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tThis paper addresses the problem of inversereinfor
ement learning (IRL) in Markov de-
ision pro
esses, that is, the problem of ex-tra
ting a reward fun
tion given observed,optimal behaviour. IRL may be useful forapprenti
eship learning to a
quire skilled be-haviour, and for as
ertaining the rewardfun
tion being optimized by a natural sys-tem. We �rst 
hara
terize the set of all re-ward fun
tions for whi
h a given poli
y isoptimal. We then derive three algorithmsfor IRL. The �rst two deal with the 
asewhere the entire poli
y is known; we handletabulated reward fun
tions on a �nite statespa
e and linear fun
tional approximation ofthe reward fun
tion over a potentially in�-nite state spa
e. The third algorithm dealswith the more realisti
 
ase in whi
h the pol-i
y is known only through a �nite set of ob-served traje
tories. In all 
ases, a key issue isdegenera
y|the existen
e of a large set of re-ward fun
tions for whi
h the observed poli
yis optimal. To remove degenera
y, we sug-gest some natural heuristi
s that attempt topi
k a reward fun
tion that maximally di�er-entiates the observed poli
y from other, sub-optimal poli
ies. This results in an eÆ
ientlysolvable linear programming formulation ofthe IRL problem. We demonstrate our algo-rithms on simple dis
rete/�nite and 
ontinu-ous/in�nite state problems.1. Introdu
tionThe inverse reinfor
ement learning (IRL) problem 
anbe 
hara
terized informally as follows (Russell, 1998):Given 1) measurements of an agent's behaviour overtime, in a variety of 
ir
umstan
es, 2) if needed,measurements of the sensory inputs to that agent;3) if available, a model of the environment.Determine the reward fun
tion being optimized.

We 
an identify two sour
es of motivation for thisproblem. The �rst arises from the potential useof reinfor
ement learning and related methods as
omputational models for animal and human learn-ing (Watkins, 1989; S
hmajuk & Zanutto, 1997;Touretzky & Saksida, 1997). Su
h models are sup-ported both by behavioural studies and by neurophys-iologi
al eviden
e that reinfor
ement learning o

ursin bee foraging (Montague et al., 1995) and in song-bird vo
alization (Doya & Sejnowski, 1995). This lit-erature assumes, however, that the reward fun
tion is�xed and known|for example, models of bee forag-ing assume that the reward at ea
h 
ower is a simplesaturating fun
tion of ne
tar 
ontent. Yet it seems
lear that in examining animal and human behaviourwe must 
onsider the reward fun
tion as an unknownto be as
ertained through empiri
al investigation. Thisis parti
ularly true of multiattribute reward fun
tions.Consider, for example, that the bee might weigh ne
taringestion against 
ight distan
e, time, and risk fromwind and predators. It is hard to see how one 
oulddetermine the relative weights of these terms a pri-ori. Similar 
onsiderations apply to human e
onomi
behaviour, for example. Hen
e, inverse reinfor
ementlearning is a fundamental problem of theoreti
al biol-ogy, e
onometri
s, and other �elds.A se
ond motivation arises from the task of 
onstru
t-ing an intelligent agent that 
an behave su

essfully ina parti
ular domain. An agent designer (or indeed theagent itself) may have only a very rough idea of the re-ward fun
tion whose optimization would generate \de-sirable" behaviour, so straightforward reinfor
ementlearning may not be usable. (Consider, for example,the task of \driving well.") One sour
e of informa-tion for learning is the behaviour of other \expert"agents, as used in imitation learning and apprenti
e-ship learning. In this setting, it is 
ommonly assumedthat the purpose of observation is to learn a poli
y,i.e., a dire
t representation of a mapping from statesto a
tions. We propose instead to re
over the expert'sreward fun
tion and to use this to generate desirablebehaviour. We suggest that the reward fun
tion of-ten provides a mu
h more parsimonious des
ription of



