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Abstract
We propose a novel approach for solving unary
SAS+ planning problems. This approach extends
an SAS+ instance with new state variables rep-
resenting intentions about how each original state
variable will be used or changed next, and splits
the original actions into several stages of intention
followed by eventual execution. The result is a
new SAS+ instance with the same basic solutions
as the original. While the transformed problem is
larger, it has additional structure that can be ex-
ploited to reduce the branching factor, leading to
reachable state spaces that are many orders of mag-
nitude smaller (and hence much faster planning) in
several test domains with acyclic causal graphs.

1 Introduction
State-space planners based on forward search have emerged
as the overall winners in recent planning competitions.
Their success is due in part to cheap and accurate domain-
independent heuristics, and in part to easy elimination of re-
peated states (i.e., transpositions) in the state space. Never-
theless, state-space planners—especially optimal ones—can
fail spectacularly on simple problems that allow for many
possible interleavings of independent subplans, or contain
many actions irrelevant to achieving the goal, which are triv-
ial for alternative approaches such as partial-order planning.

Recent work by Helmert and Röger [2008] has shown that
improvements in heuristic technology alone are unlikely to
improve this situation, highlighting the need for new tech-
niques in state-space planning to detect and exploit symme-
tries. Especially vital are techniques to limit the interleaving
of independent parts of a solution. Unfortunately, Helmert
and Röger conclude that existing such techniques are “diffi-
cult to integrate into algorithms that prune duplicates such as
A*,” and that more generally, “clean, general ideas for ex-
ploiting symmetries in planning tasks are still few.”

Our key contribution is the observation that a bounded set
of future intentions is sufficient to capture much of the power
of hierarchical and partial-order planning. By representing
these intentions within the problem state, we enable state-
space planners that avoid interleaving independent subplans
and prune irrelevant actions throughout the search space.

Specifically, we extend a unary SAS+ planning problem
(in which every operator affects a single state variable) with
new state variables representing intentions about how each
original state variable will be used or changed next: for each
variable v, we allow a commitment to a next action that will
change v, and a next child variable that will causally depend
on v. Then, the execution of each original action a becomes
a multi-step process: first we intend to do a to change v next,
then we intend to use v as the next child of each prevail con-
dition of a, and finally we fire a, applying its original effects
as well as clearing the above intentions. These steps can be
interleaved with the steps of actions affecting other variables
(e.g., steps achieving prevail conditions of a).

The output of this process is a new SAS+ instance, which
essentially augments the original state with a flat, bounded
representation of a partially-ordered hierarchical plan. The
set of basic optimal solutions to this augmented instance (af-
ter dropping non-fire actions) is identical to the set of optimal
solutions to the original instance. However, due to the much
larger state space, naive search in this formulation (e.g., using
uniform-cost search) would be much slower than in the orig-
inal SAS+ formulation. To achieve speedups, we exploit the
special structure of the augmented instance to heavily prune
the set of actions that need to be considered from each state,
without sacrificing optimality.

We first show that the set of applicable actions can be par-
titioned based on their type and the original variable affected,
so that search only needs to branch over actions in a single
(arbitrarily chosen) partition at each state. The remaining
branching comes in two types: choosing a next intended ac-
tion, or next intended child, for a single variable (cf. choos-
ing an achiever for an open condition in partial-order plan-
ning). Action intentions commit to what to do next, but since
they are unordered they do not rule out necessary interleav-
ings with other variables. Child intentions constrain when
these intended actions can be fired, only generating branch-
ing when necessary to interleave usage of shared variables
relevant to operators affecting multiple other variables.

Next, we propose a heuristic for choosing an action par-
tition, which favors discharging existing commitments over
creating new ones. This leads to our Bounded Intention
Planner (BIP), which automatically breaks symmetries be-
tween equivalent interleavings, providing provably exponen-
tial speedups on independent subproblems, and huge em-
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Figure 1: A transportation planning task [Helmert, 2006].
There are two cities, each defined by a graph of locations with
roads (thin lines) that can be traversed by cars. There are two
cars (c1 and c2) in the left city and one (c3) in the right city,
plus a single truck t that can drive between the cities, stop-
ping at locations D and E. The goal is to deliver parcels p1

and p2 to the designated locations using the vehicles.

pirical speedups even without them, in several test domains
with acyclic causal graphs. BIP also leverages intentions in
other ways; for example, intended actions’ preconditions pro-
vide subgoals, which can be used to prune irrelevant actions
throughout search.

