
Swift: Compiled Inference for Probabilistic Programming Languages

Yi Wu
UC Berkeley

jxwuyi@gmail.com

Lei Li
Toutiao.com

lileicc@gmail.com

Stuart Russell
UC Berkeley

russell@cs.berkeley.edu

Rastislav Bodik
University of Washington
bodik@cs.washington.edu

Abstract

A probabilistic program defines a probability mea-
sure over its semantic structures. One common goal
of probabilistic programming languages (PPLs)
is to compute posterior probabilities for arbitrary
models and queries, given observed evidence, us-
ing a generic inference engine. Most PPL infer-
ence engines—even the compiled ones—incur sig-
nificant runtime interpretation overhead, especially
for contingent and open-universe models. This
paper describes Swift, a compiler for the BLOG
PPL. Swift-generated code incorporates optimiza-
tions that eliminate interpretation overhead, main-
tain dynamic dependencies efficiently, and handle
memory management for possible worlds of vary-
ing sizes. Experiments comparing Swift with other
PPL engines on a variety of inference problems
demonstrate speedups ranging from 12x to 326x.

1 Introduction
Probabilistic programming languages (PPLs) aim to combine
sufficient expressive power for writing real-world probability
models with efficient, general-purpose inference algorithms
that can answer arbitrary queries with respect to those mod-
els. One underlying motive is to relieve the user of the obli-
gation to carry out machine learning research and implement
new algorithms for each problem that comes along. Another
is to support a wide range of cognitive functions in AI sys-
tems and to model those functions in humans.

General-purpose inference for PPLs is very challenging;
they may include unbounded numbers of discrete and contin-
uous variables, a rich library of distributions, and the ability
to describe uncertainty over functions, relations, and the ex-
istence and identity of objects (so-called open-universe mod-
els). Existing PPL inference algorithms include likelihood
weighting (LW) [Milch et al., 2005b], parental Metropolis–
Hastings (PMH) [Milch and Russell, 2006; Goodman et
al., 2008], generalized Gibbs sampling (Gibbs) [Arora et
al., 2010], generalized sequential Monte Carlo [Wood et
al., 2014], Hamiltonian Monte Carlo (HMC) [Stan Develop-
ment Team, 2014], variational methods [Minka et al., 2014;
Kucukelbir et al., 2015] and a form of approximate Bayesian

computation [Mansinghka et al., 2013]. While better algo-
rithms are certainly possible, our focus in this paper is on
achieving orders-of-magnitude improvement in the execution
efficiency of a given algorithmic process.

A PPL system takes a probabilistic program (PP) speci-
fying a probabilistic model as its input and performs infer-
ence to compute the posterior distribution of a query given
some observed evidence. The inference process does not (in
general) execute the PP, but instead executes the steps of an
inference algorithm (e.g., Gibbs) guided by the dependency
structures implicit in the PP. In many PPL systems the PP ex-
ists as an internal data structure consulted by the inference
algorithm at each step [Pfeffer, 2001; Lunn et al., 2000;
Plummer, 2003; Milch et al., 2005a; Pfeffer, 2009]. This pro-
cess is in essence an interpreter for the PP, similar to early
Prolog systems that interpreted the logic program. Partic-
ularly when running sampling algorithms that involve mil-
lions of repetitive steps, the overhead can be enormous. A
natural solution is to produce model-specific compiled in-
ference code, but, as we show in Sec. 2, existing compil-
ers for general open-universe models [Wingate et al., 2011;
Yang et al., 2014; Hur et al., 2014; Chaganty et al., 2013;
Nori et al., 2014] miss out on optimization opportunities and
often produce inefficient inference code.

The paper analyzes the optimization opportunities for PPL
compilers and describes the Swift compiler, which takes as
input a BLOG program [Milch et al., 2005a] and one of three
inference algorithms (LW, PMH, Gibbs) and generates target
code for answering queries. Swift includes three main con-
tributions: (1) elimination of interpretative overhead by joint
analysis of the model structure and inference algorithm; (2) a
dynamic slice maintenance method (FIDS) for incremental
computation of the current dependency structure as sampling
proceeds; and (3) efficient runtime memory management for
maintaining the current-possible-world data structure as the
number of objects changes. Comparisons between Swift and
other PPLs on a variety of models demonstrate speedups
ranging from 12x to 326x, leading in some cases to perfor-
mance comparable to that of hand-built model-specific code.
To the extent possible, we also analyze the contributions of
each optimization technique to the overall speedup.

Although Swift is developed for the BLOG language, the
overall design and the choices of optimizations can be applied
to other PPLs and may bring useful insights to similar AI

Probabilistic
Program
(Model)
𝑷𝑴

Inference Code 𝑷𝑰

Algorithm-Specific
Code

Model-Specific Code

Target Code
(C++)
𝑷𝑻

𝓕𝑰 𝑷𝑴 → 𝑷𝑰 𝓕cg 𝑷𝑰 → 𝑷𝑻

Our Optimization: FIDS
(combine model and algorithm)

Our Optimization:
Data Structures for FIDS

Classical Algorithm
Optimizations
(insensitive to model)

Classical Probabilistic
Program Optimizations
(insensitive to inference
algorithm)

Figure 1: PPL compilers and optimization opportunities.

systems for real-world applications.

2 Existing PPL Compilation Approaches
In a general purpose programming language (e.g., C++), the
compiler compiles exactly what the user writes (the program).
By contrast, a PPL compiler essentially compiles the infer-
ence algorithm, which is written by the PPL developer, as
applied to a PP. This means that different implementations of
the same inference algorithm for the same PP result in com-
pletely different target code.

As shown in Fig. 1, a PPL compiler first produces an inter-
mediate representation combining the inference algorithm (I)
and the input model (PM) as the inference code (PI), and then
compiles PI to the target code (PT). Swift focuses on opti-
mizing the inference code PI and the target code PT given a
fixed input model PM .

Although there have been successful PPL compilers, these
compilers are all designed for a restricted class of models
with fixed dependency structures: see work by Tristan [2014]
and the Stan Development Team [2014] for closed-world
Bayes nets, Minka [2014] for factor graphs, and Kazemi and
Poole [2016] for Markov logic networks.

Church [Goodman et al., 2008] and its variants [Wingate
et al., 2011; Yang et al., 2014; Ritchie et al., 2016] pro-
vide a lightweight compilation framework for performing
the Metropolis–Hastings algorithm (MH) over general open-
universe probability models (OUPMs). However, these ap-
proaches (1) are based on an inefficient implementation of
MH, which results in overhead in PI , and (2) rely on ineffi-
cient data structures in the target code PT .

For the first point, consider an MH iteration where we are
proposing a new possible world w′ from w accoding to the
proposal g(·) by resampling random variable X from v to v′.
The computation of acceptance ratio α follows

α = min

(
1,
g(v′ → v) Pr[w′]
g(v → v′) Pr[w]

)
. (1)

Since only X is resampled, it is sufficient to compute α us-
ing merely the Markov blanket of X , which leads to a much
simplified formula for α from Eq.(1) by cancelling terms in
Pr[w] and Pr[w′]. However, when applying MH for a con-
tingent model, the Markov blanket of a random variable can-
not be determined at compile time since the model dependen-
cies vary during inference. This introduces tremendous run-
time overhead for interpretive systems (e.g., BLOG, Figaro),

1 type Ball; type Draw; type Color; //3 types
2 distinct Color Blue, Green; //two colors
3 distinct Draw D[2]; //two draws: D[0], D[1]
4 #Ball ~ UniformInt(1,20);//unknown # of balls
5 random Color color(Ball b) //color of a ball
6 ~ Categorical({Blue -> 0.9, Green -> 0.1});
7 random Ball drawn(Draw d)
8 ~ UniformChoice({b for Ball b});
9 obs color(drawn(D[0])) = Green; // drawn ball is green

10 query color(drawn(D[1])); // query

Figure 2: The urn-ball model

1 type Cluster; type Data;
2 distinct Data D[20]; // 20 data points
3 #Cluster ~ Poisson(4); // number of clusters
4 random Real mu(Cluster c) ~ Gaussian(0,10); //cluster mean
5 random Cluster z(Data d)
6 ~ UniformChoice({c for Cluster c});
7 random Real x(Data d) ~ Gaussian(mu(z(d)), 1.0); // data
8 obs x(D[0]) = 0.1; // omit other data points
9 query size({c for Cluster c});

Figure 3: The infinite Gaussian mixture model

generic approach is Monte-Carlo sampling, such as likeli-
hood weighting [Milch et al., 2005a] (LW) and Metropolis-
Hastings algorithm (MH). For LW, the main idea is to sample
every random variable from its prior per iteration and col-
lect weighted samples for the queries, where the weight is the
likelihood of the evidences. For MH, the high-level procedure
of the algorithm is summarized in Alg. 1. M denotes an in-
put BLOG program (or model), E its evidence, Q a query, N
denotes the number of samples, W denotes a possible world,
W (x) is the value of x in possible worldW , Pr[x|W] denotes
the conditional probability of x in W , and Pr[W] denotes the
likelihood of possible world W . In particular, when the pro-
posal distribution g in Alg.1 is the prior of every variable, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte-Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probabilistic models.

• Provide a general framework to automatically and ef-
ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of

Algorithm 1: Metropolis-Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world W0 with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable x from Wi−1 ;
4 Wi ←Wi−1 and v ←Wi−1(x);
5 propose a value v′ for x via proposal g;
6 Wi(x)← v′ and ensure Wi is supported;

7 α← min
(
1, g(v′→v) Pr[Wi]

g(v→v′) Pr[Wi−1]

)
;

8 if rand(0, 1) ≥ α then Wi ←Wi−1

H ← H + (Wi(Q));

random variables necessary to evaluate the query and
the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supported par-
tial world [Milch et al., 2005a]).
• Provide efficient memory management and fast data

structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework FIDS
(Framework of Incrementally updating Dynamic Slices) for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 are all in pseudo-code while the target code (PT) by
Swift shown in Sec. 4.2 are in C++. Due to limited space, we
only show the detailed transformation rules for the adaptive
contingency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU) and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are particularly for PMH.

Dynamic backchaining
Dynamic backchaining (DB) aims to incrementally construct
a dynamic slice in each LW iteration and only sample those
variables necessary at runtime. DB is adaptive from idea of
compiling lazy evaluation (also similar to the Prolog com-
piler): in each iteration, DB backtracks from the evidence
and query and samples a r.v. only when its value is required
during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever a r.v. is referred to during
inference, its getter function will be evoked.

DB is the fundamental technique for Swift. The key insight
is to replace the dependency look-up in some interpretive data
structure by direct machine address/instruction seeking in the
target executable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.
double get_x(Data d) {

// some code memoizing the sampled value
memoization;
// if not sampled, sample a new value
val = sample_gaussian(get_mu(get_z(d)),1);
return val; }

Since get_z(·) is called before get_mu(·), only those
mu(c) corresponding to non-empty clusters will be sampled.
Notably, with the inference code above, no explicit depen-
dency look-up is ever required at runtime to discover those
non-empty clusters.

Figure 2: The urn-ball model

which track all the dependencies at runtime even though typ-
ically only a tiny portion of the dependency structure may
change per iteration. Church simply avoids keeping track of
dependencies and uses Eq.(1), including a potentially huge
overhead for redundant probability computations.

For the second point, in order to track the existence of
the variables in an open-universe model, similar to BLOG,
Church also maintains a complicated dynamic string-based
hashing scheme in the target code, which again causes inter-
pretation overhead.