behaviour. After all, the entire �eld of reinfor
ementlearning is founded on the presupposition that the re-ward fun
tion, rather than the poli
y, is the most su
-
in
t, robust, and transferrable de�nition of the task.Hen
e, it seems likely that inverse reinfor
ement learn-ing may, in some domains, provide an e�e
tive form ofapprenti
eship learning.To our knowledge, this 
omputational task has notbeen well-studied in 
omputer s
ien
e, 
ontrol theory,psy
hology, or biology. The 
losest work is in e
o-nomi
s, where the task of multiattribute utility assess-ment has been studied in depth|that is, how does aperson a
tually 
ombine the various attributes of ea
havailable 
hoi
e when making a de
ision. The theoryis well-developed (Keeney & Rai�a, 1976), and the ap-pli
ations numerous. However, this �eld studies onlyone-shot de
isions where a single a
tion is taken andthe out
ome is immediate. The sequential 
ase was�rst 
onsidered by Sargent (1978), who tried to as
er-tain the e�e
tive hiring 
ost for labor by examining a�rm's hiring behaviour over time, assuming it to berational. In the last de
ade, the area of stru
tural es-timation of Markov de
ision pro
esses in e
onometri
shas grown rapidly (Rust, 1994). Some of the basi
ideas 
arry over to our setting. IRL also appearedbrie
y in 
ontrol theory: in the early 1960s, Kalmanposed the problem of re
overing the obje
tive fun
tionfor a deterministi
 linear system with quadrati
 
osts.It was re
ently solved as a semide�nite program (Boydet al., 1994).In this paper, we address the IRL problem in settingsmore familiar to the ma
hine learning 
ommunity, be-ginning with �nite Markov de
ision pro
esses (MDPs).Se
tion 2 gives formal de�nitions of MDPs and the IRLproblem; we fo
us initially on the setting in whi
h themodel is known and the 
omplete poli
y is given. Se
-tion 3 
hara
terizes the set of all reward fun
tions forwhi
h a given poli
y is optimal. We demonstrate thatthe set 
ontains many degenerate solutions, in
luding,for example, the reward fun
tion that is identi
allyzero everywhere. We resolve this diÆ
ulty via heuris-ti
s that attempt to identify a reward fun
tion thatmaximally di�erentiates between the observed poli
yand other, sub-optimal poli
ies. This 
an be done eÆ-
iently in the dis
rete 
ase using linear programming.Se
tion 4 deals with the 
ase of large or in�nite statespa
es, for whi
h an expli
it, tabular representation ofthe reward fun
tion would be infeasible. We show thatif the �tted reward fun
tion is represented as a linear
ombination of arbitrary, �xed basis fun
tions, thenthe IRL problem remains in the 
lass of linear pro-grams and 
an again be solved eÆ
iently. Se
tion 5deals with the more realisti
 
ase in whi
h the poli
yis known only through a �nite set of observed traje
to-ries; for this, we present a simple iterative algorithm.

The three algorithms we develop are then applied, inSe
tion 6, to some simple examples in
luding both dis-
rete and 
ontinuous sto
hasti
 navigation problems,and the \mountain{
ar" problem. In all 
ases, we areable to re
over a reward fun
tion that \explains" theobserved behavior fairly well. Finally, Se
tion 7 sum-marizes our �ndings and des
ribes dire
tions for futurework.2. Notation and Problem FormulationIn this se
tion, we introdu
e some notation, de�ni-tions, and basi
 theorems for Markov de
ision pro-
esses. We then de�ne the version of the IRL problemthat we will address.2.1 Markov De
ision Pro
essesA (�nite) MDP is a tuple (S;A; fPsag; 
; R), where� S is a �nite set of N states.� A = fa1; : : : ; akg is a set of k a
tions.� Psa(�) are the state transition probabilitiesupon taking a
tion a in state s.� 
 2 [0; 1) is the dis
ount fa
tor.� R : S 7! R is the reinfor
ement fun
tion,bounded in absolute value by Rmax.For simpli
ity in exposition, we have written rewardsas R(s) rather than R(s; a); the extension is trivial.A poli
y is de�ned as any map � : S 7! A, and thevalue fun
tion for a poli
y �, evaluated at any states1 is given byV �(s1) = E �R(s1) + 
R(s2) + 
2R(s3) + � � � j��where the expe
tation is over the distribution of thestate sequen
e (s1; s2; : : : ) we pass through when weexe
ute the poli
y � starting from s1. We also de�nethe Q-fun
tion a