We conclude with a brief discussion of potential improve-
ments and applications to general planning problems.

2 Background
2.1 Unary SAS+ Representation
Following Bäckström and Nebel [1995], a unary SAS+ plan-
ning problem is defined by a tuple Π = (V,O, s0, s?):
• V = {v1, ..., vm} is the set of multi-valued state vari-

ables. Each variable v ∈ V has values chosen from a do-
mainDv . A state is a total assignment of variables to do-
main values, so the state space is SV = Dv1× ...×Dvm

.
The value of variable v in state s is written s[v].
We also consider partial states, in which variables can
take on the undefined value u, and let Vs+ be the set of
variables defined ( 6=u) in partial state s+. s+ is satisfied
by a state s, written s+ v s, if ∀v ∈ Vs+ , s+[v] = s[v].
• O is the set of operators (a.k.a. actions), each of which

is defined by a tuple o = (preo, posto, prvo) of partial
states, called the pre-, post-, and prevail-conditions re-
spectively. We assume unary operators that affect a sin-
gle variable v, i.e., Vpreo

= Vposto = {v}, with prevail
conditions allowed on the remaining variables. An oper-
ator o is applicable in a state s if preo v s and prvo v s.
o can then be be executed in s, producing a new state
o(s) with v set to posto[v]. This incurs a cost≥ 0, which
we assume is 1 unless otherwise mentioned.
Denote the partition of operators affecting v by O[v].
• s0 ∈ SV is the initial state (we assume it is complete)
• s? is the (typically partial) goal state
Finally, a solution is a sequence of applicable operators

(o1, ..., ok) that transforms s0 to a state that satisfies s?.
As a running example, we consider a transportation plan-

ning task (see Figure 1) due to Helmert [2006]. The objective
is to deliver a set of packages (pi) from their current loca-
tions to their destinations using a fleet of vehicles. Cars (ci)
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Figure 2: Causal graph of the transportation task. G is a
dummy variable representing the goal conditions.
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Figure 3: Domain transition graphs for the transportation
task.

can drive along roads within a city, and the truck (t) can drive
between the cities; all vehicles can hold any number of pack-
ages. A SAS+ encoding of this problem has six state vari-
ables: one for the location of each vehicle, and one for the
status of each parcel (either “at location l” or “in vehicle v”);
and three basic operator types: LOAD, DRIVE, and UNLOAD.
For example, operator LOAD(p2, c3, F ) loads package p2 into
car c3 at location F ; it has prevail condition c3 = at F , pre-
condition p2 = at F , and postcondition p2 = in c3. The
optimal solution to the example problem delivers p2 using c3,
and p1 using c1 or c2, then t, then c3. These subplans can be
interleaved arbitrarily, except that c3 must be used to deliver
p2 first in an optimal solution.

2.2 Causal Graphs and Independence
The causal graph CG of an SAS+ instance captures the
causal relationships between its variables [Helmert, 2006].
Formally, CG is a directed graph over the state variables V ,
where there is an edge from s to t iff there exists an oper-
ator o ∈ O with a prevail condition on s and postcondition
on t (see Figure 2). Denote the children of s by CG(s). In
our example, the causal graph contains an edge from each
vehicle variable v to each package variable p, generated by
the LOAD(p, v, ·) and UNLOAD(p, v, ·) operators that have a
prevail condition on v and a postcondition on p.

A first observation is that only ancestors of v in CG (in-
cluding v itself) are relevant for changing v. Define a sub-
problem as the task of achieving a particular value for some
variable. If the ancestors of two variables are disjoint, sub-
problems on these variables are independent: they do not in-
teract, and so any interleaving of their optimal solutions is an



optimal solution to the combined task. In our example, only
subproblems involving different vehicles are independent.

