on ProcGoal). It would be difficult to disentangle these
distinct effects in more complex environments.

7



DERAIL: Diagnostic Environments for Reward And Imitation Learning

DRLHP_SA

DRLHP_SLOW

DRLHP_GREEDY

DRLHP_BONUS

RiskyPath

EarlyTerm+

EarlyTerm-

Branching

InitShift

NoisyObs

Parabola

LargestSum

ProcGoal

Sort

1.00 0.96 0.99 0.87

0.45 0.24 0.41 0.21

-1.22 -1.00 -0.71 -0.99

0.53 0.63 0.92 0.95

1.00 1.00 1.00 1.00

0.85 0.91 0.90 0.98

0.97 0.99 0.99 0.69

0.60 0.36 0.89 0.86

0.49 0.55 0.44 -0.03

0.66 0.57 0.74 0.67

0.0 0.5 1.0

Figure 12: Return of DRLHP_SA and three variants: DRLHP_SLOW, slower policy training; DRLHP_GREEDY, ε-greedy
exploration; DRLHP_BONUS, exploration bonus (see section 5). Mean episode return (across 15 seeds) of policy learned
by each algorithm (x-axis) on each task (y-axis). Returns are normalized between 0.0 for a random policy and 1.0 for
an optimal policy.

6 Discussion

We have developed, to the best of our knowledge, the first suite of diagnostic environments for reward and imitation
learning algorithms. We find that by isolating particular algorithmic capabilities, diagnostic tasks can provide a more
nuanced picture of individual algorithms’ strengths and weaknesses than testing on more complex benchmarks. Our
results confirm that reward and imitation learning algorithm performance is highly sensitive to implementation details.
Furthermore, we have demonstrated the fragility of behavioral cloning, and obtained qualitative insights into the
performance of preference-based reward learning. Finally, we have illustrated in a case study how DERAIL can support
rapid prototyping of algorithmic refinements.

In designing the task suite, we have leveraged our personal experience as well as past work documenting design flaws
and implementation bugs (Ziebart, 2010; Kostrikov et al., 2018). We expect to refine and extend the suite in response to
user feedback, and we encourage other researchers to develop complementary tasks. Our environments are open-source
and available at https://github.com/HumanCompatibleAI/seals.

Acknowledgements

We would like to thank Rohin Shah and Andrew Critch for feedback during the initial stages of this project, and Scott
Emmons, Cody Wild, Lawrence Chan, Daniel Filan and Michael Dennis for feedback on earlier drafts of the paper.

8

https://github.com/HumanCompatibleAI/seals


DERAIL: Diagnostic Environments for Reward And Imitation Learning

References
Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In

International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
H1lJJnR5Ym.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed, Rae Jeong, Konrad
Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David Barker, Jonathan Scholz, Misha Denil, Nando
de Freitas, and Ziyu Wang. A framework for data-driven robotics. arXiv: 1909.12200v1 [cs.RO], 2019.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning
from human preferences. In NIPS, pages 4299–4307, 2017.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Aleksander
Madry. Implementation matters in deep RL: A case study on PPO and TRPO. In ICLR, 2020. URL https:
//openreview.net/forum?id=r1etN1rtPB.

Justin Fu. Inverse RL: Implementations for imitation learning/IRL algorithms in rllab. https://github.com/
justinjfu/inverse_rl, 2018.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement learning. In
ICLR, 2018.

Adam Gleave. Evaluating rewards: comparing and evaluating reward models. https://github.com/
humancompatibleai/evaluating-rewards, 2020.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. JMLR, pages 1157–1182, 3
2003.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep reinforcement
learning that matters. In AAAI, 2018.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhariwal,
Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and
Yuhuai Wu. Stable Baselines. https://github.com/hill-a/stable-baselines, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, pages 4565–4573, 2016.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked deep
reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot learning benchmark
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick.
CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR, 2017.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson. Discriminator-
actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. arXiv preprint
arXiv:1809.02925, 2018.

Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, and Marcus Rohrbach. CLEVR-Dialog: A diagnostic
dataset for multi-round reasoning in visual dialog. In NAACL-HLT, 2019.

Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L. Yuille. CLEVR-Ref+: Diagnosing visual reasoning with referring
expressions. In CVPR, 2019.

Raphael Memmesheimer, Ivanna Kramer, Viktor Seib, and Dietrich Paulus. Simitate: A hybrid imitation learning
benchmark. In IROS, pages 5243–5249, 2019.