Lastly, techniques proposed by Hur et al. [2014], Chaganty
et al. [2013] and Nori et al. [2014] primarily focus on opti-
mizing PM by analyzing the static properties of the input PP,
which are complementary to Swift.

3 Background
This paper focuses on the BLOG language, although our ap-
proach also applies to other PPLs with equivalent seman-
tics [McAllester et al., 2008; Wu et al., 2014]. Other PPLs
can be also converted to BLOG via static single assign-
ment form (SSA form) transformation [Cytron et al., 1989;
Hur et al., 2014].

3.1 The BLOG Language
The BLOG language [Milch et al., 2005a] defines probabil-
ity measures over first-order (relational) possible worlds; in
this sense it is a probabilistic analogue of first-order logic. A
BLOG program declares types for objects and defines distri-
butions over their numbers, as well as defining distributions
for the values of random functions applied to objects. Ob-
servation statements supply evidence, and a query statement
specifies the posterior probability of interest. A random vari-
able in BLOG corresponds to the application of a random
function to specific objects in a possible world. BLOG nat-
urally supports open universe probability models (OUPMs)
and context-specific dependencies.

Fig. 2 demonstrates the open-universe urn-ball model. In
this version the query asks for the color of the next random
pick from an urn given the colors of balls drawn previously.
Line 4 is a number statement stating that the number vari-
able #Ball, corresponding to the total number of balls, is
uniformly distributed between 1 and 20. Lines 5–6 declare a
random function color(·), applied to balls, picking Blue or
Green with a biased probability. Lines 7–8 state that each
draw chooses a ball at random from the urn, with replace-
ment.

Fig. 3 describes another OUPM, the infinite Gaussian mix-
ture model (∞-GMM). The model includes an unknown

1 type Ball; type Draw; type Color; //3 types
2 distinct Color Blue, Green; //two colors
3 distinct Draw D[2]; //two draws: D[0], D[1]
4 #Ball ~ UniformInt(1,20);//unknown # of balls
5 random Color color(Ball b) //color of a ball
6 ~ Categorical({Blue -> 0.9, Green -> 0.1});
7 random Ball drawn(Draw d)
8 ~ UniformChoice({b for Ball b});
9 obs color(drawn(D[0])) = Green; // drawn ball is green

10 query color(drawn(D[1])); // query

Figure 2: The urn-ball model

1 type Cluster; type Data;
2 distinct Data D[20]; // 20 data points
3 #Cluster ~ Poisson(4); // number of clusters
4 random Real mu(Cluster c) ~ Gaussian(0,10); //cluster mean
5 random Cluster z(Data d)
6 ~ UniformChoice({c for Cluster c});
7 random Real x(Data d) ~ Gaussian(mu(z(d)), 1.0); // data
8 obs x(D[0]) = 0.1; // omit other data points
9 query size({c for Cluster c});

Figure 3: The infinite Gaussian mixture model

generic approach is Monte-Carlo sampling, such as likeli-
hood weighting [Milch et al., 2005a] (LW) and Metropolis-
Hastings algorithm (MH). For LW, the main idea is to sample
every random variable from its prior per iteration and col-
lect weighted samples for the queries, where the weight is the
likelihood of the evidences. For MH, the high-level procedure
of the algorithm is summarized in Alg. 1. M denotes an in-
put BLOG program (or model), E its evidence, Q a query, N
denotes the number of samples, W denotes a possible world,
W (x) is the value of x in possible worldW , Pr[x|W] denotes
the conditional probability of x in W , and Pr[W] denotes the
likelihood of possible world W . In particular, when the pro-
posal distribution g in Alg.1 is the prior of every variable, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte-Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probabilistic models.

• Provide a general framework to automatically and ef-
ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of

Algorithm 1: Metropolis-Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world W0 with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable x from Wi−1 ;
4 Wi ←Wi−1 and v ←Wi−1(x);
5 propose a value v′ for x via proposal g;
6 Wi(x)← v′ and ensure Wi is supported;

7 α← min
(
1, g(v′→v) Pr[Wi]

g(v→v′) Pr[Wi−1]

)
;

8 if rand(0, 1) ≥ α then Wi ←Wi−1

H ← H + (Wi(Q));

random variables necessary to evaluate the query and
the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supported par-
tial world [Milch et al., 2005a]).
• Provide efficient memory management and fast data

structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework FIDS
(Framework of Incrementally updating Dynamic Slices) for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 are all in pseudo-code while the target code (PT) by
Swift shown in Sec. 4.2 are in C++. Due to limited space, we
only show the detailed transformation rules for the adaptive
contingency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU) and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are particularly for PMH.

Dynamic backchaining
Dynamic backchaining (DB) aims to incrementally construct
a dynamic slice in each LW iteration and only sample those
variables necessary at runtime. DB is adaptive from idea of
compiling lazy evaluation (also similar to the Prolog com-
piler): in each iteration, DB backtracks from the evidence
and query and samples a r.v. only when its value is required
during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever a r.v. is referred to during
inference, its getter function will be evoked.

DB is the fundamental technique for Swift. The key insight
is to replace the dependency look-up in some interpretive data
structure by direct machine address/instruction seeking in the
target executable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.
double get_x(Data d) {
// some code memoizing the sampled value
memoization;
// if not sampled, sample a new value
val = sample_gaussian(get_mu(get_z(d)),1);
return val; }

Since get_z(·) is called before get_mu(·), only those
mu(c) corresponding to non-empty clusters will be sampled.
Notably, with the inference code above, no explicit depen-
dency look-up is ever required at runtime to discover those
non-empty clusters.

Figure 3: The infinite Gaussian mixture model

Algorithm 1: Metropolis–Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world w(0) with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable X from w(i−1) ;
4 w(i) ← w(i−1) and v ← X(w(i−1));
5 propose a value v′ for X via proposal g;
6 X(w(i))← v′ and ensure w(i) is self-supporting;

7 α← min
(
1, g(v′→v) Pr[w(i)]

g(v→v′) Pr[w(i−1)]

)
;

8 if rand(0, 1) ≥ α then w(i) ← w(i−1)

H ← H + (Q(w(i)));

number of clusters as stated in line 3, which is to be inferred
from the data.

3.2 Generic Inference Algorithms
All PPLs need to infer the posterior distribution of a query
given the observed evidence. The great majority of PPLs use
Monte Carlo sampling methods such as likelihood weighting
(LW) and Metropolis–Hastings MCMC (MH). LW samples
unobserved random variables sequentially in topological or-
der, conditioned on evidence and sampled values earlier in
the sequence; each complete sample is weighted by the like-
lihood of the evidence variables appearing in the sequence.
The MH algorithm is summarized in Alg. 1. M denotes a
BLOG model, E its evidence, Q a query, N the number of
samples, w a possible world, X(w) the value of random vari-
able X in w, Pr[X(w)|w-X] denotes the conditional proba-
bility of X in w, and Pr[w] denotes the likelihood of pos-
sible world w. In particular, when the proposal distribution
g in Alg.1 samples a variable conditioned on its parents, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probability models.

• Provide a general framework to automatically and ef-
ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of
random variables necessary to evaluate the query and
the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supporting par-
tial world [Milch et al., 2005a]).

• Provide efficient memory management and fast data
structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework, FIDS
(Framework for Incrementally updating Dynamic Slices), for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 is in pseudo-code while the target code (PT) by Swift
shown in Sec. 4.2 is in C++. Due to limited space, we show
the detailed transformation rules only for the adaptive contin-
gency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU), and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are specific to PMH.

Dynamic backchaining
Dynamic backchaining (DB) [Milch et al., 2005a] constructs
a dynamic slice incrementally in each LW iteration and sam-
ples only those variables necessary at runtime. DB in Swift
is an example of compiling lazy evaluation: in each iteration,
DB backtracks from the evidence and query and samples an
r.v. only when its value is required during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever an r.v. is referred to during
inference, its getter function will be evoked.

Compiling DB is the fundamental technique for Swift. The
key insight is to replace dependency look-ups and method in-
vocations from some internal PP data structure with direct
machine address accessing and branching in the target exe-
cutable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.

1 type Ball; type Draw; type Color; //3 types
2 distinct Color Blue, Green; //two colors
3 distinct Draw D[2]; //two draws: D[0], D[1]
4 #Ball ~ UniformInt(1,20);//unknown # of balls
5 random Color color(Ball b) //color of a ball
6 ~ Categorical({Blue -> 0.9, Green -> 0.1});
7 random Ball drawn(Draw d)
8 ~ UniformChoice({b for Ball b});
9 obs color(drawn(D[0])) = Green; // drawn ball is green

10 query color(drawn(D[1])); // query

Figure 2: The urn-ball model

1 type Cluster; type Data;
2 distinct Data D[20]; // 20 data points
3 #Cluster ~ Poisson(4); // number of clusters
4 random Real mu(Cluster c) ~ Gaussian(0,10); //cluster mean
5 random Cluster z(Data d)
6 ~ UniformChoice({c for Cluster c});
7 random Real x(Data d) ~ Gaussian(mu(z(d)), 1.0); // data
8 obs x(D[0]) = 0.1; // omit other data points
9 query size({c for Cluster c});

Figure 3: The infinite Gaussian mixture model

generic approach is Monte-Carlo sampling, such as likeli-
hood weighting [Milch et al., 2005a] (LW) and Metropolis-
Hastings algorithm (MH). For LW, the main idea is to sample
every random variable from its prior per iteration and col-
lect weighted samples for the queries, where the weight is the
likelihood of the evidences. For MH, the high-level procedure
of the algorithm is summarized in Alg. 1. M denotes an in-
put BLOG program (or model), E its evidence, Q a query, N
denotes the number of samples, W denotes a possible world,
W (x) is the value of x in possible worldW , Pr[x|W] denotes
the conditional probability of x in W , and Pr[W] denotes the
likelihood of possible world W . In particular, when the pro-
posal distribution g in Alg.1 is the prior of every variable, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte-Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probabilistic models.

• Provide a general framework to automatically and ef-
ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of

Algorithm 1: Metropolis-Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world W0 with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable x from Wi−1 ;
4 Wi ←Wi−1 and v ←Wi−1(x);
5 propose a value v′ for x via proposal g;
6 Wi(x)← v′ and ensure Wi is supported;

7 α← min
(
1, g(v′→v) Pr[Wi]

g(v→v′) Pr[Wi−1]

)
;

8 if rand(0, 1) ≥ α then Wi ←Wi−1

H ← H + (Wi(Q));

random variables necessary to evaluate the query and
the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supported par-
tial world [Milch et al., 2005a]).
• Provide efficient memory management and fast data

structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework FIDS
(Framework of Incrementally updating Dynamic Slices) for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 are all in pseudo-code while the target code (PT) by
Swift shown in Sec. 4.2 are in C++. Due to limited space, we
only show the detailed transformation rules for the adaptive
contingency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU) and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are particularly for PMH.

Dynamic backchaining
Dynamic backchaining (DB) aims to incrementally construct
a dynamic slice in each LW iteration and only sample those
variables necessary at runtime. DB is adaptive from idea of
compiling lazy evaluation (also similar to the Prolog com-
piler): in each iteration, DB backtracks from the evidence
and query and samples a r.v. only when its value is required
during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever a r.v. is referred to during
inference, its getter function will be evoked.

DB is the fundamental technique for Swift. The key insight
is to replace the dependency look-up in some interpretive data
structure by direct machine address/instruction seeking in the
target executable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.
double get_x(Data d) {

// some code memoizing the sampled value
memoization;
// if not sampled, sample a new value
val = sample_gaussian(get_mu(get_z(d)),1);
return val; }

Since get_z(·) is called before get_mu(·), only those
mu(c) corresponding to non-empty clusters will be sampled.
Notably, with the inference code above, no explicit depen-
dency look-up is ever required at runtime to discover those
non-empty clusters.

