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Abstract
To optimally coordinate with others in coopera-
tive games, it is often crucial to have information
about one’s collaborators: successful driving re-
quires understanding which side of the road to
drive on. However, not every feature of collabo-
rators is strategically relevant: the fine-grained
acceleration of drivers may be ignored while main-
taining optimal coordination. We show that there
is a well-defined dichotomy between strategically
relevant and irrelevant information. Moreover, we
show that, in dynamic games, this dichotomy has
a compact representation that can be efficiently
computed via a Bellman backup operator. We
apply this algorithm to analyze the strategically
relevant information for tasks in both a standard
and a partially observable version of the Over-
cooked environment. Theoretical and empirical
results show that our algorithms are significantly
more efficient than baselines. Videos are available
at https://minknowledge.github.io.

1. Introduction
When designing a policy for a cooperative multi-agent set-
ting, it is often critical to have some idea of how one’s
co-players will behave. A policy for a self driving car must
take into account various driving norms such as which side
of the street other cars will drive on, and how to interpret
stop light signals.

While there are many relevant features of co-player behavior
that a policy designer must keep in mind, there are often
many more irrelevant features that can be safely ignored. It
is unnecessary for a self driving car to know the final desti-
nation of every other car, the current positions or trajectories
of far away cars, or their idiosyncratic driving behaviors.

In such settings, it can be useful to separate the strategically
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relevant information from the strategically irrelevant infor-
mation. If much of the information is irrelevant, it’s easy to
imagine how this could lead to significant increases in effi-
ciency for finding optimal policies. For example, this could
allow a focused effort on few-shot or zero-shot adaptation to
co-players (Zand et al., 2022; Albrecht & Stone, 2019; Stone
et al., 2010; Hu et al., 2021) or more efficient DecPOMDP
planning algorithms (Szer & Charpillet, 2006; Seuken &
Zilberstein, 2007). In order to leverage these benefits, we
build the theory, data structures, and algorithms required to
distinguish between relevant and irrelevant information.

We formalize the idea of the strategically relevant informa-
tion via the idea of strategic ambiguity, described in Section
4. We show that this leads to a uniquely well-defined di-
chotomy between the strategically relevant and irrelevant
information, captured by the strategic equivalence relation
(SER) which defines two co-player policies as being strate-
gically equivalent if and only if they have the same set of
best-response policies.

We show that this strategic equivalence relation can be effi-
ciently computed and stored in Section 5. In fact, we find
that our proposed algorithm for computing these strategic
equivalence relations has better computational complexity
than the state of the art for finding best-response policies in
DecPOMDPs.

We summarize the contributions of this paper as follows:

1. We formalize the dichotomy between strategically rel-
evant and irrelevant information by introducing the
concept of a strategic equivalence relation (SER).

2. We demonstrate and prove that SERs have a recursive
substructure in dynamic games and show how they can
be stored compactly in the form of a directed acyclic
graph.

3. We provide novel algorithms for computing SERs in
both fully-observed and partially-observed common-
payoff stochastic games. These algorithms also
have notable applications in more efficiently solving
DecPOMDPs.

4. We demonstrate what SERs look like in various prob-
lems and use them to analyze the levels of coordination
required in Overcooked, a popular benchmark for test-
ing coordination in the AI literature.
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2. Related Work
There have been several lines of research towards getting
AI agents to optimally coordinate in fully-cooperative multi-
agent problems. Many works have explored designing
multi-agent reinforcement learning methods to train agents
in a centralized way to converge on Nash equilibrium in
common-payoff games (Zhang et al., 2019; Foerster et al.,
2016; Jin et al., 2022; Wang & Sandholm, 2002). Others
have explored the setting of ad-hoc teamwork, in which
agents aim to coordinate with teammates from a target popu-
lation (Barrett & Stone, 2015; Suriadinata et al., 2021), and
zero-shot coordination, where agents need aim to coordinate
with arbitrary teammates without any prior coordination (Hu
et al., 2021; Treutlein et al., 2021; Muglich et al., 2022). Our
work aims to accelerate these lines of research by provid-
ing a framework that focuses on the strategically relevant
aspects of the coordination problem.

