
Statistical Visual Language Models for Ink Parsing 
Michael Shilman, Hanna Pasula, Stuart Russell, Richard Newton 

 

Department of Computer Science 
University of California at Berkeley 

Berkeley, CA 94720 
{michaels, pasula, russell, newton}@eecs.berkeley.edu 

 
 
 

 

Abstract1 
In this paper we motivate a new technique for automatic 
recognition of hand-sketched digital ink. By viewing sketched 
drawings as utterances in a visual language, sketch 
recognition can be posed as an ambiguous parsing problem.  
On this premise we have developed an algorithm for ink 
parsing that uses a statistical model to disambiguate. Under 
this formulation, writing a new recognizer for a visual 
language is as simple as writing a declarative grammar for the 
language, generating a model from the grammar, and training 
the model on drawing examples. We evaluate the speed and 
accuracy of this approach for the sample domain of the SILK 
visual language and report positive initial results.  

Introduction 
Since Ivan Sutherland pioneered pen-based computing with 
his SketchPad system over three decades ago (Sutherland 
1963), there has been a widely-held vision of unencumbered 
tablet computers that present the feel of interactive, smart 
paper. Over years, we have seen numerous prototype 
systems that allow users express themselves directly in an 
appropriate syntax for different application domains, 
ranging from as flow-charts (Gross 1994) to mathematics 
(Matsakis 1999) to music notation (Blostein and Haken 
1999). Even less structured domains like user interface and 
web page design can have their own domain-specific visual 
notation (Lin et al. 2000). Researchers have shown that such 
sketch-based applications can combine many of the benefits 
of paper-based sketching with current electronic tools to 
enable important new creative and collaborative usage 
scenarios (Landay and Myers 1995). 

Unfortunately, while we are on the verge of having suitable 
mass-market hardware devices to support the pen computing 
vision, we lack the software technology to adequately 
implement many of the most useful software applications 
that will run on these devices. This is not to say that 
researchers haven’t built a variety of toolkits to support 

sketch-based application prototyping. Existing toolkits 
support digital ink capture and storage, facilities for 
interpreting and beautifying sketched ink (Hong and 
Landay 00), and even sophisticated reusable schemes for 
user correction of incorrect interpretations (Mankoff, 
Hudson, and Abowd 2000). However, we believe that the 
problem of robust sketch recognition has been largely 
ignored and is crucial to the ultimate success of sketch-
based user interfaces in the real world. The goal of this 
research is to move beyond prototyping and push 
recognition accuracies to a point where these systems are 
useful and predictable to end users. 
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Our work is based on the intuition that considering 
multiple ambiguous interpretations in a well-characterized 
syntactic context will result in far more accurate 
interpretations.  We formalize this intuition in a visual 
language parsing framework, and describe an initial 
solution based on a new statistical disambiguation 
technique. In our implementation of this approach, a user 
specifies a visual language syntax in a declarative grammar, 
automatically generates a parser from the specification, and 
trains the parser on a collection of drawing examples.  For 
a representative visual language we compare a standard 
ambiguous parsing algorithm to our statistically-
augmented version and begin to quantify the performance 
and accuracy benefits that come with a formal statistical 
model.  In addition to basic improvements in recognition 
accuracy, the approach provides a simple way to trade-off 
accuracy for speed. 
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Figure 1.  Hand-sketched SILK diagrams. 



To demonstrate our technique, we have implemented a 
recognizer for the SILK sketched visual language (Landay 
and Myers 1995). SILK is a tool that allows users to sketch, 
annotate, and evaluate graphical user interfaces in digital ink, 
combining digital interactivity with the ease and flexibility 
of paper. We use SILK examples throughout the paper to 
illustrate points of our approach. 