Figure 2: The urn-ball model

1 type Ball; type Draw; type Color; //3 types
2 distinct Color Blue, Green; //two colors
3 distinct Draw D[2]; //two draws: D[0], D[1]
4 #Ball ~ UniformInt(1,20);//unknown # of balls
5 random Color color(Ball b) //color of a ball
6 ~ Categorical({Blue -> 0.9, Green -> 0.1});
7 random Ball drawn(Draw d)
8 ~ UniformChoice({b for Ball b});
9 obs color(drawn(D[0])) = Green; // drawn ball is green

10 query color(drawn(D[1])); // query

Figure 2: The urn-ball model

1 type Cluster; type Data;
2 distinct Data D[20]; // 20 data points
3 #Cluster ~ Poisson(4); // number of clusters
4 random Real mu(Cluster c) ~ Gaussian(0,10); //cluster mean
5 random Cluster z(Data d)
6 ~ UniformChoice({c for Cluster c});
7 random Real x(Data d) ~ Gaussian(mu(z(d)), 1.0); // data
8 obs x(D[0]) = 0.1; // omit other data points
9 query size({c for Cluster c});

Figure 3: The infinite Gaussian mixture model

generic approach is Monte-Carlo sampling, such as likeli-
hood weighting [Milch et al., 2005a] (LW) and Metropolis-
Hastings algorithm (MH). For LW, the main idea is to sample
every random variable from its prior per iteration and col-
lect weighted samples for the queries, where the weight is the
likelihood of the evidences. For MH, the high-level procedure
of the algorithm is summarized in Alg. 1. M denotes an in-
put BLOG program (or model), E its evidence, Q a query, N
denotes the number of samples, W denotes a possible world,
W (x) is the value of x in possible worldW , Pr[x|W] denotes
the conditional probability of x in W , and Pr[W] denotes the
likelihood of possible world W . In particular, when the pro-
posal distribution g in Alg.1 is the prior of every variable, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte-Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probabilistic models.

• Provide a general framework to automatically and ef-
ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of

Algorithm 1: Metropolis-Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world W0 with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable x from Wi−1 ;
4 Wi ←Wi−1 and v ←Wi−1(x);
5 propose a value v′ for x via proposal g;
6 Wi(x)← v′ and ensure Wi is supported;

7 α← min
(
1, g(v′→v) Pr[Wi]

g(v→v′) Pr[Wi−1]

)
;

8 if rand(0, 1) ≥ α then Wi ←Wi−1

H ← H + (Wi(Q));

random variables necessary to evaluate the query and
the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supported par-
tial world [Milch et al., 2005a]).
• Provide efficient memory management and fast data

structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework FIDS
(Framework of Incrementally updating Dynamic Slices) for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 are all in pseudo-code while the target code (PT) by
Swift shown in Sec. 4.2 are in C++. Due to limited space, we
only show the detailed transformation rules for the adaptive
contingency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU) and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are particularly for PMH.

Dynamic backchaining
Dynamic backchaining (DB) aims to incrementally construct
a dynamic slice in each LW iteration and only sample those
variables necessary at runtime. DB is adaptive from idea of
compiling lazy evaluation (also similar to the Prolog com-
piler): in each iteration, DB backtracks from the evidence
and query and samples a r.v. only when its value is required
during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever a r.v. is referred to during
inference, its getter function will be evoked.

DB is the fundamental technique for Swift. The key insight
is to replace the dependency look-up in some interpretive data
structure by direct machine address/instruction seeking in the
target executable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.
double get_x(Data d) {

// some code memoizing the sampled value
memoization;
// if not sampled, sample a new value
val = sample_gaussian(get_mu(get_z(d)),1);
return val; }

Since get_z(·) is called before get_mu(·), only those
mu(c) corresponding to non-empty clusters will be sampled.
Notably, with the inference code above, no explicit depen-
dency look-up is ever required at runtime to discover those
non-empty clusters.

Figure 3: The infinite Gaussian mixture model

generic approach is Monte-Carlo sampling, such as likeli-
hood weighting [Milch et al., 2005a] (LW) and Metropolis-
Hastings algorithm (MH). For LW, the main idea is to sample
every random variable from its prior per iteration and col-
lect weighted samples for the queries, where the weight is the
likelihood of the evidences. For MH, the high-level procedure
of the algorithm is summarized in Alg. 1. M denotes an in-
put BLOG program (or model), E its evidence, Q a query, N
denotes the number of samples, W denotes a possible world,
W (x) is the value of x in possible worldW , Pr[x|W] denotes
the conditional probability of x in W , and Pr[W] denotes the
likelihood of possible world W . In particular, when the pro-
posal distribution g in Alg.1 is the prior of every variable, the
algorithm becomes the parental MH algorithm (PMH). Our
discussion in the paper focuses on LW and PMH but our pro-
posed solution applies to other Monte-Carlo methods as well.

4 The Swift Compiler
Swift has the following design goals for handling open-
universe probabilistic models.
• Provide a general framework to automatically and ef-

ficiently (1) track the exact Markov blanket for each
random variable and (2) maintain the minimum set of
random variables necessary to evaluate the query and

Algorithm 1: Metropolis-Hastings algorithm (MH)
Input: M, E, Q, N ; Output: samples H

1 initialize a possible world W0 with E satisfied;
2 for i← 1 to N do
3 randomly pick a variable x from Wi−1 ;
4 Wi ←Wi−1 and v ←Wi−1(x);
5 propose a value v′ for x via proposal g;
6 Wi(x)← v′ and ensure Wi is supported;

7 α← min
(
1, g(v′→v) Pr[Wi]

g(v→v′) Pr[Wi−1]

)
;

8 if rand(0, 1) ≥ α then Wi ←Wi−1

H ← H + (Wi(Q));

the evidence (the dynamic slice [Agrawal and Horgan,
1990], or equivalently the minimum self-supported par-
tial world [Milch et al., 2005a]).

• Provide efficient memory management and fast data
structures for Monte Carlo sampling algorithms to avoid
interpretive overhead at runtime.

For the first goal, we propose a novel framework FIDS
(Framework of Incrementally updating Dynamic Slices) for
generating the inference code (PI in Fig. 1). For the second
goal, we carefully choose data structures in the target C++
code (PT).

For convenience, r.v. is short for random variable. We
demonstrate examples of compiled code in the following
discussion: the inference code (PI) generated by FIDS in
Sec. 4.1 are all in pseudo-code while the target code (PT) by
Swift shown in Sec. 4.2 are in C++. Due to limited space, we
only show the detailed transformation rules for the adaptive
contingency updating (ACU) technique and omit the others.

4.1 Optimizations in FIDS
Our discussion in this section focuses on LW and PMH, al-
though FIDS can be also applied to other algorithms. FIDS
includes three optimizations: dynamic backchaining (DB),
adaptive contingency updating (ACU) and reference count-
ing (RC). DB is applied to both LW and PMH while ACU
and RC are particularly for PMH.

Dynamic backchaining
Dynamic backchaining (DB) aims to incrementally construct
a dynamic slice in each LW iteration and only sample those
variables necessary at runtime. DB is adaptive from idea of
compiling lazy evaluation (also similar to the Prolog com-
piler): in each iteration, DB backtracks from the evidence
and query and samples a r.v. only when its value is required
during inference.

For every r.v. declaration random T X ∼ CX; in the
input PP, FIDS generates a getter function get X(), which
is used to (1) sample a value for X from its declaration CX

and (2) memoize the sampled value for later references in
the current iteration. Whenever a r.v. is referred to during
inference, its getter function will be evoked.

DB is the fundamental technique for Swift. The key insight
is to replace the dependency look-up in some interpretive data
structure by direct machine address/instruction seeking in the
target executable file.

For example, the inference code for the getter function of
x(d) in the∞-GMM model (Fig. 3) is shown below.
double get_x(Data d) {

// some code memoizing the sampled value
memoization;
// if not sampled, sample a new value
val = sample_gaussian(get_mu(get_z(d)),1);
return val; }

Since get_z(·) is called before get_mu(·), only those
mu(c) corresponding to non-empty clusters will be sampled.
Notably, with the inference code above, no explicit depen-
dency look-up is ever required at runtime to discover those
non-empty clusters.

memoization denotes some pseudo-code snippet for
performing memoization. Since get_z(·) is called before
get_mu(·), only those mu(c) corresponding to non-empty
clusters will be sampled. Notably, with the inference code
above, no explicit dependency look-up is ever required at run-
time to discover those non-empty clusters.

When sampling a number variable, we need to allocate
memory for the associated variables. For example, in the urn-
ball model (Fig. 2), we need to allocate memory for color(b)

after sampling #Ball. The corresponding generated infer-
ence code is shown below.

When sampling a number variable, we need to allocate
memory for the associated variables, i.e., in the urn-ball
model (Fig. 2), we need to allocate memory for color(b) af-
ter sampling #Ball. The corresponding generated code is
shown below.

int get_num_Ball() {
// some code for memoization
memoization;
// sample a value
val = sample_uniformInt(1,20);
// some code allocating memory for color
allocate_memory_color(val);
return val; }

allocate_memory_color(val) denotes some pseudo-
code segment for allocating val chunks of memory for the
values of color(b).

Reference Counting
Reference counting (RC) generalize the idea of DB to incre-
mentally maintain the dynamic slice in PMH. RC is a effi-
cient compilation strategy for the interpretive BLOG to dy-
namically maintain references to variables and exclude those
without any references from the current possible world with
minimal runtime overhead. RC is also similar to dynamic
garbage collection in programming language community.

For a r.v. being tracked, say X , RC maintains a refer-
ence counter cnt(X) defined by cnt(X) = |Ch(X|W)|.
Ch(X|W) denote the children ofX in the possible worldW .
When cnt(X) becomes zero, X is removed from W ; when
cnt(X) become positive, X is instantiated and added back
to W . This procedure is performed recursively.

Tracking references to every r.v. might cause unnecessary
overhead. For example, for classical Bayes nets, RC never ex-
cludes any variables. Hence, as a trade-off, Swift only counts
references in open-universe models, particularly, to those
variables associated with number variables (i.e., color(b) in
the urn-ball model).

Take the urn-ball model as an example. When resampling
drawn(d) and accepting the proposed value v, the generated
code for accepting the proposal will be

void inc_cnt(X) {
if (cnt(X) == 0) W.add(X);
cnt(X) = cnt(X) + 1; }

void dec_cnt(X) {
cnt(X) = cnt(X) - 1;
if (cnt(X) == 0) W.remove(X); }

void accept_value_drawn(Draw d, Ball v) {
// code for updating dependencies omitted

dec_cnt(color(val_drawn(d)));
val_drawn(d) = v;
inc_cnt(color(v)); }

The function inc_cnt(X) and dec_cnt(X) update the
references to X . The function accept_value_drawn() is
specialized to r.v. drawn(d): Swift analyzes the input pro-
gram and generates specialized codes for different variables.

Adaptive contingency updating
The goal of ACU is to incrementally maintain the Markov
Blanket for every r.v. with minimal efforts.

CX denotes the declaration of r.v. X in the input PP;
Par(X|W) denote the parents of X in the possible world
W ; W (X ← v) denotes the new possible world derived from
W by only changing the value of X to v. Note that deriving
W (X ← v) may require instantiating new variables not ex-
isting in W due to dependency changes.