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing, chapter 5. John Wiley & Sons, 2011.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In ICML, 2000.

9

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://github.com/justinjfu/inverse_rl
https://github.com/justinjfu/inverse_rl
https://github.com/humancompatibleai/evaluating-rewards
https://github.com/humancompatibleai/evaluating-rewards
https://github.com/hill-a/stable-baselines


DERAIL: Diagnostic Environments for Reward And Imitation Learning

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter
Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving Rubik’s Cube with a robot hand.
arXiv: 1910.07113v1 [cs.LG], 2019.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor
Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton, David Silver, and Hado Van
Hasselt. Behaviour suite for reinforcement learning. In ICLR, 2020.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. SQIL: Imitation learning via reinforcement learning with sparse
rewards. In ICLR, 2020.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In AISTATS, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347v2 [cs.LG], 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A diagnostic benchmark
for inductive reasoning from text. In EMNLP, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H.
Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka,
Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond,
Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Mike Wacker. Just say no to more end-to-end tests. Google Testing Blog, 2015. URL https://testing.googleblog.
com/2015/04/just-say-no-to-more-end-to-end-tests.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In ICLR, 2019.

Steven Wang, Adam Gleave, and Sam Toyer. imitation: implementations of inverse reinforcement learning and imitation
learning algorithms. https://github.com/humancompatibleai/imitation, 2020.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, 2008.

10

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://github.com/humancompatibleai/imitation


DERAIL: Diagnostic Environments for Reward And Imitation Learning

A Full specification of tasks

A.1 RiskyPath

• State space: S = {0, 1, 2, 3}
• Action space: A = {0, 1}
• Horizon: 5
• Dynamics:

◦ 0
0−→ 1, 0 1−→

{
1, 50% probability;
2, 50% probability.

◦ 1
0−→ 2, 1 1−→ 1

◦ 2
a−→ 2 for all a ∈ A

◦ 3
a−→ 3 for all a ∈ A

• Rewards: R(0) = R(1) = 0, R(2) = 1, R(3) =
−100

s0

s1
s2

s3

r = 1.0

r = −100.0

50
%

50%

Figure A.1: RiskyPath

A.2 EarlyTerm±

• State space: S = {0, 1, 2}
• Action space: A = {0, 1}
• Horizon: 10
• Dynamics:
◦ 0

a−→ 1 for all a ∈ A
◦ 1

0−→ 0, 1 1−→ 2

• Rewards: R(s) = 1.0 in EarlyTerm+
and R(s) = −1.0 in EarlyTerm-

r = 1.0 r = 1.0 r = 1.0

Figure A.2: EarlyTerm+

r = -1.0 r = -1.0 r = -1.0

Figure A.3: EarlyTerm-

A.3 NoisyObs

• Configurable parameters: size M = 5, noise length
L = 20

• State space: grid S = ZM × ZM , where ZM =
{0, 1, · · · ,M − 1}
• Observations: (x, y, z1, · · · , zL), where:
◦ (x, y) ∈ S are the state coordinates
◦ zi are i.i.d. samples from the Gaussian N (0, 1)

• Action space: A = {U,D,L,R, S} for moving Up,
Down, Left, Right or Stay (no-op).
• Horizon: 3M
• Dynamics: Deterministic gridworld; attempting to

move beyond boundary of world is a no-op.
• Rewards: R(s) = 1

[
s =

(
bM2 c, b

M
2 c
)]

• Initial state: (0, 0)

0.00 0.00 −1.27 ... 0.10

move down

0.00 1.00 0.32 ... 1.45

Figure A.4: NoisyObs

11



DERAIL: Diagnostic Environments for Reward And Imitation Learning

A.4 Branching

• Configurable parameters: path length L = 10, branch-
ing factor B = 2

• State space: S = {0, 1, · · · , LB}
• Action space: A = {0, · · · , B − 1}
• Horizon: L
• Dynamics: s a−→ s+ (a+ 1) · 1[s ≡ 0 mod B]

• Rewards: R(s) = 1 [s = LB]

• Initial state: 0

...