ording toQ�(s; a) = R(s) + 
Es0�Psa(�) [V �(s0)℄(where the notation s0 � Psa(�) means the ex-pe
tation is with respe
t to s0 distributed a

ord-ing to Psa(�)). The optimal value fun
tion isV �(s) = sup� V �(s) and the optimal Q-fun
tion isQ�(s; a) = sup� Q�(s; a).For dis
rete, �nite spa
es, all these fun
tions 
an berepresented as ve
tors indexed by state, for whi
h weadopt boldfa
e notation. More pre
isely, �x some enu-meration from 1 to N of the �nite state spa
e S. Therewards may then be written as an N -dimensional ve
-tor R, whose ith element is the reward at the ith state



of the MDP. Similarly, V � is a ve
tor whose ith ele-ment is the value fun
tion for � evaluated at state i.For ea
h a
tion a, we also let P a be the N -by-N ma-trix su
h that its (i; j) element gives the probability oftransitioning to state j upon taking a
tion a in statei. Finally, we let the symbols � and � denote stri
tand non-stri
t ve
torial inequality|i.e., x � y if andonly if 8i xi < yi.The goal of standard reinfor
ement learning is to �nda poli
y � su
h that V �(s) is maximized. And indeed,it 
an be shown (see, e.g. (Sutton & Barto, 1998; Bert-sekas & Tsitsiklis, 1996)) that there does exist at leastone optimal poli
y �� su
h that V �(s) is simultane-ously maximized for all s 2 S by � = ��.2.2 Basi
 Properties of MDPsFor our solution to the IRL problem, we will need twoof the 
lassi
al results 
on
erning MDPs (Sutton &Barto, 1998; Bertsekas & Tsitsiklis, 1996).Theorem 1 (Bellman Equations) Let an MDPM = (S;A; fPsag; 
; R) and a poli
y � : S 7! A begiven. Then, for all s 2 S; a 2 A, V � and Q� satisfyV �(s) = R(s) + 
Xs0 Ps�(s)(s0)V �(s0) (1)Q�(s; a) = R(s) + 
Xs0 Psa(s0)V �(s0) (2)Theorem 2 (Bellman Optimality) Let an MDPM = (S;A; fPsag; 
; R) and a poli
y � : S 7! A begiven. Then � is an optimal poli
y for M if and onlyif, for all s 2 S,�(s) 2 argmaxa2A Q�(s; a) (3)2.3 Inverse Reinfor
ement LearningThe inverse reinfor
ement learning problem is to �nd areward fun
tion that 
an explain observed behaviour.We begin with the simple 
ase where the state anda
tion spa
es are �nite, the model is known, and the
omplete poli
y is observed. More pre
isely, then, weare given a �nite state spa
e S, a set of k a
tionsA = fa1; : : : ; akg, transition probabilities fPsag, a dis-
ount fa
tor 
, and a poli
y �; the problem is to �ndthe set of possible reward fun
tions R su
h that � isan optimal poli
y in (S;A; fPsag; 
; R). (We may thenwish to identify fun
tions within this set satisfying ad-ditional 
riteria.) By renaming a
tions if ne
essary, wewill assume without loss of generality that �(s) � a1.This tri
k is used only to simplify our notation.3. IRL in Finite State Spa
esIn this se
tion, we give a simple 
hara
terization ofthe set of all reward fun
tions for whi
h a given poli
y