Previous Work 
We suggest that current approaches to sketch recognition all 
suffer from fundamental limitations in the accuracy they can 
achieve due to their naïve treatment of the inherent 
ambiguity in sketched drawings. Popular recognition 
algorithms such as Rubine’s (Rubine 1991) recognize 
shapes from individual strokes and are crippled by their lack 
of contextual information. Recognition systems that 
consider multiple strokes often employ some variant of a 
parsing algorithm, in which a series of pattern matching 
rules are fired hierarchically based on recognition of single 
strokes (Helm, Marriot, and Odersky 1991, Gross 1996, 
Landay 1996). In fact, most existing ink parsing approaches 
are adapted from algorithms originally designed to operate 
on unambiguous tokens, such as text typed in at the 
keyboard or symbols dragged from a palette. However, 
sketched ink is inherently ambiguous: a user-drawn square 
might easily be misinterpreted as a circle if it is drawn with 
rounded corners, or a circle might be misinterpreted as a 
sloppily-drawn square. Without intelligent treatment of this 
and other forms of drawing ambiguity, accurate sketch 
recognition is not possible. 

To deal with the inherent ambiguity in sketched drawings, a 
recognizer must use context.  Visual languages (Marriot and 
Mayer 1997) provide such a context. In this view, a drawing 
is a message communicated in sketched ink, and the 
recognizer is a decoder for that message. Formal language 
theory provides a well-understood and accepted language 
for describing such messages (Aho and Ullman 1972).  In 
fact, the sketch recognition systems described in (Helm, 
Marriot, and Odersky 1991, Gross 1996, Landay 1996) were 
all based on variants of visual language grammars. However, 
although these prior efforts provide a context for resolving 
ambiguity, their use of grammars was primarily as a concise 
way to specify valid visual structures, and did not focus on 
ambiguity. 

In contrast, there are plenty of other fields that have dealt 
with ambiguity in various levels of formality.  For instance, 
ambiguity is a staple of linguists and formal language 
theorists. As a simple example, in the sentence “He saw the 
teacher with the glasses,” the phrase “with the glasses” 
could modify either the noun “teacher” or the verb “to see.”  
Similarly, visual languages have their own set of common 
ambiguities. In his work on diagram parsing for scientific 
document analysis, Futrelle enumerates numerous forms of 

ambiguity in typeset diagrams, categorizing them as lexical 
or structural (Futrelle 1999). 

Lexical ambiguities are ambiguities at the level of the 
terminal symbol.  For instance, in the context of a drawing, 
an arrow can be a vector (with position, orientation, and 
magnitude), a transition (as in a finite-state diagram), or a 
designator (pointing to an object). 
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Figure 2. A sketched diagram containing several 
examples of ambiguity. 

Structural ambiguities occur at non-terminal symbols and 
involve spatial relationships between objects: 

• Attachment ambiguity is typified by multiple 
interpretations of what a text element is labeling (Figure 
2a) 

• Gap ambiguities occur when gaps in the diagram 
imply omitted values for which the reader will choose 
the correct filler (Figure 2b).   

• Role ambiguities occur when the structure of part of 
the picture is clear, but its role is not.  For instance, in 
Figure 2c, the legend could easily be mistaken for more 
data. 

• Segmentation ambiguities occur when single terminal 
symbols are used to represent multiple syntactic entities.  
For instance in Figure 2d, the tick marks at the origin 
could simply be continuations of the axis line, rather 
than distinct marks on their own. 

• Occlusion ambiguities occur when visual occlusion 
gives rise to multiple interpretations of the scene. 

Sketched visual languages add at least two new forms of 
ambiguity that must be considered when parsing: 

• Label ambiguity, in which the labeling of basic shapes 
is ambiguous, as in the square-circle case mentioned 
earlier. 

• Attribute ambiguity, in which there is uncertainty 
about any attributes of the shapes.  For example, the 
point that defines the tip of an arrow-head is not given 
explicitly by the user, and must be derived by the low-
level recognizer. 



An explicit treatment of ambiguity in visual languages 
enables the application of existing disambiguation 
techniques. For instance, many of the documented 
disambiguation techniques for string languages generalize to 
attribute grammars (Maddox 1997), which are a flexible 
way to carry context in a parsing operation. Statistical 
models are another common disambiguation technique for 
string languages. With this approach, ambiguity is 
represented as probability distributions over variables that 
affect parsing results. These models are particularly useful 
for domains with continuous components, such as speech 
and handwriting recognition. For example, Hidden Markov 
Models (Rabiner and Juang 1996) and N-grams have been 
used successfully in both domains. 