More commonly, subproblems can exhibit partial depen-
dence, where solutions only interact via one or more shared
ancestor variables. The more frequently two subproblems re-
quire different values for a shared variable, the stronger the
dependence. Our approach capitalizes on these structures,
avoiding all interleaving of independent subproblem solu-
tions, and only generating interleaving to multiplex the use
of shared variables for partially dependent subproblems.

The domain transition graphs (DTGs) complement the
causal graph. For each variable v ∈ V , DTGv is a directed
graph over its domain Dv . Each operator o ∈ O[v] gener-
ates an edge from preo[v] to posto[v]; thus, paths in DTGv

correspond to operator sequences affecting v. Figure 3 shows
DTGs for our example; the parcel transitions are generated
by LOAD and UNLOAD operators, and the vehicle transitions
by DRIVE operators.

3 Related Work
Various researchers have studied the unary/acyclic problems
that are our primary focus, often with an emphasis on com-
plexity and identifying tractable subclasses (e.g., [Bäckström,
1992; Bäckström and Nebel, 1995; Jonsson and Bäckström,
1998; Jonsson, 2009]). A particularly relevant result by Braf-
man and Domshlak [2003] is that planning remains PSPACE-
complete even when restricted to unary effects and acyclic
causal graphs (and binary-valued variables).

The intentions in our approach are closely related to com-
mitments in hierarchical planning (e.g., [Knoblock, 1994])
and partial-order planning (e.g., [Mcallester and Rosenblitt,
1991]). A key difference is that we retain the advantages
of state-space search, including cheap domain-independent
heuristics and easy repeated-state checking.

Numerous works have explored related planning algo-
rithms that work directly on the causal graph. However, these
proposals have been suboptimal (e.g., [Haslum, 2007]), in-
complete (e.g., [Chen et al., 2008]), or limited to more re-
stricted problem classes (e.g., [Jonsson, 2009]).

Within the state-space setting, Coles and Coles [2010]
present several optimizations that prune action choices based
on the stated goals of a problem; while powerful, these opti-
mizations can also be fragile (sensitive to problem formula-
tion). Intentions allow us to apply similar optimizations hier-
archically throughout search, using subgoals provided by the
preconditions of intended actions. Other pruning methods in-
clude exploiting symmetric objects and tunnel macros (e.g.,
[Fox and Long, 1999; Coles and Coles, 2010]), which should
complement our approach.

Most closely related to our approach are techniques for
pruning symmetric action interleavings in state-space search.
Stratified planning [Chen et al., 2009] is a small modification
of state-space search, in which the applicable operators from
a state s are pruned based on the last operator o executed to
reach s, effectively avoiding some equivalent interleavings.
Variables are first assigned numeric levels from a topological
ordering of the causal graph. Then, from state s, only opera-
tors that either (1) affect ≥-level variables than o, or (2) were

enabled by doing o are considered next; all other actions are
pruned.

The Expansion Core (EC) method [Chen and Yao, 2009] is
another recent approach for pruning symmetric action inter-
leavings. From each state s, the EC planner builds a poten-
tial dependency graph on the state variables of the problem,
which contains an edge from variable u to v iff u is a potential
precondition or potential dependent of v. Roughly speaking,
a potential precondition u’s current value satisfies a pre(vail)
condition of an operator affecting v that lies on a path from
the current value of v to its goal value (if applicable); and
a potential dependent u can be changed next by an operator
that needs a value for v that lies on a path from its current
value to its goal value (if applicable). Given this graph, a
subset of variables V called a dependency closure is selected,
which has no outgoing edges, and contains at least one vari-
able v ∈ V s.t. s[v] 6= s?[v] 6= u. Only actions affecting V
are considered from s, without sacrificing optimality.

Both the EC method and the “operator partitions” used by
BIP can be understood as applications of the “stubborn set”
method [Valmari, 1990], which identifies subsets of actions
that can be greedily focused on at a given state without sacri-
ficing global optimality.