A distinct line of research has been in the direction of an-
alyzing and understanding conventions that agents use to
overcome coordination problems (Lewis, 1975; Hadfield-
Menell et al., 2018). We show that strategic equivalence
relations naturally divide policies into the different conven-
tions that agents could follow in a problem. Various mea-
sures (Fontaine et al., 2021; Fontaine & Nikolaidis, 2021)
have been developed to analyze the levels of coordination
required in multiagent problems. However, all of these ap-
proaches are based on simulating agents’ behaviors rather
than directly analyzing the problem.

Most close to our line of research are some works focused
on understanding what the relevant pieces of information
are in different decision making problems. Pynadath &
Marsella (2007) discuss the idea of minimal models of be-
lief that agents need to solve decision making problems.
Oliehoek et al. (2021) instead focus on how agents locally
influence each other in factored partially observable stochas-
tic games. Several works explore settings in which games
have preexisting influence diagrams that describe which
decision variables are dependent on each other (Koller &
Milch, 2003; Kearns et al., 2013; Mura, 2000). In contrast,
our framework for computing strategically relevant infor-
mation requires no preexisting assumptions or knowledge
about how agents interact or influence each other within the
decision making problem.

We find ourselves in the setting of cooperative (common-
payoff) partially observable stochastic games, also known
as decentralized partially observable Markov decision pro-
cesses (DecPOMDPs). Our algorithms pull ideas from ex-
isting work on solving DecPOMDPs (Nair et al., 2003; Szer
& Charpillet, 2006; Seuken & Zilberstein, 2007; Diban-
goye et al., 2016). We also draw inspiration from Fagin et al.
(2004) and model knowledge as possible worlds. That is, we
represent the knowledge that agents have about co-policies

through the subset of possible co-policies that they cannot
tell apart.

3. Preliminaries
We consider the setting in which agents play in a common-
payoff stochastic game, also known as a decentralized par-
tially observable Markov decision process (DecPOMDP).

Definition 3.1. A decentralized partially observable
Markov decision process is a tuple (M,S,A, R, γ, P,Ω,O)
whose elements are defined as follows.

• M = {1, . . . ,m} is a set of agents.

• S is a set of states.

• A = A1 × · · · × Am is the space of joint actions. For
ease of notation, we assume without loss of generality
that the action set is identical across states.

• R : S ×A× S → R is the common reward function.

• γ is the discount factor.

• P : S ×A× S → [0, 1] is the transition function that
satisfies

∑
s′∈S P (s, a, s′) = 1.

• Ω = Ω1 × · · · × Ωm is the joint observation space.

• O : S ×A× Ω→ [0, 1] is the observation function.

A DecPOMDP is fully-observed if Ωi = S, i.e., agents
always observe the current state. We only consider finite-
horizon DecPOMDPs with episode length T .

A stationary policy for agent i in a DecPOMDP specifies
a distribution over actions Ai at every state for every pos-
sible history ht

i = [(a1i , o
1
i ), (a

2
i , o

2
i ), . . . , (a

t
i, o

t
i)] of play.

We often interpret policies as trees, where the nodes are
distributions over actions and the edges are observations.
We say a policy is pure if its choice of distribution over
actions is deterministic everywhere. A Markov policy is a
policy where the action distribution depends only on the
latest observation (or state). Let Π denote the joint policy
space for all agents, Πi denote the policy space of agent i,
and Π−i denote the co-policy space, the joint policy space
of the co-players (all agents other than i).

Game theory. As an abuse of notation, we will sometimes
write R(π) or R(πi, π−i) to denote the expected return of
joint policy π = (πi, π−i).