Our Approach 
In the previous section, we established ambiguity as a key 
problem in sketch recognition and outlined the ways 
ambiguity has been handled in the past. Our work combines 
a visual language formalism reminiscent of (Helm, Marriott, 
and Odersky 1991) with a novel statistical model for 
disambiguation.  In this section, we describe our approach in 
detail. We start with an overview of the system, including 
our visual language specification language and examples. 
Next, we describe our statistical model and relate this to the 
visual language. Finally, we describe the parsing algorithm 
which performs inference on the statistical model. 

Overview  
In our system, the process of constructing a new recognizer 
for a visual language consists of writing a declarative 
grammar for the language, generating a model from the 
grammar, and training the model on example drawings.  The 
resulting recognizer is a software component that accepts 
raw ink strokes as input, and returns parse trees as its output 
(Figure 3).  The recognizer can operate on a set of strokes 
(in batch), or incrementally on individual strokes as they are 
added, although the details of these two modes are outside 
the scope of this paper. 
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Figure 3. High-level system schematic. 

As in (Helm, Marriott, and Odersky 1991), our visual 
language specification is a declarative context-free 
grammar.  Each rule in the grammar consists of a left-hand 
side, which is a label, and a right hand side which is a set 
of <name, label> pairs representing entities on the page 
and a set of spatial constraints amongst these entities. For 
example, the “scrollbar” rule from the SILK language is 
represented in the following way: 

 

vscroll ::= border:vrect handle:square 
upArrow:upTri downArrow:downTri { 
  // top and equal width 
  dist(upArrow.NORTH,border.NORTH). 
    range(0,20); 
  widthRatio(upArrow,border).range(.4,1.1); 
     
  // bottom side and equal width 
  dist(downArrow.SOUTH,border.SOUTH). 
    range(0,20); 
  widthRatio(downArrow,border). 
    range(.4,1.1); 
     
  // center and equal width 
 deltaX(handle.CENTER,border.CENTER). 
   range(-20,20); 
 deltaY(handle.CENTER,border.CENTER). 
   range(-30,30); 
 widthRatio(handle,border).range(.4,1.1); 
} 

 

In this example, the constraints between variables are 
represented as hand-coded thresholds. These thresholds are 
analogous to those used in existing systems, such as 
(Landay 1996). They are used initially to help generate 
ground truth data for training the model, but the primary 
purpose of constraints is to indicate which spatial 
relationships are significant for the statistical model, which 
will override these initial values. 

The full set of relations that are expressible in the grammar 
is: 

• Distance, DeltaX, DeltaY – Distance measures 
between sites on an entity 

• Angle – Angles between sites on an entity 

• WidthRatio, HeightRatio – Size ratios between entities 

• Overlap – Degree of overlap between entities 

While these relations are not expressive enough to capture 
all visual languages, we believe that it is sufficient to 
demonstrate our approach on meaningful examples. 

Statistical Model 
No previous work has applied a statistical language model 
approach to contextual disambiguation of sketched 
drawings.  Yet such an approach seems to be a natural fit 
for the ambiguity characteristics of sketched drawings (i.e. 
noise on continuous variables). Thus, given a visual 
language grammar, the primary contribution of this work is 
to synthesize a statistical model for disambiguation.  



Statistical parsing algorithms work by calculating the 
maximum likelihood parse of its inputs. That is, given a 
grammar annotated with probability distributions and an 
observed page of ink, the parser determines the highest-
confidence invocation of rules to generate that ink. For 
string parsing, the Viterbi algorithm is a standard method of 
calculating this parse (Rabiner and Juang 1996). However, 
to our knowledge there are no documented analogs for 
statistical visual language parsing. 

Inspired by statistical string parsing techniques, our model 
is based on Bayesian statistics. In other words, the model is 
generative, meaning roughly that it encodes p(ink | label) 
and p(label) and uses this to derive p(label | ink) for 
observed ink.  The application of this concept is seen clearly 
in the naïve Bayesian classifier, which is a common 
technique for statistical classification, and a precursor for 
our own model (Jordan and Bishop 2000).  The classifier 
determines a label from a series of observed features.  In the 
case of basic shape recognition, the label is a value such as 
“square” or “circle”, and the features are scalar values 
measured from the ink such as aspect ratio, number of 
corners, total curvature, etc.  The model encodes each 
p(label) and p(featurei | label), which are distributions 
learned from a training set.  Visually, the relationship 
between the label and each of the features can be 
represented in the following way, using the “graphical 
model” notation of (Jordan and Bishop 2000): 

…

feature 1

feature 2
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Figure 4. Graphical model for a naïve Bayesian classifier. 