is optimal. We then show that the set 
ontains manydegenerate solutions and propose a simple heuristi
for removing this degenera
y, resulting in a linear pro-gramming solution to the IRL problem.3.1 Chara
terization of the Solution SetOur main result 
hara
terizing the set of solutions isthe following:Theorem 3 Let a �nite state spa
e S, a set of a
-tions A = fa1; : : : ; akg, transition probability matri
esfP ag, and a dis
ount fa
tor 
 2 (0; 1) be given. Thenthe poli
y � given by �(s) � a1 is optimal if and onlyif, for all a = a2; : : : ; ak, the reward R satis�es(P a1 �P a) (I � 
P a1)�1R � 0 (4)Proof. Sin
e �(s) � a1, Equation (1) may be writtenV � = R+ 
P a1V �. Thus,1V � = (I � 
P a1)�1R (5)Substituting Equation (2) into (3) from Theorem 2,we see that � � a1 is optimal if and only ifa1 � �(s) 2 argmaxa2A Xs0 Psa(s0)V �(s0) 8 s 2 S,Xs0 Psa1(s0)V �(s0)�Xs0 Psa(s0)V �(s0) 8 s 2 S; a 2 A, P a1V � � P aV � 8 a 2 A n a1, P a1(I � 
P a1)�1R� P a(I � 
P a1)�1R 8 a 2 A n a1where the last impli
ation in this derivation usedEquation (5). This 
ompletes the proof. 2Remark. Using a very similar argument, it is easyto show (essentially by repla
ing all inequalities in theproof above with stri
t inequalities) that the 
ondi-tion (P a1 �P a) (I � 
P a1)�1R � 0 is ne
essary andsuÆ
ient for � � a1 to be the unique optimal poli
y.For �nite-state MDPs, this result 
hara
terizes the setof all reinfor
ement fun
tions that are solutions to theinverse reinfor
ement learning problem. However, weimmediately see two problems: First, R = 0 (and in-deed any other 
onstant ve
tor) is always a solution|if1Here, I � 
P a1 is always invertible. To see this, �rstnote that P a1 , being a transition matrix, has all eigenval-ues in the unit 
ir
le in the 
omplex plane. Sin
e 
 < 1,this implies the matrix 
P a1 has all eigenvalues in the in-terior of the unit 
ir
le (and in parti
ular that 1 is not aneigenvalue). This means I�
P a1 has no zero eigenvalues,and is thus not singular.



the reward is the same no matter what a
tion we take,then any poli
y, in
luding � � a1, is optimal. De-manding that � be the unique optimal poli
y wouldalleviate this problem, but is not entirely satisfyingsin
e usually some reward ve
tors arbitrarily 
lose to0 would still be solutions. Se
ond, for most MDPs,it also seems likely that there are many 
hoi
es of Rthat meet the 
riteria (4). How do we de
ide whi
hone of these many reinfor
ement fun
tions to 
hoose?The answer to these problems is not to be found inthe original statement of the IRL problem; but in thenext se
tion, we des
ribe some natural 
riteria thatwill suggest solutions to both of these problems.3.2 LP Formulation and Penalty TermsClearly, linear programming 
an be used to �nd a fea-sible point of the 
onstraints in Equation (4). But asdis
ussed in the previous se
tion, some of these pointsmay be less \meaningful" than others, and we desireto �nd some way to 
hoose between solutions satisfy-ing Equation (4). The proposals outlined in this se
-tion were to a large extent 
hosen be
ause they 
an bein
orporated into a linear program, but nonethelessshould seem fairly natural.One natural way to 
hoose R is to �rst demand that itmakes � optimal (and hen
e solves the IRL problem),and moreover to favor solutions that make any single-step deviation from � as 
ostly as possible. Thus, of allthe fun
tions R satisfying (4) (and, jR(s)j � Rmax 8s),we might 
hoose one so as to maximizeXs2S�Q�(s; a1)� maxa2Ana1Q�(s; a)� (6)In other words, we seek to maximize the sum of thedi�eren
es between the quality of the optimal a
tionand the quality of the next-best a
tion. (Other 
ri-teria, su
h as Ps2SPa2Ana1 Q�(s; a1) �Q�(s; a) arealso possible, but for the sake of 
on
reteness, let usremain with (6) for now.)In addition, if we believe that, all other things beingequal, solutions with mainly small rewards are \sim-pler" and therefore preferable, we may optionally addto the obje
tive fun
tion a weight de
ay-like penaltyterm su
h as��jjRjj1, where � is an adjustable penalty
oeÆ
ient that balan
es between the twin goals of hav-ing small reinfor
ements, and of maximizing (6). Aside-e�e
t of using su
h an `1-penalty term is that, forsuÆ
iently large �, R will often be nonzero in onlya few states, 
onsistent with our idea of a \simple"reward fun
tion. Moreover, while it is 
ommon pra
-ti
e in many appli
ations to hand-tune penalty 
oef-�
ients, it 
an also be shown (assuming the solutionis not already degenerate at � = 0) that as � is in-
reased, there will be a phase transition at some point

