
Local learning in probabilistic networks with hidden variables

Stuart Russell,�John Binder, Daphne Koller,yKeiji Kanazawa
Computer Science Division

University of California
Berkeley, CA 94720, USA

Abstract

Probabilistic networks, which provide compact
descriptions of complex stochastic relationships
among several random variables, are rapidly be-
coming the tool of choice for uncertain reason-
ing in artificial intelligence. We show that net-
works with fixed structure containing hidden vari-
ables can be learned automatically from data using
a gradient-descent mechanism similar to that used
in neural networks. We also extend the method
to networks with intensionally represented distri-
butions, including networks with continuous vari-
ables and dynamic probabilistic networks. Because
probabilistic networks provide explicit representa-
tions of causal structure, human experts can easily
contribute prior knowledge to the training process,
thereby significantly improving the learning rate.
Adaptive probabilistic networks (APNs) may soon
compete directly with neural networks as models in
computational neuroscience as well as in industrial
and financial applications.

1 Introduction
Intelligent systems, whether biological or artificial,require the
ability to make decisions under uncertainty using the avail-
able evidence. Several computational models exhibit some
of the required functionality. For example, neural networks,
which represent complex input/output relations using combi-
nations of simple nonlinear processing elements, are a familiar
tool in AI and computational neuroscience. Probabilistic net-
works (also called belief networks or Bayesian networks) are
a more explicit representation of the joint probability distribu-
tion characterizing a problem domain, providinga topological
description of the causal relationships among variables.

Computational models in AI are judged by two main cri-
teria: ease of creation and effectiveness in decision making.
(Cognitive science and neuroscience add the criterion of bio-
logical plausibility.) Some computational models are associ-
ated with learning algorithms that construct specific models

�This research was supported by NSF grant IRI-9058427 (PYI).
yDaphne Koller was supported by a University of California Pres-

ident’s Postdoctoral Fellowship and an NSF Postdoctoral Associate-
ship in Experimental Science.

automatically from data, adapting to reality rather than to an
expert’s conception thereof. Neural networks, for example,
use a localized gradient-descent scheme to learn the model
from the data. The resulting ease of construction and the bio-
logical plausibility of this approach have contributed signifi-
cantly to the popularity of neural networks. The drawbacks of
current learning schemes include the need for large amounts
of training data and the incomprehensibility of the resulting
models. Furthermore, many of the computational models that
are associated with a learning algorithm are not the most ef-
fective models for decision making. Probabilistic networks,
on the other hand, perform well in complex decision-making
domains such as medical diagnosis, but have usually required
a good deal of construction effort.

In this paper, we present a new learning algorithm for prob-
abilistic networks that is effective even when some of the
variables are hidden—that is, their values are not observable.
This makes probabilistic networks competitive with neural
networks in terms of ease of creation. In fact, because prob-
abilistic networks have a precise, local semantics, it is quite
possible for human experts or other computational systems
to provide prior knowledge to the learning process, thereby
reducing the need for training data. Moreover, the output of
the learning process is comprehensible to humans.

The paper begins with a basic introduction to probabilistic
models in AI. We then present the following results:

� Derivation of a gradient-descent learning algorithm for
probabilistic networks with hidden variables, where the
gradient can be computed locally by each node using in-
formation that is available in the normal course of prob-
abilistic network calculations.

� Extensions of the algorithm to handle intensionally rep-
resented distributions (such as noisy-OR nodes), con-
tinuous variables, and dynamic probabilistic networks
representing temporal processes.

� Experimental demonstration of the algorithm on small
and large networks, showing a dramatic improvement in
learning rate resulting from inclusion of hidden variables.

� Experimental demonstration of the extended algorithm
applied to a dynamic probabilistic network.

We conclude that adaptive probabilisticnetworks (APNs) may
provide an excellent tool for scientists and engineers in build-
ing complex models from noisy data. Our results also mo-
tivate the use of a much broader class of models satisfying



the basic requirements of computational neuroscience than is
commonly considered.

2 Probabilistic networks
Systems based on probability theory now dominate the fields
of expert systems and speech recognition, and are making
rapid progress in language understanding and computer vi-
sion. Here, we provide only a brief introduction. For a
thorough treatment, see Pearl [1988].