Despite the connections, there are many important differ-
ences between BIP, stratified planning, and the EC approach.
Perhaps most importantly, whereas BIP only branches over
actions that affect a single variable at each step, both the strat-
ified planner and EC must branch over a (potentially large)
set of such partitions. A first consequence is that the stratified
planner explores an exponential number of interleavings (in
n) given n independent subproblems (it can do any number
of actions in subproblem 1 before moving to subproblem 2,
and so on). Both BIP and EC are linear in n.

A key difference between EC and BIP arises with weakly
dependent subproblems. In such cases, BIP makes and main-
tains commitments to how shared variables will be used next,
temporarily decomposing the subproblems so that indepen-
dence can be exploited (by not switching subproblems until
these commitments are discharged). This ability is enabled
by the addition of intentions; put simply, the stratified planner
and EC do not have enough memory to generate such behav-
iors. Moreover, intentions enable additional advantages, such
as goal-directed behavior, which are not available to the other
approaches. These claims are borne out by empirical results
in several domains, in Section 5.

4 Bounded Intention Planning
4.1 Representation
As summarized above, the first step in our approach is to
transform an “original” unary SAS+ instance Π to an “aug-
mented” instance Π̄ with additional state variables and a mod-
ified set of operators. As a precursor to this transformation,
we add to Π a Boolean goal variable G, initially false, and an
operator GOAL that sets G to true, with prevail condition s?.

Now, Π̄ = (V̄, Ō, s̄0, s̄?) is defined as follows:

State Variables
For each original variable v ∈ V , V̄ contains three variables:
v itself, plus two new intention variables (see Figure 4):
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Figure 4: Several (partial) augmented states for the run-
ning example. Circles represent original state variables, in-
cluding their current values. Bold variables have active
(non-free) action intentions, with the corresponding inten-
tion at right. Bold arrows represent current child inten-
tions. Other cars and the truck are omitted for space rea-
sons. Left: The initial state, after executing SETC(p2, G),
SETO(LOAD(p2, c3, F )), SETC(c3, p2). Center: The state
at left, after SETO(DRIVE(c3, G, F )), fire DRIVE(c3, G, F ),
FREEZE(c3, at F ). Right: The center state, after firing
LOAD(p2, c3, F ).

First, Ov (next operator on v), with domain O[v] ∪
{free, frozen}, representing an intention that the next opera-
tor to change v will be Ov . frozen represents an intention to
not change v until its current value is used to satisfy a prevail
condition of some operator, and free represents no intention.

Second, Cv (next child of v), with domain CG(v)∪{free},
representing an intention to use v to satisfy a prevail condi-
tion of an operator that affects Cv next (or no such intention).
Child intentions can be thought of as abstracted versions of
the causal links used in partial-order planning.

Operators
Each original operator is split into stages, while preserving
the semantics of the original variables. Specifically, to exe-
cute an original operator o that affects v: (1) o must be in-
tended next on v, (2) each prevail variable of o must intend v
as its next child, (3) each prevail variable must be frozen at the
value required by o, and (4) o is executed, and the previous
intentions are cleared. For example, Figure 4 shows states
where LOAD(p2, c3, F ) is ready to fire (center) and has just
fired (right). The operators Ō that accomplish this are:

1. For each v ∈ V and o ∈ O[v], an operator SETO(o)
with pre[Ov]=free, post[Ov]=o, and prv[v]=preo[v].
SETO(o) adds an intention to change v next by doing
o; it requires that no operator is currently intended for v
and that v’s current value matches the precondition of o,
but does not check the prevail conditions of o yet.

2. For each v ∈ V and child c ∈ CG(v), an opera-
tor SETC(v, c) with pre[Cv]=free and post[Cv]=c that
adds an intention to use v to change c next.

3. For each v ∈ V and domain value x ∈ Dv , an opera-
tor FREEZE(v, x) with pre[Ov]=free, post[Ov]=frozen,
and prv[v]=x that freezes the value of v to x until used.