�0, su
h that the optimal R is bounded away from 0for � < �0, and R = 0 for � > �0. Thus, if we wantedto 
hoose � automati
ally, � = ��0 (a value just beforethe phase transition, perhaps found via binary sear
hon �) would be an appealing 
hoi
e, sin
e it is givesthe \simplest" R (largest penalty 
oeÆ
ient) su
h thatR is not zero everywhere (and in parti
ular so that Rdoes at least partially \explain" why � is optimal).Putting it all together, our optimization problem is:maximize PNi=1mina2fa2;::: ;akg f(P a1(i)�P a(i)) (7)(I � 
P a1)�1R	� �jjRjj1s:t: (P a1 �P a) (I � 
P a1)�1R � 08a 2 A n a1jRij � Rmax; i = 1; : : : ; Nwhere P a(i) denotes the ith row of P a. Clearly, thismay easily be formulated as a linear program andsolved eÆ
iently. Se
tion 6 reports on simple experi-ments using this algorithm.4. Linear Fun
tion Approximation inLarge State Spa
esWe now 
onsider the 
ase of in�nite state spa
es.Apart from some measure-theoreti
 assumptions andminor regularity 
onditions (whi
h we will ignore inthis paper), in�nite-state MDPs may be de�ned inmu
h the same way as �nite-state MDPs were in Se
-tion 2. For the sake of 
on
reteness, we restri
t our-selves to the 
ase of S = Rn . We will assume the avail-ability of a subroutine for approximating the value ofa poli
y, V �, for any parti
ular MDP.In this setting, the reward fun
tion R is now a fun
tionfrom S = Rn into the reals, and a general solution toinverse reinfor
ement learning would require workingwith this spa
e of all fun
tions Rn 7! R. While the
al
ulus of variations does give us some tools for opti-mizing over this spa
e, it is often diÆ
ult to work withalgorithmi
ally. Hen
e, we 
hoose instead to use a lin-ear approximation for the reward fun
tion, expressingR a

ording toR(s) = �1�1(s) + �2�2(s) + � � �+ �d�d(s) (8)where �1; : : : ; �d are d �xed, known, bounded basisfun
tions mapping from S into R, and the �i are theunknown parameters that we want to \�t."Sin
e R is again linear in the variables being optimized,it is no surprise that a linear programming formulationapplies here as well. Let V �i denote the value fun
tionof the poli
y � in the MDP when the reward fun
-tion is R = �i. By the linearity of expe
tations, thevalue fun
tion when the reward fun
tion R is given by



Equation (8) is thereforeV � = �1V �1 + � � �+ �dV �d : (9)Using this fa
t and Theorem 2, the reader may easilyverify (using essentially the argument in Theorem 3'sproof,) that for R to make the poli
y �(s) � a1 opti-mal, the appropriate generalization of (4) is the 
on-dition thatEs0�Psa1 [V �(s0)℄ � Es0�Psa [V �(s0)℄ (10)for all states s and all a
tions a 2 A n a1. From Equa-tion (9), we know V �(s) is linear in the 
oeÆ
ients �i.Hen
e, we have a set of linear 
onstraints on the �is.There are however two problems with the 
urrent for-mulation. The �rst is that, for in�nite state spa
es,there are in�nitely many 
onstraints of the form inEquation (10), making it hard or impossible to 
he
kthem all. Algorithmi
ally, we 
ir
umvent this problemby sampling only a large but �nite subset S0 of thestates, and using this 
onstraint only at those statess 2 S0. The se
ond problem, whi
h is a more sub-tle one, is that sin
e we have restri
ted ourselves touse the linear fun
tion approximator in Equation (8)to express R, we may no longer be able to expressany reward fun
tion (other than the trivial R = 0) forwhi
h � is optimal. Nevertheless, even in this 
ase, wewould like to do as well as we 
an using the linear fun
-tion approximator 
lass, and so as a 
ompromise, wemay be willing to relax some of the 
onstraints (10),paying a penalty when they are violated.Our �nal linear programming formulation is then:maximizePs2S0 mina2fa2;::: ;akgfp(Es0�Psa1 [V �(s0)℄� Es0�Psa [V �(s0)℄)gs:t: j�ij � 1; i = 1; : : : ; dwhere we remind the reader that V � is an impli
itfun
tion of the �is as given by Equation (9), and S0 isthe subsample of states. Here, p is given by p(x) = xif x � 0, p(x) = 2x otherwise, and penalizes viola-tions of the 
onstraints (10) (where 2 is penalty weightthat was heuristi
ally 
hosen; this was a parameter towhi
h our results did not seem very sensitive, withmoderately larger values usually giving quite similarresults).5. IRL from Sampled Traje
toriesThis se
tion addresses the IRL problem for the morerealisti
 