Probability theory views the world as a set of random vari-
ables X1, . . . , Xn, each of which has a domain of possible val-
ues. For example, in describing cancer patients, the variables
LungCancer and Smoker can each take on one of the values
True and False. The key concept in probability theory is the
joint probability distribution, which specifies a probability for
each possible combination of values for all the random vari-
ables. Given this distribution, one can compute any desired
probability given any combination of evidence. For exam-
ple, given observations and test results, one can compute the
probability that the patient has lung cancer.

Unfortunately, an explicit description of the joint distri-
bution requires a number of parameters that is exponential
in n, the number of variables. Probabilistic networks derive
their power from the ability to represent conditional indepen-
dences among variables, which allows them to take advantage
of the “locality” of causal influences. Intuitively, a variable
is independent of its indirect causal influences given its direct
causal influences. In Figure 1, for example, the outcome of
the X-ray does not depend on whether the patient is a smoker
given that we know that the patient has lung cancer. If each
variable has at most k other variables that directly influence
it, then the total number of required parameters is linear in n
and exponential in k. This enables the representation of quite
large problems. For example, the CPCS network [Pradhan et
al., 1994] contains 448 variables and compares well with the
world’s leading diagnosticians in internal medicine.

0.3

0.7

0.9

0.1

0.5

0.5

0.1

0.9

Smoker CoalMiner

LungCancer

PositiveXRay Dyspnea

Emphysema

Emphysema

E

~E

S C S ~C ~S C ~S~C

(a) (b)

Figure 1: (a) A simple probabilistic network showing a proposed
causal model. (b) A node with associated conditional probability
table. The table gives the conditional probability of each possible
value of the variable Emphysema, given each possible combination
of values of the parent nodes Smoker and CoalMiner.

Formally, a probabilistic network is defined by a directed
acyclic graph together with a conditional probability table
(CPT) associated with each node (see Figure 1).1 Each node

1We have described the simplest form of network. Networks
can include continuous as well as discrete variables, provided the
representation of the conditional density function is finite. CPTs

represents a random variable. The CPT associated with vari-
able X specifies the conditional distributionP(X jParents(X)).
The arcs encode probabilistic dependence in the sense that
each variable must be conditionally independent of its non-
descendants in the graph, given its parents. This constraint
implies that the network provides a complete representation
of the joint distribution through the following equation:

P(x1 . . . xn) =
n
Y

i=1

P(xi jParents(Xi)). (1)

where P(x1 . . . xn) is the probability of a particular combina-
tion of values for X1, . . . , Xn.

Once a network has been constructed, inference algorithms
operate on it to calculate probabilities for query variables
given values for evidence variables. It is important to note
that the distinction between evidence and query variables is
entirely flexible—any variable can be set and any variable
can be queried. The best exact inference algorithms typi-
cally use a transformation to Markov random fields [Lau-
ritzen and Spiegelhalter, 1988]. Stochastic approximation
algorithms using Monte Carlo simulation have also been de-
veloped [Pearl, 1988]. Although the general inference prob-
lem is likely to be of exponential complexity in the worst
case, large networks are often solvable in practice. Massive
parallelism can easily be applied, particularly with simulation
algorithms.

3 Learning probabilistic networks
How can probabilistic networks be learned from data? There
are several variants of this question. The structure of the
network can be known or unknown, and the variables in the
network can be observable or hidden in all or some of the data
points. (The latter distinction is also described by the terms
“complete data” and “incomplete data.”)

The case of known structure and fully observable variables
is the easiest. In this case, we need only learn the CPT
entries. Since every variable is observable, each data case
can be pigeonholed into the CPT entries corresponding to the
values of the parent variables at each node. Simple Bayesian
updating then computes posterior values for the conditional
probabilities based on Dirichlet priors [Olesen et al., 1992;
Spiegelhalter et al., 1993].

The case of unknown structure and fully observable vari-
ables has also received some attention. In this case, the prob-
lem is to reconstruct the topology of the network—a dis-
crete optimization problem usually solved by a greedy search
in the space of structures [Cooper and Herskovits, 1992;
Heckerman et al., 1994]. For any given proposed structure,
the CPTs can be reconstructed as described above. The result-
ing algorithms are capable of recovering fairly large networks
from large data sets with a high degree of accuracy.