Computing Par(X|W) for X is straightforward by exe-
cuting its generation process, CX , within W , which is often
inexpensive. Hence, the principal challenge for maintaining
the Markov blanket is to efficiently maintain a children set
Ch(X) for each r.v. X with the aim of keeping identical the
ground truth Ch(X|W) under the current PW W .

With a proposed possible world (PW) W (X ← v), it is
easy to add all missing dependencies from a particular vari-
able U . That is, for a r.v. U and every r.v. V ∈ Par(U |W),
we can verify whether U ∈ Ch(V |W) and add U to Ch(X)
if U 6∈ Ch(X). Therefore, the key step becomes tracking the
set of variables, ∆(W (X ← v)), which will have a different
set of parents in W (X ← v).

∆(W (X ← v)) =
{Y : Par(Y |W) 6= Par(Y |W (X ← v))}

Precisely computing ∆(W (X ← v)) is very expensive at
runtime but computing an upper bound for ∆(W (X ← v))
does not influence the correctness of the inference code.
Therefore, we proceed to find an upper bound that holds for
any value v. We call this over-approximation the contingent
set Cont(X|W).

Note that for every r.v. V with dependency that changes in
W (X ← v), X must be reached in the condition of a con-
trol statement on the execution path of CV within W , namely
∆(W (X ← v)) ⊆ Ch(X|W). One straightforward idea is
set Cont(X|W) = Ch(X|W). However, this leads to too
much overhead. For example, ∆(·) should be always empty
for models with fixed dependency.

Another approach is to first find out the set of switching
variables SX for every r.v. X , which is defined by

SX = {Y : ∃W, v Par(X|W) 6= Par(X|W (Y ← v))},
This brings an immediate advantage: SX can be statically
computed at compile time. However, computing SX is NP-
Complete1.

Our solution is to derive the approximation ŜX by taking
the union of free variables of if/case conditions, function ar-
guments, and set expression conditions in CX , and then set

Cont(X|W) = {Y : Y ∈ Ch(X|W) ∧X ∈ ŜY }.
Cont(X|W) is a function of the sampling variableX and the
current PW W . Likewise, we maintain a runtime contingent
set Cont(X) for every r.v. X corresponding to true contin-
gent set Cont(X|W) under the current PW W . Cont(X)
can be incrementally updated.

Back to the original focus of ACU, suppose we are adding
new the dependencies in the new PW W (X ← x). There are
three steps to accomplish the goal: (1) enumerating all the

1Since the declaration CX may contain arbitrary boolean formu-
las, one can reduce the 3-SAT problem to computing SX .

allocate_memory_color(val) denotes some pseudo-
code segment for allocating val chunks of memory for the
values of color(b).

Reference Counting
Reference counting (RC) generalize the idea of DB to incre-
mentally maintain the dynamic slice in PMH. RC is an effi-
cient compilation strategy for the interpretive BLOG to dy-
namically maintain references to variables and exclude those
without any references from the current possible world with
minimal runtime overhead. RC is also similar to dynamic
garbage collection in programming language community.

For an r.v. being tracked, say X , RC maintains a refer-
ence counter cnt(X) defined by cnt(X) = |Chw(X)|.
Chw(X) denote the children of X in the possible world w.
When cnt(X) becomes zero, X is removed from w; when
cnt(X) become positive, X is instantiated and added back
to w. This procedure is performed recursively.

Tracking references to every r.v. might cause unnecessary
overhead. For example, for classical Bayes nets, RC never ex-
cludes any variables. Hence, as a trade-off, Swift only counts
references in open-universe models, particularly, to those
variables associated with number variables (e.g., color(b) in
the urn-ball model).

Take the urn-ball model as an example. When resampling
drawn(d) and accepting the proposed value v, the generated
code for accepting the proposal will be

When sampling a number variable, we need to allocate
memory for the associated variables, i.e., in the urn-ball
model (Fig. 2), we need to allocate memory for color(b) af-
ter sampling #Ball. The corresponding generated code is
shown below.

int get_num_Ball() {
// some code for memoization
memoization;
// sample a value
val = sample_uniformInt(1,20);
// some code allocating memory for color
allocate_memory_color(val);
return val; }

allocate_memory_color(val) denotes some pseudo-
code segment for allocating val chunks of memory for the
values of color(b).

Reference Counting
Reference counting (RC) generalize the idea of DB to incre-
mentally maintain the dynamic slice in PMH. RC is a effi-
cient compilation strategy for the interpretive BLOG to dy-
namically maintain references to variables and exclude those
without any references from the current possible world with
minimal runtime overhead. RC is also similar to dynamic
garbage collection in programming language community.

For a r.v. being tracked, say X , RC maintains a refer-
ence counter cnt(X) defined by cnt(X) = |Ch(X|W)|.
Ch(X|W) denote the children ofX in the possible worldW .
When cnt(X) becomes zero, X is removed from W ; when
cnt(X) become positive, X is instantiated and added back
to W . This procedure is performed recursively.

Tracking references to every r.v. might cause unnecessary
overhead. For example, for classical Bayes nets, RC never ex-
cludes any variables. Hence, as a trade-off, Swift only counts
references in open-universe models, particularly, to those
variables associated with number variables (i.e., color(b) in
the urn-ball model).

Take the urn-ball model as an example. When resampling
drawn(d) and accepting the proposed value v, the generated
code for accepting the proposal will be

void inc_cnt(X) {
if (cnt(X) == 0) W.add(X);
cnt(X) = cnt(X) + 1; }

void dec_cnt(X) {
cnt(X) = cnt(X) - 1;
if (cnt(X) == 0) W.remove(X); }

void accept_value_drawn(Draw d, Ball v) {
// code for updating dependencies omitted

dec_cnt(color(val_drawn(d)));
val_drawn(d) = v;
inc_cnt(color(v)); }

The function inc_cnt(X) and dec_cnt(X) update the
references to X . The function accept_value_drawn() is
specialized to r.v. drawn(d): Swift analyzes the input pro-
gram and generates specialized codes for different variables.

Adaptive contingency updating
The goal of ACU is to incrementally maintain the Markov
Blanket for every r.v. with minimal efforts.

CX denotes the declaration of r.v. X in the input PP;
Par(X|W) denote the parents of X in the possible world
W ; W (X ← v) denotes the new possible world derived from
W by only changing the value of X to v. Note that deriving
W (X ← v) may require instantiating new variables not ex-
isting in W due to dependency changes.

Computing Par(X|W) for X is straightforward by exe-
cuting its generation process, CX , within W , which is often
inexpensive. Hence, the principal challenge for maintaining
the Markov blanket is to efficiently maintain a children set
Ch(X) for each r.v. X with the aim of keeping identical the
ground truth Ch(X|W) under the current PW W .

With a proposed possible world (PW) W (X ← v), it is
easy to add all missing dependencies from a particular vari-
able U . That is, for a r.v. U and every r.v. V ∈ Par(U |W),
we can verify whether U ∈ Ch(V |W) and add U to Ch(X)
if U 6∈ Ch(X). Therefore, the key step becomes tracking the
set of variables, ∆(W (X ← v)), which will have a different
set of parents in W (X ← v).

∆(W (X ← v)) =
{Y : Par(Y |W) 6= Par(Y |W (X ← v))}

Precisely computing ∆(W (X ← v)) is very expensive at
runtime but computing an upper bound for ∆(W (X ← v))
does not influence the correctness of the inference code.
Therefore, we proceed to find an upper bound that holds for
any value v. We call this over-approximation the contingent
set Cont(X|W).

Note that for every r.v. V with dependency that changes in
W (X ← v), X must be reached in the condition of a con-
trol statement on the execution path of CV within W , namely
∆(W (X ← v)) ⊆ Ch(X|W). One straightforward idea is
set Cont(X|W) = Ch(X|W). However, this leads to too
much overhead. For example, ∆(·) should be always empty
for models with fixed dependency.

Another approach is to first find out the set of switching
variables SX for every r.v. X , which is defined by

SX = {Y : ∃W, v Par(X|W) 6= Par(X|W (Y ← v))},
This brings an immediate advantage: SX can be statically
computed at compile time. However, computing SX is NP-
Complete1.

Our solution is to derive the approximation ŜX by taking
the union of free variables of if/case conditions, function ar-
guments, and set expression conditions in CX , and then set

Cont(X|W) = {Y : Y ∈ Ch(X|W) ∧X ∈ ŜY }.
Cont(X|W) is a function of the sampling variableX and the
current PW W . Likewise, we maintain a runtime contingent
set Cont(X) for every r.v. X corresponding to true contin-
gent set Cont(X|W) under the current PW W . Cont(X)
can be incrementally updated.

Back to the original focus of ACU, suppose we are adding
new the dependencies in the new PW W (X ← x). There are
three steps to accomplish the goal: (1) enumerating all the

1Since the declaration CX may contain arbitrary boolean formu-
las, one can reduce the 3-SAT problem to computing SX .

The function inc_cnt(X) and dec_cnt(X) update the
references to X . The function accept_value_drawn() is
specialized to r.v. drawn(d): Swift analyzes the input pro-
gram and generates specialized codes for different variables.

Adaptive contingency updating
The goal of ACU is to incrementally maintain the Markov
Blanket for every r.v. with minimal efforts.
CX denotes the declaration of r.v. X in the input PP;

Parw(X) denote the parents of X in the possible world w;
w[X ← v] denotes the new possible world derived from w
by only changing the value of X to v. Note that deriving

w[X ← v] may require instantiating new variables not exist-
ing in w due to dependency changes.

Computing Parw(X) for X is straightforward by execut-
ing its generation process, CX , within w, which is often in-
expensive. Hence, the principal challenge for maintaining
the Markov blanket is to efficiently maintain a children set
Ch(X) for each r.v. X with the aim of keeping identical to
the true set Chw(X) for the current possible world w.

With a proposed possible world (PW) w′ = w[X ← v],
it is easy to add all missing dependencies from a particular
r.v. U . That is, for an r.v. U and every r.v. V ∈ Parw′(U),
since U must be in Chw′(V), we can keep Ch(V) up-to-date
by adding U to Ch(V) if U 6∈ Ch(V). Therefore, the key
step is tracking the set of variables, ∆(w[X ← v]), which
will have a set of parents in w[X ← v] different from w.

∆(W [X ← v]) = {Y : Parw(Y) 6= Parw[X←v](Y)}
Precisely computing ∆(w[X ← v]) is very expensive at

runtime but computing an upper bound for ∆(w[X ← v])
does not influence the correctness of the inference code.
Therefore, we proceed to find an upper bound that holds for
any value v. We call this over-approximation the contingent
set Contw(X).

Note that for every r.v. U with dependency that changes in
w(X ← v), X must be reached in the condition of a control
statement on the execution path of CU within w. This implies
∆(w[X ← v]) ⊆ Chw(X). One straightforward idea is set
Contw(X) = Chw(X). However, this leads to too much
overhead. For example, ∆(·) should be always empty for
models with fixed dependencies.

Another approach is to first find out the set of switching
variables SX for every r.v. X , which is defined by

SX = {Y : ∃w, v Parw(X) 6= Parw[Y←v](X)},
This brings an immediate advantage: SX can be statically
computed at compile time. However, computing SX is NP-
Complete1.

Our solution is to derive the approximation ŜX by taking
the union of free variables of if/case conditions, function ar-
guments, and set expression conditions in CX , and then set

Contw(X) = {Y : Y ∈ Chw(X) ∧X ∈ ŜY }.
Contw(X) is a function of the sampling variable X and the
current PW w. Likewise, for every r.v. X , we maintain a
runtime contingent set Cont(X) identical to the true set
Contw(X) under the current PW w. Cont(X) can be in-
crementally updated as well.