ase where we have a

ess to the poli
y � onlythrough a set of a
tual traje
tories in the state spa
e.For this, we also do not require an expli
it model ofthe MDP, though we do assume the ability to �nd anoptimal poli
y under any reward of our 
hoi
e.

We �x some initial state distribution D, and assumethat for the (unknown) poli
y �, our goal is to �nd Rsu
h that � maximizes Es0�D[V �(s0)℄ (where the sub-s
ript of the expe
tation denotes that the expe
tationis with respe
t to s0 drawn a

ording to D). To sim-plify notation, we'll assume that there is only one �xedstart state s0. (This is in fa
t w.l.o.g., sin
e s0 
an bea \dummy" state whose next-state distribution underany a
tion is D.) As with the previous algorithm forin�nite state spa
es, we assume R will be expressedusing a linear fun
tion-approximator 
lass.We assume that we have the ability to simulate tra-je
tories in the MDP (from the initial state s0) underthe optimal poli
y, or under any poli
y of our 
hoi
e.For ea
h poli
y we will 
onsider (in
luding the opti-mal one), we will need a way of estimating V �(s0) forany setting of the �is. To do this, we �rst exe
utem Monte Carlo traje
tories under �. Then, for ea
hi = 1; : : : ; d, de�ne V̂ �i (s0) to be what the average em-piri
al return would have been on these m traje
toriesif the reward had been R = �i. For example, if we takeonly m = 1 traje
tories, and if that traje
tory visitedthe sequen
e of states (s0; s1; : : : ), then we have:V̂ �i (s0) = �i(s0) + 
�i(s1) + 
2�i(s2) + � � �In general, V̂ �i (s0) would be the average over the em-piri
al returns of m su
h traje
tories.2 Then, for anysetting of the �is, a natural estimate of V �i (s0) is:V̂ �(s0) = �1V̂ �1 (s0) + � � �+ �dV̂ �d (s0) (11)As in the previous algorithm's derivation, this is jus-ti�ed by the fa
t that V �(s0) = �1V �1 (s0) + � � � +�dV �d (s0). We now des
ribe the algorithm.To start o� the algorithm, we �rst �nd value estimatesas des
ribed above for ��, and for the \base 
ase" pol-i
y �1, whi
h is in our 
ase a randomly 
hosen poli
y.The \indu
tive step" of the algorithm is as follows:We have some set of poli
ies f�1; : : : ; �kg, and wantto �nd a setting of the �is so that the resulting rewardfun
tion (hopefully) satis�esV ��(s0) � V �i(s0); i = 1; : : : ; k (12)As in the previous algorithm, we modify the obje
tive2In pra
ti
e, we also trun
ate the traje
tories after alarge but �nite number H of steps. Be
ause of dis
ount-ing, this introdu
es only a small error into the approxima-tion; for example, if H = H� = log
(�(1 � 
)=Rmax), the�-horizon time, then this trun
ation introdu
es at most �error into the estimates. If one is unhappy with this ap-proximation, there is also a way to exe
ute only a �nite-length traje
tory of expe
ted length O(H�), but so thatwe still obtain an unbiased estimate of the true in�nite-horizon reward (Kearns et al., 1999); that method 
an alsobe used here.
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Figure 1. Top: 5x5 grid world with optimal poli
y. Bottom:True reward fun
tion.slightly, so that the optimization be
omes:maximize kXi=1 p�V̂ ��(s0)� V̂ �i(s0)�s.t. j�ij � 1; i = 1; : : : ; dwhere, as before, p(x) = x if x � 0, and p(x) = 2xif x < 0, so that violations of the 
onstraints (12) arepenalized (where 2 is, on
e more, a heuristi
ally 
hosenparameter, to whi
h our results again did not seemextremely sensitive). Note that V̂ �i(s0) and V̂ ��(s0)above are just (impli