In this paper, we are mostly concerned with problems in
which the structure is fixed but some variables are hidden.2

can be represented implicitly by parameterized functions instead of
explicit tables.

2We also note that an algorithm for learning CPTs on a fixed
structure with hidden variables can be applied to the general case
of hidden variables and unknown structure, by wrapping a structural
search algorithm around it. However, the structural search algorithm
must be more powerful than those described above for the fully
observablecase, since it may need to introduce new hidden variables.



This case often occurs in practice, since causal structure is a lot
easier to elicit from experts than numbers, whereas data cases
are unlikely to contain values for all the relevant variables. For
example, the causal connections between diseases and their
symptoms are often known, and medical records can easily
provide a large number of data cases. But the medical records
are not typically complete data points: the actual disease
is often not observed directly, we rarely have results for all
possible clinical tests, and so on. Furthermore, causal models
often contain variables that are sometimes inferred but never
observed directly, such as “syndromes” in medicine.

The fixed-structure, hidden-variable case has been stud-
ied by several researchers. The earliest work of which
we are aware is that by Golmard and Mallet [1991], who
describe an algorithm for learning in tree-structured net-
works. The general case of directed acyclic graphs was
addressed by Lauritzen [1991; 1995]. (See also the dis-
cussions in [Spiegelhalter et al., 1993; Olesen et al., 1992;
Spiegelhalter and Cowell, 1992].) These papers describe
the application of the EM (Expectation Maximization) algo-
rithm [Dempster et al., 1977] to probabilistic networks. EM,
like gradient descent, finds local maxima on the likelihood
surface defined by the network parameters. Lauritzen notes
some difficulties with the use of EM for this problem, and
suggests gradient descent as a possible alternative. Thiesson
is currently undertaking direct comparison of the performance
of the two approaches. A third possible approach is to use
Gibbs sampling [Heckerman, personal communication]. Bun-
tine [1994], in the course of a general mathematical analysis of
structured learning problems, also suggests that one could use
generalized network differentiation for learning probabilistic
networks with hidden variables.

As mentioned above, the gradient-descent approach for
belief network learning is closely related to neural network
learning, an analogy observed by Neal [1992]. Neal derives
an expression for the likelihood gradient in sigmoid networks
using stochastic simulation, and uses it to show that the Boltz-
mann Machine (a variety of neural network) is a special case
of a probabilistic network. The “Helmholtz machine” [Dayan
et al., in press] is a hybrid of neural network and probabilistic
network ideas. It restricts the kinds of probability distributions
that can be represented in an attempt to retain the linear-time
execution property of neural networks.

One might ask why the known-structure-hidden-variable
problem cannot be reduced to the fully observable case by
eliminating the hidden variables using marginalization (“av-
eraging out”). There are two reasons for this. First, it is not
necessarily the case that any particular variable is hidden in all
the observed cases (although we do not rule this out). Second,
networks with hidden variables can be more compact than the
corresponding fully observable network (see Figure 2). In
general, if the underlying domain has significant local struc-
ture, then with hidden variables it is possible to take advantage
of that structure to find a more concise representation for the
joint distribution on the observable variables. This, in turn,
makes it possible to learn from fewer examples.

Before describing the details of our solution,we will explain
the task in more detail. The algorithm is provided with a
network structure and initial (randomly generated) values for
the CPTs. It is presented with a set D of data cases D1, . . . , Dm.
We assume that the cases are generated independently from
some underlying distribution. In each data case, values are

H

(a) (b)

Figure 2: (a) A probabilistic network with a hidden variable, la-
belled H. (H is two-valued and the other variables are three-valued.)
The network requires 45 independent parameters. (b) The corre-
sponding fully observable network, which requires 168 parameters.

given for some subset of the variables; this subset may differ
from case to case. The object is to find the CPT parameters
w that best model the data. We adopt a Bayesian notion
of “best.” More specifically, we assume that each possible
setting of w is equally likely a priori, so that the maximum
likelihood model is appropriate. This means that the aim is to
maximize Pw(D), the probability assigned by the network to
the observed data when the CPT parameters are set to w.3

4 Gradient-descent algorithms
Our approach is based on viewing the probability Pw(D) as a
function of the CPT entries w. This reduces the problem to one
of finding the maximum of a multivariate nonlinear function.
Algorithms for solving this problem typically take small steps
on the surface whose “coordinates” are the parameters and
whose “height” is the value of the function, trying to get to the
“highest” point on the surface. In fact, it turns out to be easier
to maximize the log-likelihood function ln Pw(D). Since the
two functions are monotonically related, maximizing one is
equivalent to maximizing the other.