4. For each v ∈ V and o ∈ O[v], an augmented “fire”
operator ō with the same conditions as o, plus additional

pre- and post-conditions on the intentions:

preō[Ov]=o, postō[Ov]=free
∀p∈Vprvo

:preō[Op]=frozen, postō[Op]=free
∀p∈Vprvo

:preō[Cp]=v, postō[Cp]=free

Finally, the cost of each o ∈ O is assigned to SETO(o); all
other operators in Ō (including ō) are assigned cost 0.

Initial State and Goal
The initial state s̄0 of the transformed problem extends s0,
setting all new O· and C· variables to free, except OG, which
is set to GOAL. The goal s̄? of the transformed problem is
G=true ∧ (∀v ∈ V) Ov ∈ {free, frozen}.1

4.2 Solutions to Π̄
The projection P (o) of an operator sequence o ∈ Ō∗ re-
places each operator ō by o, and drops all other operators.

Theorem 1. There is a 1-1 correspondence between solutions
o to Π with cost c, and non-empty sets of solutions to Π̄ with
projection o and cost c.

Proof. A solution to Π can be extended to a solu-
tion to Π̄ by expanding each operator o into the se-
quence SETO(o), then for each prevail variable p in
Vprvo

, SETC(p, v), FREEZE(p, prvo[p]), and finally ō. Con-
versely, the projection of a solution to Π̄ must be a solution to
Π, because only the operators ō affect the original state vari-
ables, and each retains the semantics of o thereupon. More-
over, projection preserves cost, since SETO(o) and ō opera-
tors are in 1-1 correspondence in solutions to Π̄.

4.3 Operator Partitions
Consider the following partitioning P̄ of the operators Ō:

• For each v ∈ V and x ∈ Dv , a partition SetOv=x =
{SETO(o)|o ∈ O[v] ∧ preo[v]=x} ∪ {FREEZE(v, x)}
that chooses to freeze v, or intend a next operator on v.

• For each v ∈ V , a partition SetCv = {SETC(v, c)|c ∈
CG(v)} that chooses a next intended child for v.

• For each o ∈ O, a partition Fireo = {ō} that fires o.

All operators in each partition have identical pre- and
prevail-conditions. Define the subset of applicable partitions
in state s as P̄s. Only operators from a single, arbitrary par-
tition in P̄s need to be considered to preserve optimality.

Theorem 2. For every state s and operator partition p in
P̄s there exists an optimal solution for s that begins with an
operator in p.

Proof. First note that every applicable operator o ∈ p ∈ P̄s is
independent of every applicable operator o′ ∈ p′ ∈ P̄s \ {p}
outside its partition: no variable appears in any condition of
both o and o′. Independence ensures that if we do o on this
step, we can always still do o′ on the subsequent step; and
moreover, o(o′(s)) = o′(o(s)).

1s̄? is not a true partial state, because of the disjunction in the O·
conditions. These conditions are added to simplify the analysis, but
are not actually needed to preserve correctness.



To conclude, we argue that no partition is “harmful”—that
is, it is always the case that some operator o in each partition
p ∈ P̄s begins an optimal solution from s. This is straightfor-
ward: Fireo cannot be harmful, since every intended action
must eventually be fired; SetCv branches on all possible val-
ues for Cv (except free), and no other operators have condi-
tions requiring Cv = free; and likewise for SetOv=x and Ov

(the FREEZE(v, ·) actions preserve a zero-cost option, in case
v’s current value is needed next, or v is not needed again).

To see how this partitioning can avoid generating unneces-
sary interleavings, consider the example in Figure 4. From
the state at left, we can alternate between choosing parti-
tion SetOc3=· and firing the intended operator on c3 until the
state at the center is reached (assume that we do not freeze
variables to the wrong values, an issue we address shortly).
Then, we can fire LOAD(p2, c3, F ) to reach the state at right.
In this process, we need not consider interleaving actions in-
volving other packages or vehicles. Optimality is preserved
because in reaching the state at left, we would have consid-
ered SETC(c3, p1), which covers the possibility that c3 might
need to pick up p1 first instead. In short, committing to a
first child for c3 up front temporarily decomposes the state
of c3 from the rest of the problem, allowing us to avoid an
exponential number of potential interleavings with operators
affecting other parts of the state.