Back to the original focus of ACU, suppose we are adding
new the dependencies in the new PWw′ = w[X ← v]. There
are three steps to accomplish the goal: (1) enumerating all the
variables U ∈ Cont(X), (2) for all V ∈ Parw′(U), add U
to Ch(V), and (3) for all V ∈ Parw′(U) ∩ ŜU , add U to
Cont(V). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the∞-GMM model (Fig. 3) as an example , when re-
sampling z(d), we need to change the dependency of r.v. x(d)

1Since the declaration CX may contain arbitrary boolean formu-
las, one can reduce the 3-SAT problem to computing SX .

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen);
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)); }

else
{ Fcc(C2, X, seen ∪ FV (Exp)); }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denote the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

since Contw(z(d)) = {x(d)} for any w. The generated code
for this process is shown below.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the∞-GMM model (Fig. 3) as an example , when re-
sampling z(d), we need to change the dependency of r.v. x(d)
since Cont(z(d)|W) = {x(d)} for any W . The generated
code for this process is shown below.

void x(d)::add_to_Ch() {
Cont(z(d)) += x(d);
Ch(z(d)) += x(d);
Ch(mu(z(d))) += x(d); }

void z(d)::accept_value(Cluster v) {
// accept the proposed value v for r.v. z(d)
// code for updating references omitted
for (u in Cont(z(d))) u.del_from_Ch();
val_z(d) = v;
for (u in Cont(z(d))) u.add_to_Ch(); }

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α in Eq. 1 for PMH
can be simplified to

min

(
1,
|w|Pr[X = v|w′-X]

∏
U∈Chw′ (X) Pr[U(w′)|w′-U]

|w′|Pr[X = v′|w-X]
∏

V ∈Chw(X) Pr[V (w)|w-V]

)

(2)

Here |w| denotes the total number of random variables exist-
ing in w, which can be maintained via RC.

Finally, the computation time of ACU is strictly shorter
than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (e.g., vector in C++) is used to
reduce the amount of dynamic memory allocations: we only
increase the length of the array when the number becomes
larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number statements
(e.g. the aircraft tracking model with multiple aircrafts and
blips for each one), the memory consumption can be large.
In Swift, the user can force the target code to clear all the
unused memory every fixed number of iterations via a com-
pilation option, which is turned off by default.

The following code demonstrates the target code for the
number variable #Ball and its associated color(b)’s in the
urn-ball model (Fig. 2) where iter is the current iteration
number.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the ∞-GMM model (Fig. 3) as an example , when
resampling z(d), we need to change the dependency of
r.v. x(d) since Cont(z(d)|W) = {x(d)} for any W . The
generated code for this process is shown below.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the∞-GMM model (Fig. 3) as an example , when re-
sampling z(d), we need to change the dependency of r.v. x(d)
since Cont(z(d)|W) = {x(d)} for any W . The generated
code for this process is shown below.

void x(d)::add_to_Ch() {
Cont(z(d)) += x(d);
Ch(z(d)) += x(d);
Ch(mu(z(d))) += x(d); }

void z(d)::accept_value(Cluster v) {
// accept the proposed value v for r.v. z(d)
// code for updating references omitted

for (u in Cont(z(d))) u.del_from_Ch();
val_z(d) = v;
for (u in Cont(z(d))) u.add_to_Ch(); }

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

Note that when generating a new PW, by simply in-
creasing the counter iter, all the memoization flags (e.g.,
mark color for color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select an r.v. to sam-
ple per iteration. In the target C++ code, this process is ac-
complished via polymorphism by declaring an abstract class
with a resample() method and a derived class for every
r.v. in the PP. An example code snippet for the ∞-GMM
model is shown below.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen);
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)); }

else
{ Fcc(C2, X, seen ∪ FV (Exp)); }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denote the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

since Contw(z(d)) = {x(d)} for any w. The generated code
for this process is shown below.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the∞-GMM model (Fig. 3) as an example , when re-
sampling z(d), we need to change the dependency of r.v. x(d)
since Cont(z(d)|W) = {x(d)} for any W . The generated
code for this process is shown below.

void x(d)::add_to_Ch() {
Cont(z(d)) += x(d);
Ch(z(d)) += x(d);
Ch(mu(z(d))) += x(d); }

void z(d)::accept_value(Cluster v) {
// accept the proposed value v for r.v. z(d)
// code for updating references omitted

for (u in Cont(z(d))) u.del_from_Ch();
val_z(d) = v;
for (u in Cont(z(d))) u.add_to_Ch(); }

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α in Eq. 1 for PMH
can be simplified to

min

(
1,
|w|Pr[X = v|w′-X]

∏
U∈Chw′ (X) Pr[U(w′)|w′-U]

|w′|Pr[X = v′|w-X]
∏

V ∈Chw(X) Pr[V (w)|w-V]

)

(2)

Here |w| denotes the total number of random variables exist-
ing in w, which can be maintained via RC.

Finally, the computation time of ACU is strictly shorter
than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (e.g., vector in C++) is used to
reduce the amount of dynamic memory allocations: we only
increase the length of the array when the number becomes
larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number statements
(e.g. the aircraft tracking model with multiple aircrafts and
blips for each one), the memory consumption can be large.
In Swift, the user can force the target code to clear all the
unused memory every fixed number of iterations via a com-
pilation option, which is turned off by default.

The following code demonstrates the target code for the
number variable #Ball and its associated color(b)’s in the
urn-ball model (Fig. 2) where iter is the current iteration
number.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the ∞-GMM model (Fig. 3) as an example , when
resampling z(d), we need to change the dependency of
r.v. x(d) since Cont(z(d)|W) = {x(d)} for any W . The
generated code for this process is shown below.

Fc(M = random T Id([T Id ,]∗) ∼ C) =
void Id::add_to_Ch()

{ Fcc(C, Id, {}) }
void Id::accept_value(T v)
{ for(u in Cont(Id)) u.del_from_Ch();

Id = v;
for(u in Cont(Id)) u.add_to_Ch(); }

Fcc(C = Exp, X, seen) = Fcc(Exp, X, seen)
Fcc(C = Dist(Exp), X, seen) = Fcc(Exp, X, seen)
Fcc(C = if (Exp) then C1 else C2, X, seen) =

Fcc(Exp, X, seen)
if (Exp)
{ Fcc(C1, X, seen ∪ FV (Exp)) }

else
{ Fcc(C2, X, seen ∪ FV (Exp)) }

Fcc(Exp, X, seen) =
/* emit a line of code for every r.v. U in the corresponding set */

∀ U ∈ ((FV (Exp) ∩ ŜX)\seen) : Cont(U) += X;
∀ U ∈ (FV (Exp)\seen) : Ch(U) += X;

Figure 4: Transformation rules for outputting inference code
with ACU. FV (Expr) denotes the free variables in Expr.
We assume the switching variables ŜX have already been
computed. The rules for number statements and case state-
ments are not shown for conciseness—they are analogous to
the rules for random variables and if statements respectively.

variables V ∈ Cont(X), (2) for all U ∈ Par(V |W), add V
to Ch(U), and (3) for all U ∈ Par(V |W) ∩ ŜV , add V to
Cont(U). These steps can be also repeated in a similar way
to remove the vanished dependencies.

Take the∞-GMM model (Fig. 3) as an example , when re-
sampling z(d), we need to change the dependency of r.v. x(d)
since Cont(z(d)|W) = {x(d)} for any W . The generated
code for this process is shown below.

void x(d)::add_to_Ch() {
Cont(z(d)) += x(d);
Ch(z(d)) += x(d);
Ch(mu(z(d))) += x(d); }

void z(d)::accept_value(Cluster v) {
// accept the proposed value v for r.v. z(d)
// code for updating references omitted

for (u in Cont(z(d))) u.del_from_Ch();
val_z(d) = v;
for (u in Cont(z(d))) u.add_to_Ch(); }

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

We omit the code for del_from_Ch() for conciseness,
which is essentially the same as add_to_Ch().

The formal transformation rules for ACU are demonstrated
in Fig. 4. Fc takes in a random variable declaration statement
in the BLOG program and outputs the inference code contain-
ing methods accept value() and add to Ch(). Fcc
takes in a BLOG expression and generates the inference code
inside method add to Ch(). It keeps track of already seen
variables in seen, which makes sure that a variable will be
added to the contingent set or the children set at most once.
Code for removing variables can be generated similarly.

Since we maintain the exact children for each r.v. with
ACU, the computation of acceptance ratio α (line 7 in Alg. 1)

for PMH can be simplified to

min

(
1,

|Wi−1|Pr[x = v|Wi]
∏

u∈Ch(x|Wi)
Pr[u|Wi]

|Wi|Pr[x = v′|Wi−1]
∏

v∈Ch(x|Wi−1)
Pr[v|Wi−1]

)

(2)
Here |W | denotes the total number of random variables ex-

isting in W , which can be maintained via RC.
Finally, the computation time of ACU is strictly shorter

than that of acceptance ratio α (Eq. 2).

4.2 Implementation of Swift
Lightweight memoization
Here we introduce the implementation details of the memo-
ization code in the getter function mentioned in section 4.1.

Objects will be converted to integers in the target code.
Swift analyzes the input PP and allocates static memory for
memoization in the target code. For open-universe models
where the number of random variables are unknown, the dy-
namic table data structure (i.e., vector<int> in C++) is
used to reduce the amount of dynamic memory allocations:
we only increase the length of the array when the number be-
comes larger than the capacity.

One potential weakness of directly applying a dynamic ta-
ble is that, for models with multiple nested number state-
ments, the memory consumption can be large. In Swift, the
user can force the target code to clear all the unused memory
every fixed number of iterations via an compilation option,
which is turned off by default.

The following code demonstrates the target code for
#Ball and color(b) in the urn-ball model (Fig. 2) where
iter is the current iteration number.
vector<int> val_color, mark_color;
int get_color(int b) {

if (mark_color[b] == iter)
return val_color[b]; // memoization

mark_color[b] = iter; // mark the flag
val_color[b] = ...//sampling code omitted
return val_color[b];}

int val_num_B, mark_num_B;
int get_num_Ball() {

if(mark_num_B == iter) return val_num_B;
val_num_B = ...// sampling code omitted
if(val_num_B > val_color.size(){//allocate
{ val_color.resize(val_num_B); //memory
mark_color.resize(val_num_B); }

return val_num_B; }

Note that when generating a new PW, by simply increasing
counter, all the memoization flags (i.e., mark color for
color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select a r.v. per
iteration. In the target C++ code, this process is accom-
plished via polymorphism by declaring an abstract class with
a resample() method and a derived class for every r.v. in
the PP. An example code snippet for the∞−GMM model is
shown below.
class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; // for ACU
virtual double get_likeli()=0;

}; // some methods omitted

Note that when generating a new PW, by simply in-
creasing the counter iter, all the memoization flags (e.g.,
mark color for color(·)) will be automatically cleared.