The simplest variant of this approach, and the one we use,
is gradient descent (also known as “hill-climbing”). At each
point w, it computesrw, the gradient vector of partial deriva-
tives with respect to the CPT entries. The algorithm then
takes a small step in the direction of the gradient. Naively,
this would be to the point w + �rw, where � is the step-size
parameter. However, we need to be more careful. We ac-
tually want to maximize Pw(D) subject to the constraint that
w consists of conditional probability values, which must be
between 0 and 1. Furthermore, in any CPT, the entries corre-
sponding to a particular conditioning case (an assignment of
values to the parents) must sum to 1. Standard results show
that taking a step in the directionrw and then renormalizing
to the constrained surface achieves the same effect. In par-
ticular, when an edge of the parameter space is reached, this
algorithm will have the effect of following it. The algorithm
terminates when a local maximum is reached, that is, when
the renormalized gradient is zero.

3Compare this to the neural network task: minimize Ew(D), the
sum of squared differences between observed and predicted data val-
ues when the network weights are set to w. It has been pointed out
that both maximum-likelihood and neural-network methods some-
times find local maxima at extreme values of their parameters, which
can cause problems. It is possible that such problems can be avoided
by carrying through the analysis for nonuniform priors.



By moving in the direction of the gradient, this simple al-
gorithm executes a greedy hill-climbing procedure. A variety
of techniques can be used to speed up this process, such as
Polak-Ribière conjugate gradient methods. Variants of this
basic technique are the standard approach for training the pa-
rameters (weights) of a neural network. Our results, along
with the results of Buntine and Neal, demonstrate a very close
connection between neural networks and probabilistic net-
works. Our results are a significant extension of Neal’s result,
since they apply to any probabilistic network.

5 Local computation of the gradient
The usefulness of gradient descent depends on our ability
to compute the gradient efficiently. This is one of the main
keys to the success of gradient descent in neural networks.
There, back-propagation is used to compute the gradient of
the function encoded by the neural network with respect to
the network parameters (i.e., the weights on the links). The
existence of a simple local algorithm for training the network
allows one to use the same network and algorithms for both
training and inference. Furthermore, the similarity to real
biological processes lends a certain plausibility to the entire
neural-network paradigm.

We now show that a similar phenomenon occurs in prob-
abilistic networks. In fact, for probabilistic networks, no
back-propagation is needed. The gradient can be computed
locally by each node using information that is available in the
normal course of probabilistic network calculations. In our
derivation, we will use the standard notation wijk to denote a
specific CPT entry, the probability that variable Xi takes on its
jth possible value assignment given that its parents Ui take on
their kth possible value assignment:

wijk � P(Xi = xij jUi = uik) (2)

First, we show that we can compute the contribution of each
case to the gradient separately, and sum the results.

@ ln Pw(D)
@wijk

=
@ ln
Qm

l=1 Pw(Dl)
@wijk

(independent cases)

=
m
X

l=1

@ ln Pw(Dl)
@wijk

=
m
X

l=1

@Pw(Dl)/@wijk

Pw(Dl)
. (3)

Now the aim is to find a simple local algorithm for computing
each of the expressions @Pw(Dl)/@wijk

Pw(Dl)
. In order to get an expres-

sion in terms of local information, we introduce Xi and Ui by
averaging over their possible values:

@Pw(Dl)/@wijk

Pw(Dl)

=

@

@wijk

�

P

j0,k0 Pw(Dl j xij0 , uik0 )Pw(xij0 , uik0 )
�

Pw(Dl)

=

@

@wijk

�

P

j0,k0 Pw(Dl j xij0 , uik0 )Pw(xij0 juik0 )Pw(uik0 )
�

Pw(Dl)