4.4 Action Partition Pruning
When selecting from a partition SetOv=x in state s, if Cv =
c, Oc = o, and prvo[v] = x′ 6= u, we can use this value
as a subgoal, and prune the options as follows (without sac-
rificing optimality). If x = x′, greedily do FREEZE(v, x′).
Otherwise, prune all operators that do not lie on an acyclic
path through the domain transition graph of v from x to x′.
In our running example, this pruning eliminates all branch-
ing over paths for the cars in the left city, since their do-
main transition graphs only admit a single acyclic path from
each initial value to each subgoal value. For instance, if we
have intended LOAD(p1, c1, C) and SETC(c1, p1) and c1 is
at D, we can prune the partition SetOc1=D to the single-
ton {SETO(DRIVE(c1, D, C))} because after driving to A
or B, c1 would have to return to D before reaching C (see
Figure 3). This optimization generalizes the irrelevant-action
pruning of [Coles and Coles, 2010].

4.5 Child Partition Pruning
When selecting from a partition SetCv in state s, if any
child c has an intended operator o s.t. forall p ∈ Vprvo

,
s[p] = prvo[p], Op ∈ {free, frozen}, and Cp ∈ {free, v},
operator SETC(v, c) can be greedily executed (discarding al-
ternatives in SetCv). Allowing o to fire leads to a strictly less
constrained state, and so optimality is not compromised. For
instance, suppose there are ten parcels at F to be LOADed into
c3, which is also at F . This optimization eliminates branching
over which parcel(s) to load (first); all ten are greedily picked
up in sequence before c3 is moved. As a further improvement,
we also prune children from SetCv that are not ancestors of
any unachieved precondition of GOAL. For instance, once p1
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Figure 5: Left: A causal graph. Bold lines/circles indicate ac-
tive intentions. Grayed variables are frozen. Links to bolded
circles (with intended actions) have prevail requirements. The
variables are lettered according to an inverse depth-first topo-
logical ordering. Right: The corresponding VPG , with edges
labeled by type. Starred variables are sources.

has been delivered, we can greedily assign SETC(v, p2) for
any vehicle v without considering p1 as a child.

4.6 Partition Selection
This section describes a heuristic for selecting an operator
partition that focuses effort on resolving existing commit-
ments necessary for reaching the goal, while maximizing the
applicability of the above pruning rules.

To compute this heuristic, given a state s of Π̄, we first
define a variable precedence graph VPGs over the variables
V . An edge from u to v in VPGs indicates that an intention
on u must change before the intended action on v can fire.
There are three types of edges (see Figure 5):

• Wait: For each v ∈ V s.t. Ov=frozen ∧ Cv 6=free, a
wait edge Cv → v. This captures the fact that v cannot
become unfrozen until an operator fires on its intended
child Cv .

• Block: For each v ∈ V s.t. Ov /∈ {free, frozen}, and
each prevail variable p ∈ VprvOv

s.t. Cp /∈ {free, v}, a
block edge Cp → v. This captures that the prevail vari-
able p of operator Ov is currently reserved for another
variable Cp, and Ov cannot fire until an operator fires on
Cp.

• Prevail: For each v ∈ V s.t. Ov /∈ {free, frozen},
and each prevail condition variable p ∈ VprvOv

s.t.
Cp∈{free, v} ∧

(
Op 6=frozen ∨ Cp 6=v ∨ s[p]6=prvOv

[p]
)
,

a prevail edge p→v. This captures the conditions on
p for Ov to fire. We skip the prevail edge when
Cp /∈{free, v}, since the block edge captures a stronger
condition in this case.

If the component of VPGs with G contains a cycle, state
s is deadlocked and can be pruned immediately. Otherwise,
we restrict our attention to the set of source variables S in
VPGs, which are places where immediate progress can be
made towards the goal. If an intended operator can be fired.
that is always our first choice. Otherwise, we must add new
intentions that work towards achieving the prevail and “in-
tentional” conditions of existing intended operators. Specifi-
cally, we select an operator partition as follows.