Lastly, in PMH, we need to randomly select an r.v. to sam-
ple per iteration. In the target C++ code, this process is ac-
complished via polymorphism by declaring an abstract class
with a resample() method and a derived class for every
r.v. in the PP. An example code snippet for the ∞-GMM
model is shown below.

class MH_OBJ {public: //abstract class
virtual void resample()=0;//resample step
virtual void add_to_Ch()=0; //for ACU
virtual void accept_value()=0;//for ACU
virtual double get_likeli()=0;

}; // some methods omitted
// maintain all the r.v.s in the current PW
std::vector<MH_OBJ*> active_vars;

// derived classes for r.v.s in the PP
class Var_mu:public MH_OBJ{public://for mu(c)
double val; // value for the var
double cached_val; //cache for proposal
int mark, cache_mark; // flags
std::set<MH_OBJ*> Ch, Cont; //sets for ACU
double getval(){...}; //sample & memoize
double getcache(){...};//generate proposal
... }; // some methods omitted

std::vector<Var_mu*> mu; // dynamic table
class Var_z:public MH_OBJ{ ... };//for z(d)
Var_z* z[20]; // fixed-size array

Efficient proposal manipulation
Although one PMH iteration only samples a single variable,
generating a new PW may still involve (de-)instantiating an
arbitrary number of random variables due to RC or sampling
a number variable. The general approach commonly adopted
by many PPL systems is to construct the proposed possible
world in dynamically allocated memory and then copy it to
the current world [Milch et al., 2005a; Wingate et al., 2011],
which suffers from significant overhead.

In order to generate and accept new PWs in PMH with
negligible memory management overhead, we extend the
lightweight memoization to manipulate proposals: Swift stat-
ically allocates an extra memoized cache for each random
variable, which is dedicated to storing the proposed value for
that variable. During resampling, all the intermediate results
are stored in the cache. When accepting the proposal, the pro-
posed value is directly loaded from the cache; when rejection,
no action is needed due to our memoization mechanism.

Here is an example target code fragment for mu(c) in the
∞-GMM model. proposed vars is an array storing all
the variables to be updated if the proposal gets accepted.
std::vector<MH_OBJ*>proposed_vars;
class Var_mu:public MH_OBJ{public://for mu(c)
double val; // value
double cached_val; //cache for proposal
int mark, cache_mark; // flags
double getcache(){ // propose new value
if(mark == 1) return val;
if(mark_cache == iter) return cached_val;
mark_cache = iter; // memoization
proposed_vars.push_back(this);
cached_val = ... // sample new value
return cached_val; }

void accept_value() {
val = cached_val;//accept proposed value
if(mark == 0) { // not instantiated yet

mark = 1;//instantiate variable
active_vars.push_back(this);

} }
void resample() { // resample
proposed_vars.clear();
mark = 0; // generate proposal
new_val = getcache();
mark = 1;
alpha = ... //compute acceptance ratio
if (sample_unif(0,1) <= alpha) {

for(auto v: proposed_vars)
v->accept_value(); // accept

// code for ACU and RC omitted
} } }; // some methods omitted

Supporting new algorithms
We demonstrate that FIDS can be applied to new algorithms
by implementing a translator for the Gibbs sampling [Arora
et al., 2010] (Gibbs) in Swift.

Gibbs is a variant of MH with the proposal distribution g(·)
set to be the posterior distribution. The acceptance ratio α is
always 1 while the disadvantage is that it is only possible to
explicitly construct the posterior distribution with conjugate
priors. In Gibbs, the proposal distribution is still constructed
from the Markov blanket, which again requires maintaining
the children set. Hence, FIDS can be fully utilized.

However, different conjugate priors yield different forms
of posterior distributions. In order to support a variety of
proposal distributions, we need to (1) implement a conjugacy
checker to check the form of posterior distribution for each
r.v. in the PP at compile time (the checker has nothing to do
with FIDS); (2) implement a posterior sampler for every con-
jugate prior in the runtime library of Swift.

5 Experiments
In the experiments, Swift generates target code in C++ with
C++ standard <random> library for random number gener-
ation and the armadillo package [Sanderson, 2010] for ma-
trix computation. The baseline systems include BLOG (ver-
sion 0.9.1), Figaro (version 3.3.0), Church (webchurch), In-
fer.NET (version 2.6), BUGS (winBUGS 1.4.3) and Stan
(cmdStan 2.6.0).

5.1 Benchmark models
We collect a set of benchmark models2 which exhibit var-
ious capabilities of a PPL (Tab. 1), including the burglary
model (Bur), the hurricane model (Hur), the urn-ball model
(U-B(x,y) denotes the urn-ball model with at most x balls and
y draws), the TrueSkill model [Herbrich et al., 2007] (T-K),
1-dimensional Gaussian mixture model (GMM, 100 points
with 4 clusters) and the infinite GMM model (∞-GMM). We
also include a real-world dataset: handwritten digits [LeCun
et al., 1998] using the PPCA model [Tipping and Bishop,
1999]. All the models can be downloaded from the GitHub
repository of BLOG.

5.2 Speedup by FIDS within Swift
We first evaluate the speedup promoted by each of the three
optimizations in FIDS individually.

Dynamic Backchaining for LW
We compare the running time of the following versions of
code: (1) the code generated by Swift (“Swift”); (2) the mod-
ified compiled code with DB manually turned off (“No DB”),
which sequentially samples all the variables in the PP; (3)
the hand-optimized code without unnecessary memoization
or recursive function calls (“Hand-Opt”).

We measure the running time for all the 3 versions and the
number of calls to the random number generator for “Swift”
and “No DB”. The result is concluded in Tab. 2.

2Most models are simplified to ensure that all the benchmark
systems can produce an output in reasonably short running time. All
of these models can be enlarged to handle more data without adding
extra lines of BLOG code.

Efficient proposal manipulation
Although one PMH iteration only samples a single variable,
generating a new PW may still involve (de-)instantiating an
arbitrary number of random variables due to RC or sampling
a number variable. The general approach commonly adopted
by many PPL systems is to construct the proposed possible
world in dynamically allocated memory and then copy it to
the current world [Milch et al., 2005a; Wingate et al., 2011],
which suffers from significant overhead.

In order to generate and accept new PWs in PMH with
negligible memory management overhead, we extend the
lightweight memoization to manipulate proposals: Swift stat-
ically allocates an extra memoized cache for each random
variable, which is dedicated to storing the proposed value for
that variable. During resampling, all the intermediate results
are stored in the cache. When accepting the proposal, the pro-
posed value is directly loaded from the cache; when rejection,
no action is needed due to our memoization mechanism.

Here is an example target code fragment for mu(c) in the
∞-GMM model. proposed vars is an array storing all
the variables to be updated if the proposal gets accepted.

// derived classes for r.v.s in the PP
class Var_mu:public MH_OBJ{public://for mu(c)
double val; // value for the var
double cached_val; //cache for proposal
int mark, cache_mark; // flags
std::set<MH_OBJ*> Ch, Cont; //sets for ACU
double getval(){...}; //sample & memoize
double getcache(){...};//generate proposal
... }; // some methods omitted

std::vector<Var_mu*> mu; // dynamic table
class Var_z:public MH_OBJ{ ... };//for z(d)
Var_z* z[20]; // fixed-size array

Efficient proposal manipulation
Although one PMH iteration only samples a single variable,
generating a new PW may still involve (de-)instantiating an
arbitrary number of random variables due to RC or sampling
a number variable. The general approach commonly adopted
by many PPL systems is to construct the proposed possible
world in dynamically allocated memory and then copy it to
the current world [Milch et al., 2005a; Wingate et al., 2011],
which suffers from significant overhead.

In order to generate and accept new PWs in PMH with
negligible memory management overhead, we extend the
lightweight memoization to manipulate proposals: Swift stat-
ically allocates an extra memoized cache for each random
variable, which is dedicated to storing the proposed value for
that variable. During resampling, all the intermediate results
are stored in the cache. When accepting the proposal, the pro-
posed value is directly loaded from the cache; when rejection,
no action is needed due to our memoization mechanism.

Here is an example target code fragment for mu(c) in the
∞-GMM model. proposed vars is an array storing all
the variables to be updated if the proposal gets accepted.
std::vector<MH_OBJ*>proposed_vars;
class Var_mu:public MH_OBJ{public://for mu(c)
double val; // value
double cached_val; //cache for proposal
int mark, cache_mark; // flags
double getcache(){ // propose new value
if(mark == 1) return val;
if(mark_cache == iter) return cached_val;
mark_cache = iter; // memoization
proposed_vars.push_back(this);
cached_val = ... // sample new value
return cached_val; }

void accept_value() {
val = cached_val;//accept proposed value
if(mark == 0) { // not instantiated yet

mark = 1;//instantiate variable
active_vars.push_back(this);

} }
void resample() { // resample
proposed_vars.clear();
mark = 0; // generate proposal
new_val = getcache();
mark = 1;
alpha = ... //compute acceptance ratio
if (sample_unif(0,1) <= alpha) {

for(auto v: proposed_vars)
v->accept_value(); // accept

// code for ACU and RC omitted
} } }; // some methods omitted

Supporting new algorithms
We demonstrate that FIDS can be applied to new algorithms
by implementing a translator for the Gibbs sampling [Arora
et al., 2010] (Gibbs) in Swift.

Gibbs is a variant of MH with the proposal distribution g(·)
set to be the posterior distribution. The acceptance ratio α is
always 1 while the disadvantage is that it is only possible to
explicitly construct the posterior distribution with conjugate
priors. In Gibbs, the proposal distribution is still constructed
from the Markov blanket, which again requires maintaining
the children set. Hence, FIDS can be fully utilized.

However, different conjugate priors yield different forms
of posterior distributions. In order to support a variety of
proposal distributions, we need to (1) implement a conjugacy
checker to check the form of posterior distribution for each
r.v. in the PP at compile time (the checker has nothing to do
with FIDS); (2) implement a posterior sampler for every con-
jugate prior in the runtime library of Swift.

5 Experiments
In the experiments, Swift generates target code in C++ with
C++ standard <random> library for random number gener-
ation and the armadillo package [Sanderson, 2010] for ma-
trix computation. The baseline systems include BLOG (ver-
sion 0.9.1), Figaro (version 3.3.0), Church (webchurch), In-
fer.NET (version 2.6), BUGS (winBUGS 1.4.3) and Stan
(cmdStan 2.6.0).

5.1 Benchmark models
We collect a set of benchmark models2 which exhibit var-
ious capabilities of a PPL (Tab. 1), including the burglary
model (Bur), the hurricane model (Hur), the urn-ball model
(U-B(x,y) denotes the urn-ball model with at most x balls and
y draws), the TrueSkill model [Herbrich et al., 2007] (T-K),
1-dimensional Gaussian mixture model (GMM, 100 points
with 4 clusters) and the infinite GMM model (∞-GMM). We
also include a real-world dataset: handwritten digits [LeCun
et al., 1998] using the PPCA model [Tipping and Bishop,
1999]. All the models can be downloaded from the GitHub
repository of BLOG.

5.2 Speedup by FIDS within Swift
We first evaluate the speedup promoted by each of the three
optimizations in FIDS individually.

Dynamic Backchaining for LW
We compare the running time of the following versions of
code: (1) the code generated by Swift (“Swift”); (2) the mod-
ified compiled code with DB manually turned off (“No DB”),
which sequentially samples all the variables in the PP; (3)
the hand-optimized code without unnecessary memoization
or recursive function calls (“Hand-Opt”).

We measure the running time for all the 3 versions and the
number of calls to the random number generator for “Swift”
and “No DB”. The result is concluded in Tab. 2.

2Most models are simplified to ensure that all the benchmark
systems can produce an output in reasonably short running time. All
of these models can be enlarged to handle more data without adding
extra lines of BLOG code.

Efficient proposal manipulation
Although one PMH iteration only samples a single variable,
generating a new PW may still involve (de-)instantiating an
arbitrary number of random variables due to RC or sampling
a number variable. The general approach commonly adopted
by many PPL systems is to construct the proposed possible
world in dynamically allocated memory and then copy it to
the current world [Milch et al., 2005a; Wingate et al., 2011],
which suffers from significant overhead.