For our purposes, the important property of this expression is
that wijk appears only in linear form. In fact, wijk appears only

in one term in the summation: the term for j0 = j, k0 = k. For
this term, Pw(xij0 juik0 ) is just wijk. Hence

@Pw(Dl)/@wijk

Pw(Dl)
=

Pw(Dl j xij, uik)Pw(uik)
Pw(Dl)

=
Pw(xij, uik jDl)Pw(Dl)Pw(uik)

Pw(xij, uik)Pw(Dl)

=
Pw(xij, uik jDl)

Pw(xij juik)

=
Pw(xij, uik jDl)

wijk
(4)

This last equation allows us to “piggyback” the computation
of the gradient on the calculations of posterior probabilities
done in the normal course of probabilistic network opera-
tion. Essentially any standard probabilistic network algo-
rithm, when executed with the evidence Dl, will compute the
term Pw(xij, uik jDl) as a by-product. We are therefore able to
use a standard commercial package (Hugin) for the required
inference calculations.

The gradient vector can now be obtained as follows. We
run an inference algorithm on each data case Dl separately,
computing Pw(xij, uik jDl) for each ijk in the process. We
then sum these expressions over the different data cases l, and
divide by wijk. This is then used as outlined above. Section 7
describes results obtained from our implementation.

6 Extensions for generalized parameters
Our analysis above applies only to networks where there is
no relation between the different parameters (CPT entries)
in the network. Clearly, this is not always the case. If we
do a particular clinical test twice, the parameters associated
with these two nodes in the network should probably be the
same (even though the results can differ). In many situations,
the causal influences on a given node are related, so that
more compact representations than an explicit CPT are called
for. Viewing a CPT as a function from the parent values uik
and the child value xij to the number P(Xi = xij jUi = uik), it is
often reasonable to describe this function intensionallyusing a
small number of parameters. For example, we may choose to
describe this function as a neural network. In other contexts,
we might have more information about the structure of this
function. A noisy-or model, for example, encodes our belief
that a number of diseases all have an independent chance of
causing a certain symptom. We then have a parameter �i
describing the probability that disease i in isolation causes
the symptom. The probability of the symptom appearing
given a combination of diseases is fully determined by these
parameters. If the symptom node has k parents, the CPT for
the node can be described using k rather than 2k parameters
(assuming that all nodes are binary-valued). Using noisy-
or nodes can make an otherwise intractably large network
practical. For example, the CPCS network mentioned above
has only 8,254 parameters, but would require 133,931,430
parameters if the CPTs were defined by explicit tables.

Given that we want our network to be defined using param-
eters that are different from the CPT entries themselves, we
would like to learn these parameters from the data. Our basic
algorithm remains unchanged; rather than doing gradient as-
cent over the surface whose coordinates are the CPT entries,



we do gradient ascent over the surface whose coordinates are
these new parameters. The only issue we need to address is
the computation of the gradient with respect to these parame-
ters. As we now show, our analysis can easily be extended to
this more general case using a simple application of the Chain
Rule for derivatives. Technically, assume that the network is
defined using some vector of parameters � whose values we
are trying to adjust. Each CPT entry wijk can be viewed as a
function wijk(�). Assuming these functions are differentiable,
we obtain the following:

@ ln Pw(D)
@�m

=
X

i,j,k

@ ln Pw(D)
@wijk

�

@wijk

@�m
. (5)

Our analysis above shows how the first term in each product
can be easily computed as a by-product of any standard prob-
abilistic network algorithm. The second term requires only a
simple function application.

The ability to learn intensionally represented probabilis-
tic networks confers many advantages. First, as we argued,
certain networks are simply impractical unless we reduce the
size of their representation in this way. This is even more
important when learning such networks, since learning each
CPT entry separately would almost certainly require an un-
reasonable amount of training data. This is another instance
where our algorithm is able to utilize prior knowledge in the
right way to speed up the learning process. But even more
importantly, this ability allows us to learn networks that oth-
erwise would not fit into this framework. For example, as
we mentioned above, probabilistic networks can also contain
continuous-valued nodes. The “CPT” for such nodes must be
intensionally defined, for example as a Gaussian distribution
with parameters for the mean and the variance [Lauritzen and
Wermuth, 1989]. Equation 5 gives us the fundamental tool
needed for learning such networks.