Figure A.5: Branching

A.5 Parabola

• Configurable parameters: x-step dx = 0.05, horizon
h = 20

• State space: S = R
2 × [−1, 1]3

• Actions: a ∈ (−∞,+∞)

• Horizon: h
• Dynamics:

((x, y), (c2, c1, c0))
a−→ ((x+ dx, y + a), (c2, c1, c0))

• Rewards: R(s) = (c2x
2 + c1x+ c0 − y)2

• Initial state: (0, c0, c0, c1, c2), where ci ∼
Unif([−1, 1])

Figure A.6: Parabola

A.6 LargestSum

• Configurable parameters: half-length L = 25

• State space: S = [0, 1]2L

• Action space: A = {0, 1}
• Horizon: 1
• Rewards: R(s, a) =

1

[
a = 1

[∑L
j=1 sj ≤

∑2L
j=L+1 sj

]]
• Initial state: s0 ∼ Unif

(
[0, 1]2L

)

x1 x2 ... x2L−1 x2L

L∑
j=1

sj ≤
2L∑

j=L+1

sj ?

Figure A.7: LargestSum

12



DERAIL: Diagnostic Environments for Reward And Imitation Learning

A.7 InitShift

• State space: S = {0, 1, .., 6}
• Action space: A = {0, 1}
• Horizon: 2
• Dynamics: s a−→ 2s+ 1 + a

• Rewards:

R(s) =


+1 if s = 3

−1 if s ∈ {4, 5}
+2 if s = 6

0 otherwise

• Initial state:

◦ Expert: 0
◦ Learner: 1

s0

s∗0

r = +1.0

r = −1.0

r = −1.0

r = +2.0

Figure A.8: InitShift

A.8 ProcGoal

• Configurable prameters: initial state bound B = 100,
goal distance D = 10

• State space: S = Z2 × Z2, where (p, g) ∈ S consists
of agent position p and goal position g

• Action space: A = {U,D,L,R, S} for moving Up,
Down, Left, Right or Stay (no-op).

• Horizon: 3D
• Dynamics: Deterministic gridworld on p; g is fixed at

start of episode.
• Rewards: R((p, g)) = −‖p− g‖1
• Initial state:
◦ Position p uniform over {p ∈ Z2 : ‖p‖1 ≤ B}
◦ Goal g uniform over {g ∈ Z2 : ‖p− g‖1 = D}

Figure A.9: ProcGoal

A.9 Sort

• Configurable parameters: length L = 4

• State space: S = [0, 1]L

• Action space: A = ZL × ZL where ZL = {0, .., L−
1}
• Horizon: 2L
• Dynamics: a = (i, j) swaps elements i and j
• Rewards: R(s, s′) = 1 [c(s′) = n] + c(s′) − c(s),

where c(s) is the number of elements in the correct
sorted position.

• Initial state: s ∼ Unif([0, 1]L)

0.170.31 0.540.80

0.17 0.310.540.80

0.17 0.31 0.54 0.80

Figure A.10: Sort

B Experimental setup

B.1 Algorithms

The exact code for running the experiments and generating the plots can be found at https://github.com/
HumanCompatibleAI/derail.

13

https://github.com/HumanCompatibleAI/derail
https://github.com/HumanCompatibleAI/derail


DERAIL: Diagnostic Environments for Reward And Imitation Learning

Source Code Algorithms
Hill et al. (2018) PPO, BC, GAIL_SB
Fu (2018) AIRL_FU, GAIL_FU
Wang et al. (2020) AIRL_IM_SA, AIRL_IM_SO, GAIL_IM, MCE_IRL, MaxEnt_IRL
Gleave (2020) DRLHP_SA, DRLHP_SO

Table B.1: Sources of algorithm implementations (some of which were slightly adapted).

Imitation learning and IRL algorithms are trained using rollouts from an optimal policy. The number of expert timesteps
provided is the same as the number of timesteps each algorithm runs for. For DRLHP, trajectories are compared using
the ground-truth reward. The trajectory queries are generated from the policy being learned jointly with the reward.

We used open source implementations of these algorithms, as listed in Table B.1. We did not perform hyperparameter
tuning, and relied on default values for most hyperparameters.

B.2 Evaluation

We run each algorithm with 15 different seeds and 500,000 timesteps. To evaluate a policy, we compute the exact
expected episode return in discrete state environments. In other environments, we compute the average return over 1000
episodes. The score in a task is the mean return of the learned policy, normalized such that a policy taking random
actions gets a score of 0.0 and the expert gets a score of 1.0. For EarlyTerm-, poor policies can reach values smaller
than -3.0; to keep scores in a similar range to other tasks, we truncate negative values at -1.0.