In order to generate and accept new PWs in PMH with
negligible memory management overhead, we extend the
lightweight memoization to manipulate proposals: Swift stat-
ically allocates an extra memoized cache for each random
variable, which is dedicated to storing the proposed value for
that variable. During resampling, all the intermediate results
are stored in the cache. When accepting the proposal, the pro-
posed value is directly loaded from the cache; when rejection,
no action is needed due to our memoization mechanism.

Here is an example target code fragment for mu(c) in the
∞-GMM model. proposed vars is an array storing all
the variables to be updated if the proposal gets accepted.
std::vector<MH_OBJ*>proposed_vars;
class Var_mu:public MH_OBJ{public://for mu(c)
double val; // value
double cached_val; //cache for proposal
int mark, cache_mark; // flags
double getcache(){ // propose new value
if(mark == 1) return val;
if(mark_cache == iter) return cached_val;
mark_cache = iter; // memoization
proposed_vars.push_back(this);
cached_val = ... // sample new value
return cached_val; }

void accept_value() {
val = cached_val;//accept proposed value
if(mark == 0) { // not instantiated yet

mark = 1;//instantiate variable
active_vars.push_back(this);

} }
void resample() { // resample
proposed_vars.clear();
mark = 0; // generate proposal
new_val = getcache();
mark = 1;
alpha = ... //compute acceptance ratio
if (sample_unif(0,1) <= alpha) {
for(auto v: proposed_vars)
v->accept_value(); // accept

// code for ACU and RC omitted
} } }; // some methods omitted

Supporting new algorithms
We demonstrate that FIDS can be applied to new algorithms
by implementing a translator for the Gibbs sampling [Arora
et al., 2010] (Gibbs) in Swift.

Gibbs is a variant of MH with the proposal distribution g(·)
set to be the posterior distribution. The acceptance ratio α is
always 1 while the disadvantage is that it is only possible to
explicitly construct the posterior distribution with conjugate
priors. In Gibbs, the proposal distribution is still constructed
from the Markov blanket, which again requires maintaining
the children set. Hence, FIDS can be fully utilized.

However, different conjugate priors yield different forms
of posterior distributions. In order to support a variety of
proposal distributions, we need to (1) implement a conjugacy
checker to check the form of posterior distribution for each
r.v. in the PP at compile time (the checker has nothing to do
with FIDS); (2) implement a posterior sampler for every con-
jugate prior in the runtime library of Swift.

5 Experiments
In the experiments, Swift generates target code in C++ with
C++ standard <random> library for random number gener-
ation and the armadillo package [Sanderson, 2010] for ma-
trix computation. The baseline systems include BLOG (ver-
sion 0.9.1), Figaro (version 3.3.0), Church (webchurch), In-
fer.NET (version 2.6), BUGS (winBUGS 1.4.3) and Stan
(cmdStan 2.6.0).

5.1 Benchmark models
We collect a set of benchmark models2 which exhibit var-
ious capabilities of a PPL (Tab. 1), including the burglary
model (Bur), the hurricane model (Hur), the urn-ball model
(U-B(x,y) denotes the urn-ball model with at most x balls and
y draws), the TrueSkill model [Herbrich et al., 2007] (T-K),
1-dimensional Gaussian mixture model (GMM, 100 points
with 4 clusters) and the infinite GMM model (∞-GMM). We
also include a real-world dataset: handwritten digits [LeCun
et al., 1998] using the PPCA model [Tipping and Bishop,
1999]. All the models can be downloaded from the GitHub
repository of BLOG.

5.2 Speedup by FIDS within Swift
We first evaluate the speedup promoted by each of the three
optimizations in FIDS individually.

Dynamic Backchaining for LW
We compare the running time of the following versions of
code: (1) the code generated by Swift (“Swift”); (2) the mod-
ified compiled code with DB manually turned off (“No DB”),
which sequentially samples all the variables in the PP; (3)
the hand-optimized code without unnecessary memoization
or recursive function calls (“Hand-Opt”).

We measure the running time for all the 3 versions and the
number of calls to the random number generator for “Swift”
and “No DB”. The result is concluded in Tab. 2.

2Most models are simplified to ensure that all the benchmark
systems can produce an output in reasonably short running time. All
of these models can be enlarged to handle more data without adding
extra lines of BLOG code.

Supporting new algorithms
We demonstrate that FIDS can be applied to new algorithms
by implementing a translator for the Gibbs sampling [Arora
et al., 2010] (Gibbs) in Swift.

Gibbs is a variant of MH with the proposal distribution g(·)
set to be the posterior distribution. The acceptance ratio α is
always 1 while the disadvantage is that it is only possible to
explicitly construct the posterior distribution with conjugate
priors. In Gibbs, the proposal distribution is still constructed
from the Markov blanket, which again requires maintaining
the children set. Hence, FIDS can be fully utilized.

However, different conjugate priors yield different forms
of posterior distributions. In order to support a variety of
proposal distributions, we need to (1) implement a conjugacy
checker to check the form of posterior distribution for each
r.v. in the PP at compile time (the checker has nothing to do
with FIDS); (2) implement a posterior sampler for every con-
jugate prior in the runtime library of Swift.

5 Experiments
In the experiments, Swift generates target code in C++ with
C++ standard <random> library for random number gener-
ation and the armadillo package [Sanderson, 2010] for ma-
trix computation. The baseline systems include BLOG (ver-
sion 0.9.1), Figaro (version 3.3.0), Church (webchurch), In-
fer.NET (version 2.6), BUGS (winBUGS 1.4.3) and Stan
(cmdStan 2.6.0).

5.1 Benchmark models
We collect a set of benchmark models2 which exhibit var-
ious capabilities of a PPL (Tab. 1), including the burglary
model (Bur), the hurricane model (Hur), the urn-ball model
(U-B(x,y) denotes the urn-ball model with at most x balls and
y draws), the TrueSkill model [Herbrich et al., 2007] (T-K),
1-dimensional Gaussian mixture model (GMM, 100 points
with 4 clusters) and the infinite GMM model (∞-GMM). We
also include a real-world dataset: handwritten digits [LeCun
et al., 1998] using the PPCA model [Tipping and Bishop,
1999]. All the models can be downloaded from the GitHub
repository of BLOG.

5.2 Speedup by FIDS within Swift
We first evaluate the speedup promoted by each of the three
optimizations in FIDS individually.

Dynamic Backchaining for LW
We compare the running time of the following versions of
code: (1) the code generated by Swift (“Swift”); (2) the mod-
ified compiled code with DB manually turned off (“No DB”),
which sequentially samples all the variables in the PP; (3)
the hand-optimized code without unnecessary memoization
or recursive function calls (“Hand-Opt”).

2Most models are simplified to ensure that all the benchmark
systems can produce an output in reasonably short running time. All
of these models can be enlarged to handle more data without adding
extra lines of BLOG code.

Bur Hur U-B T-K GMM ∞-GMM PPCA

R X X X X
CT X X X X
CC X
OU X X
CG X X X X X X

Table 1: Features of the benchmark models. R: continuous
scalar or vector variables. CT: context-specific dependencies
(contingency). CC: cyclic dependencies in the PP (while in
any particular PW the dependency structure remains acyclic).
OU: open-universe. CG: conjugate priors.

Alg. Bur Hur U-B(20,2) U-B(20,8)
Running Time (s): Swift v.s. No DB

No DB 0.768 1.288 2.952 5.040
Swift 0.782 1.115 1.755 4.601

Speedup 0.982 1.155 1.682 1.10
Running Time (s): Swift v.s. Hand-Optimized

Hand-Opt 0.768 1.099 1.723 4.492
Swift 0.782 1.115 1.755 4.601

Overhead 1.8% 1.4% 1.8% 2.4%
Calls to Random Number Generator

No DB 3 ∗ 107 3 ∗ 107 1.35 ∗ 108 1.95 ∗ 108
Swift 3 ∗ 107 2.0 ∗ 107 4.82 ∗ 107 1.42 ∗ 108

Calls Saved 0% 33.3% 64.3% 27.1%

Table 2: Performance on LW with 107 samples for Swift, the
version without DB and the hand-optimized version

We measure the running time for all the 3 versions and the
number of calls to the random number generator for “Swift”
and “No DB”. The result is concluded in Tab. 2.

The overhead due to memoization compared against the
hand-optimized code is less than 2.4%. We can further notice
that the speedup is proportional to the number of calls saved.

Reference Counting for PMH
RC only applies to open-universe models in Swift. Hence we
focus on the urn-ball model with various model parameters.
The urn-ball model represents a common model structure ap-
pearing in many applications with open-universe uncertainty.
This experiment reveals the potential speedup by RC for real-
world problems with similar structures. RC achieves greater
speedup when the number of balls and the number of obser-
vations become larger.

We compare the code produced by Swift with RC (“Swift”)
and RC manually turned off (“No RC”). For “No RC”, we
traverse the whole dependency structure and reconstruct the
dynamic slice every iteration. Fig. 5 shows the running time
of both versions. RC is indeed effective – leading to up to
2.3x speedup.

Adaptive Contingency Updating for PMH
We compare the code generated by Swift with ACU (“Swift”)
and the manually modified version without ACU (“Static
Dep”) and measure the number of calls to the likelihood func-
tion in Tab. 3.

The version without ACU (“Static Dep”) demonstrates the

0

5

10

15

20

25

30

U-B(10,5) U-B(20,5) U-B(40,5) U-B(40,10) U-B(40,20) U-B(40,40)

No RC

Swift

2.3x

Figure 5: Running time (s) of PMH in Swift with and without
RC on urn-ball models for 20 million samples.

Alg. Bur Hur U-B(20,10) U-B(40,20)
Running Time (s): Swift v.s. Static Dep

Static Dep 0.986 1.642 4.433 7.722
Swift 0.988 1.492 3.891 4.514

Speedup 0.998 1.100 1.139 1.711
Calls to Likelihood Functions

Static Dep 1.8 ∗ 107 2.7 ∗ 107 1.5 ∗ 108 3.0 ∗ 108
Swift 1.8 ∗ 107 1.7 ∗ 107 4.1 ∗ 107 5.5 ∗ 107

Calls Saved 0% 37.6% 72.8% 81.7%

Table 3: Performance of PMH in Swift and the version utiliz-
ing static dependencies on benchmark models.

best efficiency that can be achieved via compile-time analy-
sis without maintaining dependencies at runtime. This ver-
sion statically computes an upper bound of the children set
by Ĉh(X) = {Y : X appears in CY } and again uses Eq.(2)
to compute the acceptance ratio. Thus, for models with fixed
dependencies, “Static Dep” should be faster than “Swift”.

In Tab. 3, “Swift” is up to 1.7x faster than “Static Dep”,
thanks to up to 81% reduction of likelihood function eval-
uations. Note that for the model with fixed dependencies
(Bur), the overhead by ACU is almost negligible: 0.2% due
to traversing the hashmap to access to child variables.

5.3 Swift against other PPL systems
We compare Swift with other systems using LW, PMH and
Gibbs respectively on the benchmark models. The running
time is presented in Tab. 4. The speedup is measured between
Swift and the fastest one among the rest. An empty entry
means that the corresponding PPL fails to perform inference
on that model. Though these PPLs have different host lan-
guages (C++, Java, Scala, etc.), the performance difference
resulting from host languages is within a factor of 23.