Perhaps the most important application of Equation 5 is
in learning dynamic probabilistic networks (DPNs), i.e., net-
works that represent a temporal stochastic process. Such net-
works are typically divided into time slices, where the nodes at
each slice encode the state at the corresponding time. Figure 3
shows the coarse structure of a generic DPN. The CPTs for
a DPN include a state evolution model, which describes the
transition probabilities between states, and a sensor model,
which describes the observations that can result from a given
state. Typically, one assumes that the CPTs in each slice do
not vary over time. The same parameters therefore will be
duplicated in every time slice in the network. In this case,
we can show that Equation 5 simplifies out to the sum of
the gradients corresponding to the different instances of the
parameter. (Section 7 demonstrates the application of this
algorithm to a simple example.) As a way of modelling a par-
tially observable process, DPNs compete directly with hidden
Markov models (HMMs). DPNs allow the decomposition of
the hidden state into several variables, potentially revealing
additional structure in the process being modelled and im-
proving inductive performance. Intuitively, a DPN represents
n bits of state information using O(n) state variables, whereas
an HMM uses O(2n) states. If the state evolution model can
be described compactly in terms of the the CPTs for the state
variables, we would expect DPNs to outperform HMMs on
problems with large state spaces.

STATE EVOLUTION MODEL

SENSOR MODEL

Percept.t−2 Percept.t−1 Percept.t Percept.t+1 Percept.t+2

State.t−2 State.t−1 State.t State.t+1 State.t+2

Figure 3: Generic structure of a dynamic probabilistic network. In
an actual network, there may be many state and sensor variables in
each time slice.

7 Experimental results
We report on three experiments. The first shows the impor-
tance of prestructuring the probabilistic network using hidden
variables. The second shows the effectiveness of the algo-
rithm on a large network with many hidden variables. The
third demonstrates the capability for learning a model of a
temporal process with hidden variables.

The basic tools we need are a probabilistic inference en-
gine and a gradient-descent algorithm. For the former, we
use Hugin in the first two experiments and our own stochastic
simulation system for the third experiment. For the latter, we
have adapted the conjugate gradient algorithm [Price, 1992]
to keep the probabilistic variables in the legal [0,1] range as
described above. This uses repeated line minimizations (with
direction chosen by the Polak–Ribière method) and a heuristic
termination condition to signal a maximum. In each exper-
iment, training cases are generated by stochastic sampling
from the distribution defined by each network for the observ-
able variables; new training cases are added incrementally
into the existing training set.

The performance of the algorithm is measured as a function
of the number of training cases (X-axis). Among the possible
choices for the performance metric (Y-axis), the most obvi-
ous would be the probability P(D0) assigned by the learned
network to a set of test data D0 generated from the original net-
work, or possibly the Küllback-Liebler distance from the true
distribution, if available. However, in order to facilitate com-
parison with traditional algorithms, which have fixed “inputs”
and “outputs,” we designate certain observable nodes as “out-
puts” and measure the ability of the learned network to predict
the output values given values for the remaining observable
nodes. More precisely, we measure the mean square error for
each output node probability value, where the mean is taken
over the distribution of input values. (In large networks, this
is approximated by sampling.)

The first experiment uses data generated from the “3–1–3”
network in Figure 2(a). We ran three algorithms on this data:
an APN with the “3–3” structure shown in Figure 2(b); a
backpropagation neural network with a maximum-likelihood
energy function; and an APN with the original “3–1–3” struc-
ture. The neural network had three nodes for each of the
three-valued nodes in the probabilistic network, and used lo-
cal coding; the number of nodes in the hidden layer was
optimized using 10-fold cross-validation. The results, shown
in Figure 4, demonstrate the advantage of using the network
structure that includes the hidden node.

The second experiment uses data generated from a network
for car insurance risk estimation (Figure 5). The network has
27 nodes, of which only 15 are observable, and over 1400
parameters. Three of the observable nodes are designated as



0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n 
sq

ua
re

 e
rr

or
 p

er
 o

ut
pu

t v
al

ue

Number of training cases

3-3 network, APN algorithm
Neural network algorithm

3-1-3 network, APN algorithm

Figure 4: The output prediction accuracy as a function of the number
of cases observed, for data generated from the network shown in
Figure 2(a). The three curves are for the APN algorithm using the
network structure in Figure 2(b); a back-propagation neural network
using 10-fold cross-validation; and the APN algorithm using the
correct network structure.