(A) If any partition FireOv
for v ∈ S is applicable, choose

one arbitrarily. (B) Otherwise, if any partition SetOv=s[v] is



baseline ∞-strat EC BIP BIP - action pruning BIP - child pruning
inst cost states ms states states states ms states ms states ms
5-2 8 27104 593 20423 2014 42 38 58 42 292 217
6-1 14 385484 7065 226446 161014 104 151 236 148 1523 1170
4-2 15 600382 11840 341105 352896 141 102 609 342 371 263
5-1 17 1302034 28884 610240 625680 101 98 263 158 5006 4614
4-0 20 2628508 56441 1566447 1710618 132 290 2175 1721 19013 15704
6-3 24 5451635 129786 2747824 3476092 292 226 4856 4130 56598 50117
5-0 27 7066822 177433 3968054 4706820 493 885 25099 18091 456532 537575
9-1 30 1738 1912

10-0 45 169168 300603

Table 1: States generated and total runtimes in milliseconds to optimally solve representative LOGISTICS instances from IPC2
using uniform-cost search. Baseline is the ordinary SAS+ formulation, ∞-strat is the stratified planner with levels chosen
from a topological ordering, EC is the expansion core method, BIP is the bounded intention planner with all pruning, and the
remaining two algorithms are BIP with a single named pruning type ablated. A sample of instances solved by the baseline
within 10 minutes and 512 MB are shown (plus two harder instances); they are sorted by optimal solution cost. Runtimes for
∞-strat and EC are omitted, since we made no attempt to optimize these algorithms (note that time per state generated should
be no less than for baseline).

applicable where the action pruning conditions are met, se-
lect one arbitrarily. (C) Otherwise, if any partition SetCv

is applicable where at least one child has an intended opera-
tor with prevail condition on v, select the last one according
to a depth-first topological sort of the causal graph CG. (D)
Finally, if none of (A-C) are applicable, select an arbitrary
applicable partition on a source variable. See Section 6 for
discussion and analysis of this heuristic.

5 Results
We report empirical results examining the runtime and num-
ber of states generated to optimally solve LOGISTICS in-
stances from the second International Planning Competition
(IPC),2 and several variants of a taxi domain.

Our implementation uses the LAMA preprocessor [Richter
and Westphal, 2010] to convert STRIPS instances into SAS+.
Search is carried out by a Clojure implementation of uniform-
cost search. Our BIP has not been optimized (e.g., VPG s
are computed naively from scratch for each state), and is cur-
rently a constant factor of about 50 times slower than baseline
(per state examined); we estimate that this constant could be
brought down to 5 or less with some simple optimizations.

Table 1 shows runtimes and states generated to optimally
solve LOGISTICS instances, for baseline, stratified, EC, and
BIP planners. On the hardest problems solved by all algo-
rithms, BIP examines four orders of magnitude fewer states
and finds a solution more than 200 times faster than base-
line. Moreover, BIP was able to solve nine more instances
than baseline (two shown). In contrast, on all but the smallest
problem instance, both the stratified planner and EC beat the
baseline by less than a factor of three.

Figure 6 shows results in several taxi domains, wherein a
fleet of taxis must deliver passengers from randomly chosen
sources to randomly chosen destinations on a 3x3 grid. We

2LOGISTICS is one of only two previous IPC domains we have
identified with unary operators (in their most natural SAS+ formu-
lation). The other is MICONIC, for which our algorithm evaluates
roughly twice the states of baseline (results not shown).

experiment with three formulations: individual, where each
passenger has their own taxi, and the causal graph is an in-
verted tree; pairwise, where each i of n taxis can pick up
passenger i or i + 1 mod n, and the causal graph is a DAG;
and single, where a single taxi must deliver all passengers, so
the passenger subproblems are most tightly coupled. In all
but the pairwise case, the action pruning of BIP infers that
passengers should not be put down at intermediate locations;
we help level the playing field by giving other algorithms
this constraint explicitly (designated by “+c”); in the pairwise
case, this constraint actually changes the set of optimal solu-
tions, which we discuss later. In all settings, we see at least
an order of magnitude improvement using BIP over baseline,
with the advantage increasing as the passenger subproblems
become less dependent. As expected, the stratified planner
and EC are a small constant factor better than baseline, ex-
cept on the individual setting where EC is able to exploit the
complete independence of passengers.