In this representation, filled nodes are observed variables, 
empty nodes are unobserved, and edges represent 
dependence relationships. The figure shows that the features 
are only related to one another through the label, and are not 
directly dependent on one another.  In general, this may not 
be the case, but practically this assumption does not cost too 
much in final accuracy. Given this assumption, p(label | 
features) can be calculated through a simple application of 
Bayes rule: 
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In this derivation, l is the class label and fi is the i’th feature.  
The values p(l) and p(fi | l) are obtained by some form of 
parameter estimation, such as training or guess. The first 
step of the derivation is a direct application of Bayes rule.  

To get from the first step to the second, the structure of the 
graphical model is used to separate the numerator into a 
product of simpler conditionals, and we normalize over all 
possible class labels to derive the denominator. 

Our extension of this concept to visual language parsing 
encodes features for basic shape recognition, borrowed 
from (Rubine 1991), as well as the spatial relations from 
the grammar. In our model, the spatial relations given by 
the grammar are converted from hand-coded ranges into 
learned Gaussian probability distributions: 
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Figure 5. Variables such as distance typically 
represented in parsers as thresholded ranges can also 

be viewed as statistical distributions. 

For example, a statistical representation of the scrollbar 
rule from above would be: 

vscroll ::= border:vrect handle:square upArrow:upTri 
dnArrow:downTri { 
    // top and equal width 
    
dist(upArrow.NORTH,border.NORTH).gaussian(11.3,5.0); 
    widthRatio(upArrow,border).gaussian(.6,.4); 
     
    // bottom side and equal width 
    dist(dnArrow.SOU,border.SOU).gaussian(18.7,10.1); 
    widthRatio(downArrow,border).gaussian(.8,1.1); 
     
    // center and equal width 
    deltaX(handle.CENTER,border.CENTER).gaussian(-
5.3,21.5); 
    
deltaY(handle.CENTER,border.CENTER).gaussian(5.5,30.1); 
    widthRatio(handle,border).gaussian(.7,.9); 
} 

 

Using the graphical model notation above, our model is 
represented as: 

Basic
Labels Basic

Features

Composite
Features

Composite
Label

N

M

P

 
Figure 6. Graphical model for our composite statistical 
representation of a visual language. 



To simplify the diagram, we have added “plates” as 
syntactic sugar for multiplicity.  In other words, the sub-tree 
containing the basic labels and features is equivalent to the 
Naïve Bayesian Classifier.  Basic features are those of 
(Rubine 1991). Basic labels are shapes, such as square, 
circle, etc.  Composite features are our spatial relations 
encoded in the grammar, such as distance, overlap, etc. 
Composite labels are the right-hand sides in the grammar, 
such as vscroll. This model can be extended hierarchically 
upward to capture the full visual language. To perform 
inference on the model, an analogous derivation to that of 
the naïve Bayesian classifier yields: 
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where L is the composite label, li is the i’th basic label, and 
Fj is the j’th composite feature. 

Parsing Algorithm 
As introduced in the previous section, the purpose of the 
statistical model is to relate observed pen strokes to 
probabilities on parse tree nodes.  However, to evaluate the 
model on a particular page of ink, we need some an 
approximation technique to tractably search through the 
different possibilities. We accomplish this through a simple 
parsing algorithm. 

Our parsing algorithm is implemented in a somewhat naïve 
way. Rather than focusing on reducing the two-dimensional 
parsing algorithm to a standard LR parsing algorithm or 
making use of spatial locality to prune the search, we 
focused on a simple incremental approach.  Each time a 
symbol is added to the scene, only parses that are relevant to 
that new symbol are added to the parse tree (Figure 7). 

 
Figure 7. An incremental parse only computes the 

necessary new nodes in the tree. 

 

This algorithm is implemented by the following piece of 
pseudocode. 
 