C Complete experimental results

We provide results and analysis grouped around individually tasks (section C.1) and algorithms (section C.2). The
results are presented using boxplot graphs, such as Figure C.1. The y-axis represents the return of the learned policy,
while the x-axis contains different algorithms or tasks. Each point corresponds to a different seed. The means across
seeds are represented as horizontal lines inside the boxes, with the boxes spanning bootstrapped 95% confidence
intervals of the means; the whiskers show the full range of returns. Each box is assigned a different color to aid in
visually distinguishing the tasks; they do not have any semantic meaning.

C.1 Tasks

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO MaxEnt_IRL MCE_IRL

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.1: RiskyPath: MaxEnt_IRL performs poorly as expected, while MCE_IRL performs well. Other algorithms
evaluated look at state-action pairs individually, instead of looking at trajectories, avoiding the problem of risky behavior.

14



DERAIL: Diagnostic Environments for Reward And Imitation Learning

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) EarlyTerm+

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) EarlyTerm-

Figure C.2: EarlyTerm±: GAIL_FU performs worse than random in EarlyTerm+ and at expert level at EarlyTerm-,
and we see the opposite behavior with GAIL_IM and GAIL_SB. This indicates that GAIL_FU has a negatively biased
reward that favors episode termination, while GAIL_IM and GAIL_SB have a positively biased reward that favors survival.
DRLHP also has extremely high variance, achieving both expert and random performance across different runs. This
is because the implementation tested looks at segments of trajectories of the same length, without accounting for the
fact that some segments will cause early termination. Instead, every segment is assigned the same reward, and the
agent keeps their randomly initialized reward throughout the training process (which might by chance induce expert
performance in such a simple environment).

15



DERAIL: Diagnostic Environments for Reward And Imitation Learning

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO MaxEnt_IRL MCE_IRL

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.3: Branching: algorithms that learn from expert demonstrations tend to perform well, since they require
limited exploration. On the other hand, DRLHP can struggle to perform enough exploration to consistently find the
goal and learn the correct reward. Note that DRLHP needs to find the goal multiple times in order to update the reward
significantly.

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO MaxEnt_IRL MCE_IRL

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.4: InitShift: unlike Branching, in InitShift algorithms based on expert demonstrations fail, since the
expert trajectories do not include the new initial state. By contrast, the task is trivial for DRLHP, which can compare
trajectories generated at train time. Moreover, algorithms that learn state-action rewards from demonstrations perform
worse than random. This is because the expert trajectories only contain action 1, and thus rewards tend to assign a
positive weight to action 1. However, the optimal action under the learners initial state distribution is to take action 0.
AIRL_IM_SO, MaxEnt_IRL and MCE_IRL learn state-only reward functions, and perform closer to the random policy.

16



DERAIL: Diagnostic Environments for Reward And Imitation Learning

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.5: NoisyObs: we see that BC achieves near-optimal performance, demonstrating that supervised learning can
be more robust and sample-efficient in the presence of noise than other LfH algorithms. We also see that GAIL_SB
performs poorly relative to GAIL_IM and GAIL_FU, which underscores the importance of the subtle differences between
these implementations.

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.6: Parabola: most algorithms perform well, except for BC, GAIL_SB and AIRL_FU.

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.7: LargestSum: Most algorithms fail to achieve expert performance, while BC does match expert performance,
suggesting scaling algorithms like GAIL and AIRL to high-dimensional tasks may be a fruitful direction for future work.
Methods using state-only reward functions, AIRL_SO and DRLHP_SO, perform poorly since the reward for this task
depends on the actions taken.

17



DERAIL: Diagnostic Environments for Reward And Imitation Learning

PPO BC GAIL_IM GAIL_SB GAIL_FU AIRL_FU AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.8: ProcGoal: BC achieves expert performance, while most other algorithms get a reasonable, but lower score,
while also exhibiting high variance between seeds. While this task requires generalization, the fact that the states
and actions are discrete might make it easier for BC to generalize, compared to Parabola or Sort, where it performs
poorly. One interesting result is AIRL_FU performing better than AIRL_IM_SA, while AIRL_IM_SA performs better
than AIRL_FU in other tasks.

PPO BC GAIL_IM GAIL_SB AIRL_IM_SA AIRL_IM_SO DRLHP_SA DRLHP_SO

0.0

0.2

0.4

0.6

0.8

Figure C.9: Sort: Most algorithms achieve reasonable (but sub-expert) performance. Intriguingly DRLHP_SO achieves
higher returns than most algorithms, with low-variance. Learning a good policy in this task is challenging, given that
even PPO did not get at expert performance in all seeds. BC fails to get any reward. We also have that DRLHP_SO
performs better than DRLHP_SA, while AIRL_IM_SA performs better than AIRL_IM_SO. Having a state-only reward
might be easier to learn because there are less parameters and the groundtruth reward is indeed state-only, but state-action
rewards can also incentivize the right policy by giving higher rewards to the correct action, making planning easier.