6 Conclusion
Our bounded intention planner (BIP) brings some of the ben-
efits of hierarchical and partial-order planning to a forward
state-space setting. We have proven its optimality for general
unary domains, and empirically demonstrated orders of mag-
nitude reduction in reachable state spaces and optimal plan-
ning times compared to a standard state-space search, in sev-
eral domains with acyclic causal graphs. BIP is guaranteed
to avoid all interleaving of actions from completely indepen-
dent subproblems, and minimizes interleaving in the presence
of weakly dependent subproblems.

The performance of BIP depends on two main factors.
First, performance improves with the amount of (weak) in-
dependence available to exploit. In domains like MICONIC
and the pairwise taxi domain with no constraint, subproblems
are so tightly coupled that no advantage is seen (after pick-
ing up a passenger, we have to consider handing them off to
every other vehicle at every possible intermediate location).
Second, good performance depends on our partition heuris-
tic (see Section 4.6) using cases (A-C) as much as possible.
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Figure 6: Number of states generated to optimally solve random instances of several “taxi” problem types. “+c” indicates an
added constraint that passengers can only be dropped at their destinations. Only instances solved within 512 MB are shown.

In this case, BIP works hierarchically, reserving variables as
prevail conditions, adding intended operators to help achieve
those conditions, and so on, like the example given in Sec-
tion 4.3. This happens often; in fact, the final case (D) was
not actually executed in any problem tested above.

Many interesting extensions of the approach are possible,
including: exploiting symmetric objects; further pruning of
operator partitions (e.g., using action costs); solving aug-
mented instances hierarchically using state abstraction [Wolfe
et al., 2010]; and adding techniques for efficient state-space
planning such as heuristics and landmarks, which will be at
least as informative as in the original state space (in the worst
case, one can just drop the intention variables).

Most important, of course, will be generalizations to non-
unary problems. We are currently investigating several ap-
proaches, ranging from clustering variables co-occurring in
postconditions, to more direct generalizations of BIP to han-
dle multiple postconditions. Preliminary results on several
domains are encouraging, but further study is needed to see
how and to what degree the observed speedups can carry over
to general planning problems.
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Tractability Results for SAS+ Planning. In KR, pages 126–
137. Morgan Kaufmann, 1992.

[Brafman and Domshlak, 2003] Ronen I. Brafman and
Carmel Domshlak. Structure and Complexity in Planning
with Unary Operators. JAIR, 18:315–349, 2003.

[Chen and Yao, 2009] Yixin Chen and Guohui Yao. Com-
pleteness and optimality preserving reduction for plan-
ning. In IJCAI, pages 1659–1664, 2009.

[Chen et al., 2008] Yixin Chen, Ruoyun Huang, and Weix-
iong Zhang. Fast Planning by Search in Domain Transition
Graphs. In AAAI, pages 886–891, 2008.

[Chen et al., 2009] Yixin Chen, You Xu, and Guohui Yao.
Stratified Planning. In IJCAI, pages 1665–1670, 2009.

[Coles and Coles, 2010] Amanda Coles and Andrew Coles.
Completeness-Preserving Pruning for Optimal Planning.
In ECAI, pages 965–966, 2010.

[Fox and Long, 1999] M. Fox and D. Long. The Detection
and Exploitation of Symmetry in Planning Problems. In
IJCAI, pages 956–961, 1999.

[Haslum, 2007] Patrik Haslum. Reducing Accidental Com-
plexity in Planning Problems. In IJCAI, pages 1898–1903,
2007.
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Röger. How good is almost perfect? In AAAI, pages 944–
949, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward Plan-
ning System. JAIR, 26:191–246, 2006.
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