it) linear fun
tions of the �isas given in Equation (11), and hen
e this problem iseasily solved via linear programming.The above optimization gives a new setting of the �isand hen
e a new reward fun
tion R = �1�1+ � � ��d�d.We then �nd a poli
y �k+1 that maximizes V �(s0)under R, add �k+1 to the 
urrent set of poli
ies, and
ontinue (for some large number of iterations, until we�nd an R with whi
h we are \satis�ed").6. ExperimentsIn our �rst experiment, we used a 5� 5 grid worldwhere the agent starts from the lower-left grid square,and has to make its way to the (absorbing) upper-right grid square, whereupon it re
eives a reward of1. The a
tions 
orrespond to trying to move in the
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Figure 2. Inverse RL on the 5� 5 grid. Top: � = 0. Bot-tom: � = 1:05.four 
ompass dire
tions, but are noisy and have a 30%
han
e of resulting in moving in a random dire
tioninstead. An optimal poli
y is shown at top in Figure 1,together with the true reward fun
tion. The inversereinfor
ement problem is that of re
overing the rewardstru
ture given the poli
y and problem dynami
s.Running the algorithm des
ribed in Se
tion 3.2 withno penalty term, we obtain the reward fun
tion shownin Figure 2 (top). While it has 
learly re
overed mostof the reward stru
ture, it is still slightly \bumpy."Some of this bumpiness is hard to avoid, and 
omesfrom arbitrary symmetry-breaking in the 
hosen pol-i
y. However, with the penalty 
oeÆ
ient � set to avalue just below the phase transition as dis
ussed ear-lier, we obtain the se
ond reward fun
tion in Figure 2,whi
h is very 
lose to the true reward.3Our next experiment was run on the well-known\mountain{
ar" task, a 
artoon of whi
h is shown inFigure 3. The true, undis
ounted, reward is -1 per-step until we rea
h the goal at the top of the hill, andthe state is the 
ar's x-position and velo
ity. Sin
e thestate spa
e is 
ontinuous, we used the version of ouralgorithm des
ribed in Se
tion 4. We 
hose the fun
-tion approximator 
lass for the reward to be fun
tions3Interestingly, intermediate values of � su
h as 0:5 didnot give \smooth" looking fun
tions at all. In retrospe
t,this is not too surprising: small � results in many valuesnear �1; large � results in many values near 0; and inter-mediate � has a mix of the two.
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Figure 3. Cartoon of the mountain{
ar problem. (Not tos
ale.)of the 
ar x-position only, with the 
lass 
onsisting ofall linear 
ombinations of 26 evenly spa
ed Gaussian-shaped basis fun
tions. Giving the optimal poli
y4 toour algorithm, a typi
al reward fun
tion found by itis shown in Figure 4a. (Note the s
ale on the y-axis.)Clearly, the solution has nearly perfe
tly 
aptured theR = �
 stru
ture of the reward.For a more 
hallenging problem, we also reran the ex-periment with the true reward 
hanged to be 1 in aninterval [-0.72, -0.32℄ 
entered around the bottom ofthe hill and 0 everywhere else, and 
 = 0:99. In thisproblem, the optimal poli
y is to go as qui
kly as pos-sible to the bottom of the hill and park there. (Thisis not always possible be
ause if, for example, we arenear the top of the hill on the right and moving tooqui
kly, then we may shoot o� the right end of the hilland enter the absorbing state no matter how hard webraked.) Running our algorithm on this new problem,a typi
al solution is shown in Figure 4b. By and large,it has su