18



DERAIL: Diagnostic Environments for Reward And Imitation Learning

C.2 Algorithms

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.10: PPO: serves as an RL baseline. We would expect most reward and imitation learning algorithms to
obtain lower return, since they must learn a policy without knowing the reward. Most seeds achieve close to expert
performance.

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.11: BC: exhibits bimodal performance, either attaining near-expert return (1.0, normalized) in an environment
or close to random (0.0). The return is similar across seeds. Behavioral cloning attains relatively low returns in
Parabola and Sort, which have continuous observation spaces that require generalization and sequential decision
making.

19



DERAIL: Diagnostic Environments for Reward And Imitation Learning

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) GAIL_IM

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) GAIL_SB

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) GAIL_FU

Figure C.12: GAIL: GAIL_IM and GAIL_SB is positively biased, while GAIL_FU is negatively biased, in the sense
discussed in Kostrikov et al. (2018). We also see that GAIL_IM results dominate GAIL_SB, with GAIL_IM performing
better on every task. There are no Sort results for GAIL_FU because this implementation did not support the pair action
space used in Sort.

20



DERAIL: Diagnostic Environments for Reward And Imitation Learning

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) AIRL_FU

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) AIRL_IM_SA

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) AIRL_IM_SO

Figure C.13: AIRL: AIRL_IM_SA achieves higher returns than AIRL_IM_SO and AIRL_FU on the majority of environ-
ments. AIRL_FU obtains particularly low returns on Parabola. AIRL_IM_SA performs particularly well overall, with
lower variance episode return than most algorithms while attaining high return in most tasks.

21



DERAIL: Diagnostic Environments for Reward And Imitation Learning

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) DRLHP_SA

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) DRLHP_SO

Figure C.14: DRLHP: achieves reasonable mean return, but exhibits high variance between seeds: some achieve expert
performance while others are little better than random. Notably, DRLHP_SO is the highest scoring LfH algorithm we have
tested in Sort. DRLHP performs poorly in Branching because of the difficulty of exploration, and in EarlyTerm±
because the implementation does not account for episode termination. It is the only algorithm we tested that succeeds
in InitShift, as expected.

22



DERAIL: Diagnostic Environments for Reward And Imitation Learning

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) DRLHP_SLOW

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) DRLHP_GREEDY

RiskyPath EarlyTerm+ EarlyTerm- Branching InitShift NoisyObs Parabola LargestSum ProcGoal Sort
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) DRLHP_BONUS

Figure C.15: DRLHP modifications: all versions improve the scores on NoisyObs; DRLHP_GREEDY and DRLHP_BONUS
get better scores on Branching and LargestSum. DRLHP_GREEDY achives greater or similar scores to DRLHP_SA in
all tasks. Further discussion of these results can be found in Section 5.

23



DERAIL: Diagnostic Environments for Reward And Imitation Learning

RiskyPath Branching InitShift
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

RiskyPath Branching InitShift
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure C.16: Tabular IRL: executed only on tasks with discrete state and action spaces and fixed horizon. As expected,
MaxEnt_IRL obtains a low return in RiskyPath. For InitShift, the expert demonstrations do not provide information
to choose between the subset of states accessible during learning, and so the algorithm gets a random score that depends
on the randomly initialized initial reward.

24


	Introduction
	Designing Diagnostic Tasks
	Tasks
	Design Flaws and Implementation Bugs
	RiskyPath: Stochastic Transitions
	EarlyTerm: Early Termination

	Core Capabilities
	NoisyObs: Robust Learning
	Branching: Exploration
	Parabola: Continuous Control
	LargestSum: High Dimensionality

	Ability to Generalize
	InitShift: Distribution Shift
	ProcGoal: Procedural Generation
	Sort: Algorithmic Complexity


	Benchmarking Algorithms
	Experimental Setup
	Experimental Results

	Case Study: Improving Implementations
	Discussion
	Full specification of tasks
	RiskyPath
	EarlyTermpm
	NoisyObs
	Branching
	Parabola
	LargestSum
	InitShift
	ProcGoal
	Sort

	Experimental setup
	Algorithms
	Evaluation

	Complete experimental results
	Tasks
	Algorithms