OtherCarCost

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear

RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality

Antilock

Airbag CarValue HomeBase AntiTheft

Theft

OwnDamage

OwnCarCost

PropertyCostLiabilityCost
MedicalCost

Cushioning

Ruggedness
Accident

Figure 5: A network for estimating the expected claim costs for
a car insurance policyholder. Hidden nodes are shaded and output
nodes are shown with heavy lines.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

M
ea

n 
sq

ua
re

 e
rr

or
 p

er
 o

ut
pu

t v
al

ue

Number of training cases

12-3 network, APN algorithm
Insurance network, APN algorithm

Figure 6: The prediction accuracy as a function of the number
of cases observed, for data generated from the network shown in
Figure 5. The two curves are for the APN algorithm using a “12–3”
network and the APN algorithm using the correct structure.

“outputs.” We ran an APN with the correct structure, and an
APN with a “12–3” structure analogous to the 3–3 network in
Figure 2(b). The correctly structured APN learns essentially
the correct distribution from around 400 cases, whereas the
12–3 APN requires many thousands of cases to reach the same
level (Figure 6).4

The third experiment uses data generated from the dynamic
probabilistic network shown in Figure 7. Applying the APN
algorithm with the correct network structure, and using the
chain rule extension from Section 6, we obtain the learning
curve shown in Figure 8. For this experiment, we used a
stochastic simulation algorithm based on likelihood weight-
ing [Shachter and Peot, 1989]. Because this algorithm pro-
vides “anytime” estimates of the required probabilities, it suits
our purposes very well: early in the gradient descent process,
we need only very rough estimates of the gradient, and these
can be generated very quickly.

State.0

Obs.0

Action.0 Action.1

State.1

Obs.1 Obs.2

State.2

Action.2

Reward.0 Reward.1 Reward.2

Figure 7: A simple dynamic probabilistic network modelling a
partially observable Markov process with reinforcement. Hidden
nodes are shaded and output nodes are shown with heavy lines.

8 Conclusions
We have demonstrated a gradient-descent learning algorithm
for probabilistic networks with hidden variables that uses lo-
calized gradient computations piggybacked on the standard
network inference calculations. Although a detailed compar-
ison between neural and probabilistic networks requires more
extensive analysis than is possible in this paper, one is struck
by the fact that the motivations for the widespread adoption
of neural networks as cognitive and neural models—localized
learning, massive parallelism, and robust handling of noisy
data—are also satisfied by probabilistic networks. Further-
more, the precise, local semantics of probabilistic networks
allows humans or other systems to provide prior knowledge to
constrain the learning process. We have demonstrated the dra-
matic improvements that can be achieved by pre-structuring

4For comparison, we applied a two-layer neural network learning
algorithm to the same data, using cross-validation to find the best
size of hidden layer. The neural net’s behavior is interesting. For
all sample sizes, it converges to predict just the output proportions
observed in the training data, independent of the particular inputs.
The same behavior was found for decision trees with pruning and for
k-nearest-neighbor learning. This suggests that the complex patterns
found by the structured APN are not discernible by the knowledge-
free algorithms. One might imagine that a neural network structured
similarly to the structured APN would be able to overcome this
problem. There are two reasons to doubt this: first, structure in
a neural network represents deterministic functional dependencies
rather than the probabilistic dependencies represented by the APN
structure; second, training sparse neural networks with more than
a few layers seems to be very difficult, although we are currently
trying to make it work.



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300

M
ea

n 
sq

ua
re

 e
rr

or
 p

er
 o

ut
pu

t v
al

ue

Number of training cases

Figure 8: The prediction accuracy as a function of the number
of cases observed, for data generated from the network shown in
Figure 7. The curve is for an APN algorithm using the correct
structure.

the network, especially using hidden variables. Theoretical
analysis of the sample complexity of learning probabilistic
networks is an obvious next step. We would also like to
investigate the use of APNs for classification rather than den-
sity estimation; this can be done by altering the optimization
goal to minimize the error on specified variables [Spiegelhal-
ter and Cowell, 1992]. Detailed empirical comparisons with
EM, Gibbs, and neural network methods are urgently needed.