5.4 Experiment on real-world dataset
We use Swift with Gibbs to handle the probabilistic princi-
pal component analysis (PPCA) [Tipping and Bishop, 1999],
with real-world data: 5958 images of digit “2” from the hand-
written digits dataset (MNIST) [LeCun et al., 1998]. We
compute 10 principal components for the digits. The training
and testing sets include 5958 and 1032 images respectively,
each with 28x28 pixels and pixel value rescaled to [0, 1].

Since most benchmark PPL systems are too slow to han-
dle this amount of data, we compare Swift against other two

3http://benchmarksgame.alioth.debian.org/

PPL Bur Hur U-B
(20,10) T-K GMM ∞-GMM

LW with 106 samples
Church 9.6 22.9 179 57.4 1627 1038
Figaro 15.8 24.7 176 48.6 997 235
BLOG 8.4 11.9 189 49.5 998 261
Swift 0.04 0.08 0.54 0.24 6.8 1.1

Speedup 196 145 326 202 147 214
PMH with 106 samples

Church 12.7 25.2 246 173 3703 1057
Figaro 10.6 - 59.6 17.4 151 62.2
BLOG 6.7 18.5 30.4 38.7 72.5 68.3
Swift 0.11 0.15 0.4 0.32 0.76 0.60

Speedup 61 121 75 54 95 103
Gibbs with 106 samples

BUGS 87.7 - - - 84.4 -
Infer.NET 1.5 - - - 77.8 -

Swift 0.12 0.19 0.34 - 0.42 0.86
Speedup 12 ∞ ∞ - 185 ∞

Table 4: Running time (s) of Swift and other PPLs on the
benchmark models using LW, PMH and Gibbs.

scalable PPLs, Infer.NET and Stan, on this model. Both PPLs
have compiled inference and are widely used for real-world
applications. Stan uses HMC as its inference algorithm. For
Infer.NET, we select variational message passing algorithm
(VMP), which is Infer.NET’s primary focus. Note that HMC
and VMP are usually favored for fast convergence.

Stan requires a tuning process before it can produce sam-
ples. We ran Stan with 0, 5 and 9 tuning steps respectively4.
We measure the perplexity of the generated samples over test
images w.r.t. the running time in Fig. 6, where we also visu-
alize the produced principal components. For Infer.NET, we
consider the mean of the approximation distribution.

Swift quickly generates visually meaningful outputs with
around 105 Gibbs iterations in 5 seconds. Infer.NET takes
13.4 seconds to finish the first iteration5 and converges to a
result with the same perplexity after 25 iterations and 150
seconds. The overall convergence of Gibbs w.r.t. the running
time significantly benefits from the speedup by Swift.

For Stan, its no-U-turn sampler [Homan and Gelman,
2014] suffers from significant parameter tuning issues. We
also tried to manually tune the parameters, which does not
help much. Nevertheless, Stan does work for the simplified
PPCA model with 1-dimensional data. Although further in-
vestigation is still needed, we conjecture that Stan is very sen-
sitive to its parameters in high-dimensional cases. Lastly, this
experiment also suggests that those parameter-robust infer-
ence engines, such as Swift with Gibbs and Infer.NET with
VMP, would be preferred at practice when possible.

4We also ran Stan with 50 and 100 tuning steps, which took more
than 3 days to finish 130 iterations (including tuning). However, the
results are almost the same as that with 9 tuning steps.

5Gibbs by Swift samples a single variable while Infer.NET pro-
cesses all the variables per iteration.

Figure 6: Log-perplexity w.r.t running time(s) on the PPCA
model with visualized principal components. Swift converges
faster.

6 Conclusion and Future Work
We have developed Swift, a PPL compiler that generates
model-specific target code for performing inference. Swift
uses a dynamic slicing framework for open-universe models
to incrementally maintain the dependency structure at run-
time. In addition, we carefully design data structures in the
target code to avoid dynamic memory allocations when pos-
sible. Our experiments show that Swift achieves orders of
magnitudes speedup against other PPL engines.

The next step for Swift is to support more algorithms, such
as SMC [Wood et al., 2014], as well as more samplers, such
as the block sampler for (nearly) deterministic dependen-
cies [Li et al., 2013]. Although FIDS is a general framework
that can be naturally extended to these cases, there are still
implementation details to be studied.

Another direction is partial evaluation, which allows the
compiler to reason about the input program to simplify it.
Shah et al. [2016] proposes a partial evaluation framework
for the inference code (PI in Fig. 1). It is very interesting to
extend this work to the whole Swift pipeline.

Acknowledgement
We would like to thank our anonymous reviewers, as well
as Rohin Shah for valuable discussions. This work is sup-
ported by the DARPA PPAML program, contract FA8750-
14-C-0011.

References
[Agrawal and Horgan, 1990] Hiralal Agrawal and Joseph R Hor-

gan. Dynamic program slicing. In ACM SIGPLAN Notices, vol-
ume 25, pages 246–256. ACM, 1990.

[Arora et al., 2010] Nimar S. Arora, Rodrigo de Salvo Braz, Erik B.
Sudderth, and Stuart J. Russell. Gibbs sampling in open-universe
stochastic languages. In UAI, pages 30–39. AUAI Press, 2010.

[Chaganty et al., 2013] Arun Chaganty, Aditya Nori, and Sriram
Rajamani. Efficiently sampling probabilistic programs via pro-
gram analysis. In AISTATS, pages 153–160, 2013.

[Cytron et al., 1989] Ron Cytron, Jeanne Ferrante, Barry K Rosen,
Mark N Wegman, and F Kenneth Zadeck. An efficient method

of computing static single assignment form. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 25–35. ACM, 1989.

[Goodman et al., 2008] Noah D. Goodman, Vikash K. Mans-
inghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenen-
baum. Church: A language for generative models. In UAI, pages
220–229, 2008.

[Herbrich et al., 2007] Ralf Herbrich, Tom Minka, and Thore Grae-
pel. Trueskill(tm): A bayesian skill rating system. In Advances in
Neural Information Processing Systems 20, pages 569–576. MIT
Press, January 2007.

[Homan and Gelman, 2014] Matthew D Homan and Andrew Gel-
man. The no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo. The Journal of Machine Learning Re-
search, 15(1):1593–1623, 2014.

[Hur et al., 2014] Chung-Kil Hur, Aditya V. Nori, Sriram K. Raja-
mani, and Selva Samuel. Slicing probabilistic programs. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, pages
133–144, New York, NY, USA, 2014. ACM.

[Kazemi and Poole, 2016] Seyed Mehran Kazemi and David Poole.
Knowledge compilation for lifted probabilistic inference: Com-
piling to a low-level language. 2016.

[Kucukelbir et al., 2015] Alp Kucukelbir, Rajesh Ranganath, An-
drew Gelman, and David Blei. Automatic variational inference
in Stan. In NIPS, pages 568–576, 2015.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua Bengio,
and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[Li et al., 2013] Lei Li, Bharath Ramsundar, and Stuart Russell.
Dynamic scaled sampling for deterministic constraints. In AIS-
TATS, pages 397–405, 2013.

[Lunn et al., 2000] David J. Lunn, Andrew Thomas, Nicky Best,
and David Spiegelhalter. WinBUGS - a Bayesian modelling
framework: Concepts, structure, and extensibility. Statistics and
Computing, 10(4):325–337, October 2000.

[Mansinghka et al., 2013] Vikash K. Mansinghka, Tejas D. Kulka-
rni, Yura N. Perov, and Joshua B. Tenenbaum. Approxi-
mate Bayesian image interpretation using generative probabilistic
graphics programs. In NIPS, pages 1520–1528, 2013.

[McAllester et al., 2008] David McAllester, Brian Milch, and
Noah D Goodman. Random-world semantics and syntactic in-
dependence for expressive languages. Technical report, 2008.

[Milch and Russell, 2006] Brian Milch and Stuart J. Russell.
General-purpose MCMC inference over relational structures. In
UAI. AUAI Press, 2006.

[Milch et al., 2005a] Brian Milch, Bhaskara Marthi, Stuart Russell,
David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG:
Probabilistic models with unknown objects. In IJCAI, pages
1352–1359, 2005.

[Milch et al., 2005b] Brian Milch, Bhaskara Marthi, David Son-
tag, Stuart Russell, Daniel L. Ong, and Andrey Kolobov. Ap-
proximate inference for infinite contingent Bayesian networks.
In Tenth International Workshop on Artificial Intelligence and
Statistics, Barbados, 2005.

[Minka et al., 2014] T. Minka, J.M. Winn, J.P. Guiver, S. Webster,
Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. Infer.NET
2.6, 2014.

[Nori et al., 2014] Aditya V Nori, Chung-Kil Hur, Sriram K Raja-
mani, and Selva Samuel. R2: An efficient MCMC sampler for
probabilistic programs. In AAAI Conference on Artificial Intelli-
gence, 2014.

[Pfeffer, 2001] Avi Pfeffer. IBAL: A probabilistic rational program-
ming language. In In Proc. 17th IJCAI, pages 733–740. Morgan
Kaufmann Publishers, 2001.

[Pfeffer, 2009] Avi Pfeffer. Figaro: An object-oriented probabilis-
tic programming language. Charles River Analytics Technical
Report, 2009.

[Plummer, 2003] Martyn Plummer. JAGS: A program for analysis
of Bayesian graphical models using Gibbs sampling. In Proceed-
ings of the 3rd International Workshop on Distributed Statistical
Computing, volume 124, page 125. Vienna, 2003.

[Ritchie et al., 2016] Daniel Ritchie, Andreas Stuhlmüller, and
Noah D. Goodman. C3: Lightweight incrementalized MCMC for
probabilistic programs using continuations and callsite caching.
In AISTATS 2016, 2016.

[Sanderson, 2010] Conrad Sanderson. Armadillo: An open source
c++ linear algebra library for fast prototyping and computation-
ally intensive experiments. 2010.

[Shah et al., 2016] Rohin Shah, Emina Torlak, and Rastislav Bodik.
SIMPL: A DSL for automatic specialization of inference algo-
rithms. arXiv preprint arXiv:1604.04729, 2016.

[Stan Development Team, 2014] Stan Development Team. Stan
Modeling Language Users Guide and Reference Manual, Version
2.5.0, 2014.

[Tipping and Bishop, 1999] Michael E. Tipping and Chris M.
Bishop. Probabilistic principal component analysis. Journal of
the Royal Statistical Society, Series B, 61:611–622, 1999.

[Tristan et al., 2014] Jean-Baptiste Tristan, Daniel Huang, Joseph
Tassarotti, Adam C Pocock, Stephen Green, and Guy L Steele.
Augur: Data-parallel probabilistic modeling. In NIPS, pages
2600–2608. 2014.

[Wingate et al., 2011] David Wingate, Andreas Stuhlmueller, and
Noah D Goodman. Lightweight implementations of probabilis-
tic programming languages via transformational compilation. In
International Conference on Artificial Intelligence and Statistics,
pages 770–778, 2011.

[Wood et al., 2014] Frank Wood, Jan Willem van de Meent, and
Vikash Mansinghka. A new approach to probabilistic program-
ming inference. In Proceedings of the 17th International confer-
ence on Artificial Intelligence and Statistics, pages 2–46, 2014.

[Wu et al., 2014] Yi Wu, Lei Li, and Stuart J. Russell. BFiT:
From possible-world semantics to random-evaluation semantics
in open universe. In Neural Information Processing Systems,
Probabilistic Programming workshop, 2014.

[Yang et al., 2014] Lingfeng Yang, Pat Hanrahan, and Noah D.
Goodman. Generating efficient MCMC kernels from probabilis-
tic programs. In AISTATS, pages 1068–1076, 2014.