essfully re
overed the main stru
ture of thereward being large and positive around the spe
i�edinterval; it also has an artifa
t on the right side, webelieve from the e�e
t of unavoidably \shooting o�"the right end sometimes. Nevertheless, we think thesolution shown is a fairly good one for the problem.Our �nal experiment applied the sample-based algo-rithm to a 
ontinuous version of the 5� 5 grid world.More pre
isely, the state was [0; 1℄� [0; 1℄, and the ef-fe
t of ea
h of the four 
ompass-dire
tion a
tions isto move the agent 0.2 in the intended dire
tion, afterwhi
h uniform noise in [�0:1; 0:1℄ is added to ea
h 
o-ordinate, and the state is �nally trun
ated if ne
essaryto keep it within the unit square. The true reward was1 in the (non-absorbing) square [0:8; 1℄� [0:8; 1℄, and0 everywhere else, and 
 = 0:9. The fun
tion approx-4This is as determined by a �ne 120x120 dis
retizationof the state spa
e. The fun
tions V �i , needed by the algo-rithm, were also found this way. To run the algorithm, weused a sample of states of size jS0j = 5000, not 
ountingstates that did not give nontrivial 
onstraints.
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Figure 4. Typi
al solutions found by IRL for themountain{
ar. Top: Original problem (note s
ale on y-axis). Bottom: Problem of parking at bottom of hill.imator 
lass 
onsisted of all linear 
ombinations of a15�15 array of two-dimensional Gaussian basis fun
-tions. The initial state distribution D was uniformover the state spa
e, and our algorithm was run usingm = 5000 traje
tories, ea
h of 30 steps, to evaluateea
h poli
y. When needed (su
h as to �nd the \op-timal" poli
y for 
omparison), the MDP was solvedbased on a 50�50 dis
retization of the state spa
e.Running this experiment, the solution found by our al-gorithm was usually already reasonable after just 1 it-eration, and by about 15 iterations, the algorithm hadusually settled on fairly good solutions. We 
omparedthe �tted reward's optimal poli
y with the true opti-mal poli
y, 
al
ulating the fra
tion of the state spa
eon whi
h their a
tion 
hoi
es disagree (Figure 5, top).We found dis
repan
ies typi
ally between 3% and 10%;with many distin
t near-optimal poli
ies, su
h varia-tion is to be expe
ted. Perhaps a more appropiatemeasure of our algorithm's performan
e is to 
omparethe quality of the �tted reward's optimal poli
y withthe quality of the true optimal poli
y. (Quality is of
ourse measured using the true reward fun
tion!) Usu-ally by about 15 iterations of the algorithm, our evalu-ations (whi
h used 50000Monte Carlo trials of 50 stepsea
h) were unable to dete
t a statisti
ally signi�
antdi�eren
e between the value of the true \optimal pol-i
y" (about 6.65) and the value of the �tted reward'soptimal poli
y (Figure 5, bottom).
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Figure 5. Results on the 
ontinuous grid world, for 5 runs.Top: Fra
tion of states on whi
h the �tted reward's opti-mal poli
y disagrees with the true optimal poli
y, plottedagainst iteration number. Bottom: The value of the �ttedreward's optimal poli
y. (Estimates are from 50000 MonteCarlo trials of length 50 ea
h; negligible error-bars).7. Con
lusions and Future workOur results show that the inverse reinfor
ement learn-ing problem is soluble, at least for moderate-sized dis-
rete and 
ontinuous domains. A number of open ques-tions remain to be addressed:� Potential-based shaping rewards (Ng et al., 1999)
an produ
e reward fun
tions that make it dra-mati
ally easier to learn a solution to an MDP,without a�e
ting optimality. Can we design IRLalgorithms that re
over \easy" reward fun
tions?� In real-world empiri
al appli
ations of IRL, theremay be substantial noise in the observer's mea-surements of the agent's sensor inputs and a
-tions; moreover, the agent's own a
tion sele
tionpro
ess may be noisy and/or suboptimal. Finally,there may be many optimal poli
ies, of whi
h onlya few are observed. What are appropriate metri
sfor �tting su
h data?� If behaviour is strongly in
onsistent with optimal-ity, 
an we identify \lo
ally 
onsistent" rewardfun
tions for spe
i�
 regions in state spa
e?

� How 
an experiments be designed to maximize theidenti�ability of the reward fun
tion?� How well does our algorithmi
 approa
h 
arry tothe 
ase of partially observable environments?A
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