NodeList parse(Node n) { 
  NodeList out = new NodeList(); 
  foreach Rule r with n’s label in right hand side { 
    foreach NodeSet s containing n whose 
            labels match r’s right hand side { 
      Node n2 = r.match(s); 
      if(n2 != null && n2.getConfidence() > 
         THRESHOLD_CONFIDENCE) { 
        out.concat(parse(n2)); 
      } 
    } 
  } 
  return out; 
} 
 

In this code, the only “black box” is the rule’s match 
method.  The match method takes as its argument a set of 
parse tree nodes, and returns a new parse tree node that has 
been added to the tree if the given set matches the rule’s 
criteria.  Otherwise it returns null to denote that no match 
has been made. Typically match methods are synthesized 
from the model, although in our implementation it is also 
possible to hand-code them for more fine-grained control 
of what constitutes a match. 

Each node also has a confidence attached, computed using 
the statistical model as described in the previous section.  
This confidence is compared to a parameter which prunes 
low-confidence nodes. The experimental part of this 
project, described below, measures the effects of varying 
this parameter on the speed and accuracy of the parsing 
algorithm. 

Initial Evaluation 
Our evaluation was conducted on a grammar for a larger 
set of SILK widgets.  The grammar included rules for 
some common widgets, including buttons, scrollbars, 
check boxes, radio buttons, menus, and panels, as well as 
logical layouts in which to combine them. A small set of 
slightly over 600 user files was collected from a handful of 
users and manually labeled. We used 80% of the files to 
train the statistical model and the rest of the files to test our 
approach. 

The speed and accuracy of the system was evaluated 
relative to a thresholded parsing algorithm, reminiscent of 
numerous existing approaches such as (Helm, Marriott, 
and Odersky 1991). As described in the previous section, 
our algorithm can be tuned with a pruning parameter. We 
found that for a wide range of parameter values it 
outperforms existing work in both recognition accuracy 
and execution speed. These results are summarized below: 
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This figure depicts the accuracy of our recognizer versus 
1/speed.  The accuracy is measured as percentage correct 
stroke labeling (Top1) and also whether the correct labeling 
was in the top three choices, for ease of correction (Top3). 
1/Speed is measured as number of nodes visited.  We 
measured it this way rather than in user time to normalize 
out implementation details.  The curves represent different 
thresholds, and the stars represent the unassisted Rubine’s 
recognizer with a thresholded parser. Because the stars 
occur below the curves, we conclude that for many values of 
the threshold parameter our statistical approach is a 
substantial improvement over its thresholded equivalent. 

Subjectively, we found that nearly all of the errors 
committed by this algorithm ultimately resulted from 
nonsensical classification results returned by the basic shape 
classification from Rubine’s feature set.  These typically 
occurred in situations where the user sketched very quickly 
and the basic shape was significantly distorted.  In these 
cases, the algorithm either pruned those choices early on, or 
couldn’t compensate for this error with context due to some 
ambiguity in the spatially-defined choices. 

As for real execution speed, the algorithm runs in real-time 
for the small drawings (< 100 strokes) that we tested it with. 
In our limited experience with unconstrained freeform notes 
containing both writing and drawings, the number of strokes 
is anywhere from 400 average to 5000 maximum. It is 
unclear whether the current algorithm would scale to larger 
files such as this, though we are aware of other 
approximation algorithms from the Machine Learning 
community, such as MCMC (Neal 1993), which might be 
preferable alternatives for our simple parsing algorithm. 

Conclusions and Future Work 
In this paper, we pose sketch understanding as a visual 
language parsing problem. We formalize the ambiguity of 
sketched visual languages in a new way and motivate the 
use of statistical disambiguation techniques to resolve it. We 
then present a practical methodology for building statistical 
models of context-free visual languages, as well as a parsing 
algorithm that can trade off speed and accuracy. We have 

used this approach to build a parser for the SILK visual 
language. According to initial experimental results, the 
approach appears to be both faster and more accurate than 
previous grammar-based recognition techniques when 
applied to this domain. 

We plan to expand the evaluation of work through the use 
of more sophisticated metrics and with more data over a 
broader range of visual languages. Most statistical methods 
require a significant amount of training data to start 
performing really well, and our training set was sparse. 

In addition, this work raises the following open questions: 

• Are there better statistical models for visual language 
disambiguation? 

• Can stroke sequence help disambiguate further?  Is it 
appropriate to encode this in the model? 

• Are there better ways to evaluate the model than the 
simple parsing algorithm presented here? 
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