The existence of localized gradient descent algorithms for
both adaptive probabilistic networks and back-propagation
neural networks is no accident. In other work, we have
established general conditions under which any distributed
computational system is amenable to local learning (see also
[Buntine, 1994]). Such results suggest that the class of ab-
stract models considered in computational neuroscience can
be broadened considerably.

References
[Buntine, 1994] Wray L. Buntine. Operations for learning

with graphical models. Journal of Artificial Intelligence
Research, 2, December 1994.

[Cooper and Herskovits, 1992] G. Cooper and E. Herskovits.
A Bayesian method for the induction of probabilistic net-
works from data. Machine Learning, 9:309–347, 1992.

[Dayan et al., in press] Peter Dayan, Geoffrey E. Hinton,
Radford M. Neal, and Richard S. Zemel. The helmholtz
machine. Neural Computation, in press.

[Dempster et al., 1977] A. Dempster, N. Laird, and D. Ru-
bin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society,
39 (Series B):1–38, 1977.

[Golmard and Mallet, 1991] J.-L. Golmard and A. Mallet.
Learning probabilities in causal trees from incomplete
databases. Revue d’Intelligence Artificielle, 5:93–106,
1991.

[Heckerman et al., 1994] D. Heckerman, D. Geiger, and
M. Chickering. Learning Bayesian networks: The combi-
nation of knowledge and statistical data. Technical Report

MSR-TR-94-09, Microsoft Research, Redmond, Washing-
ton, 1994.

[Lauritzen and Spiegelhalter, 1988] Steffen L. Lauritzen and
David J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to
expert systems. Journal of the Royal Statistical Society,
B 50(2):157–224, 1988.

[Lauritzen and Wermuth, 1989] S. L. Lauritzen and N. Wer-
muth. Graphical models for associations between vari-
ables, some of which are qualitative and some quantitative.
Annals of Statistics, 17:31–57, 1989.

[Lauritzen, 1991] Steffen L. Lauritzen. The EM algorithm
for graphical association models with missing data. Tech-
nical Report TR-91-05, Department of Statistics, Aalborg
University, 1991.

[Lauritzen, 1995] S. L. Lauritzen. The EM algorithm for
graphical association models with missing data. Compu-
tational Statistics and Data Analysis, 19:191–201, 1995.

[Neal, 1992] R. M. Neal. Connectionist learning of belief
networks. Artificial Intelligence, 56:71–113, 1992.

[Olesen et al., 1992] K. G. Olesen, S. L. Lauritzen, and F. V.
Jensen. aHUGIN: A system for creating adaptive causal
probabilistic networks. In Proceedings of the Eighth Con-
ference on Uncertainty in Artificial Intelligence (UAI-92),
Stanford, California, 1992. Morgan Kaufmann.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, California, 1988.

[Pradhan et al., 1994] M. Pradhan, G. M. Provan, B. Middle-
ton, and M. Henrion. Knowledge engineering for large
belief networks. In Proceedings of Uncertainty in Artifi-
cial Intelligence, Seattle, Washington, 1994. Morgan Kauf-
mann.

[Price, 1992] William H. Price. Numerical Recipes in C.
Cambridge University Press, Cambridge, 1992.

[Shachter and Peot, 1989] R. D. Shachter and M. A. Peot.
Simulation approaches to general probabilistic inference
on belief networks. In Proceedings of the Fifth Conference
on Uncertainty in Artificial Intelligence (UAI-89), Wind-
sor, Ontario, 1989. Morgan Kaufmann.

[Spiegelhalter and Cowell, 1992] D. J. Spiegelhalter and
R. G. Cowell. Learning in probabilistic expert systems.
In J. M. Bernardo, Berger J. O., Dawid A. P., and Adrian
F. M. Smith, editors, Bayesian Statistics 4, 1992.

[Spiegelhalter et al., 1993] D. Spiegelhalter, P. Dawid,
S. Lauritzen, and R. Cowell. Bayesian analysis in expert
systems. Statistical Science, 8:219–282, 1993.