Definition 3.2. The best-response function for agent i is
the set-valued function BRi : Π−i → P(Πi) such that
BRi(π−i) = argmaxπi

{R(πi, π−i)}, denoting the set of
policies agent i could play to maximize payoff in response
to the co-policy π−i. The individual best-response func-
tions for each agent can be combined to form the joint
best-response function BR for all agents, where BR(π) =
(BR1(π−1),BR2(π−2), . . . ,BRm(π−m)).
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Figure 1: An abstract visualization of how the best-response
function partitions the co-policy space into strategic equiva-
lence classes. The best-response function maps the strategic
equivalence classes from the co-policy space Π−i (left) to
their best-response subset of the policy space Πi (right).

A Markov policy π is a Nash equilibrium starting in state s
if ∀i ∈ [m],

Qπ−i(s, π(s)) ≥ Qπ−i(s, ai, π−i(s)), ∀a ∈ A. (1)

where Qπ−i is the Q-function induced by the co-policy
π−i. In our context, a joint policy π is a subgame perfect
equilibrium if the one-stage payoff game induced by the Q-
function Qπ−i is a Nash equilibrium for all s ∈ S. We call
the policies

⋃
π−i∈Π−i

BR(π−i), the set of best-response
policies for player i.

4. Strategic relevance
4.1. The minimal knowledge required to coordinate

Consider an agent, Alice, driving on the road. Alice feels
safe driving on the road because she knows that the drivers
around her will follow certain conventions and rules. She
knows that other drivers will stop at red lights and go at
green lights, that everyone will drive on the right side of
the road, and that everyone will alternate who gets to go at
stop signs. All of these conventions give Alice knowledge
about other driver’s policies that is relevant to how she
can successfully coordinate with them on the open road.
Despite this knowledge that Alice has about other drivers’
behaviors, many aspects, if not most, are unknown to Alice.
She does not know what the other drivers’ destinations are,
whether the other cars are manual or automatic, or the fine-
grained motor controls of drivers. Luckily, from Alice’s
perspective, these other details about other drivers’ behavior
are irrelevant to her task of safely driving on the road.

In the rest of this section, we formalize the question: how
can we distinguish between the knowledge of other agents’
policies that is relevant and irrelevant to the success of the
task?

4.2. Strategic ambiguity

Let Π′
−i ⊂ Π−i be the subset of policies that agent i thinks

their co-policy could possibly be, given their current knowl-
edge. If agent i can narrow down Π′

−i to a small enough
subset, then agent i has enough knowledge to exactly char-
acterize what their optimal response should be. In such
settings, we call Π′

−i strategically unambiguous.

Definition 4.1. A nonempty subset Π̃−i ⊂ Π−i of policies
is strategically unambiguous if the best-response set to all
elements of Π̃−i are identical: BRi(π−i) = BRi(π

′
−i) for

all π−i, π
′
−i ∈ Π̃−i. We call sets of policies that don’t

satisfy this property strategically ambiguous.

If Π′
−i is strategically ambiguous, it means that agent i does

not have enough information to unambiguously know what
their best response is; they are lacking some strategically
relevant information. Let’s consider the two extremes. If
agent i knows agents −i’s policies exactly, then the policies
Π′

−i that agent i thinks their co-players are following is
a singleton and is always trivially strategically unambigu-
ous. On the other hand, if agent i knows nothing, then
Π′

−i = Π−i is the full policy space. However, in a fully
decentralized problems where agent i does not not need to
know anything about their co-policy, the full policy space
Π−i is still strategically unambiguous.

A natural next question to ask is: what is the minimal amount
of knowledge an agent needs to have about their co-policy
to characterize what policies are optimal? Or dually, what
is the maximal subset of policies that is still strategically
unambiguous?

Definition 4.2. A strategically unambiguous subset Π′
−i ⊂

Π−i of policies contains no irrelevant information if any
strict superset of Π′

−i is strategically ambiguous.

A strict superset of Π′
−i corresponds to a scenario in which

agent i has less knowledge. So a subset that contains no
irrelevant information corresponds with a scenario in which
any less information would lead to strategic ambiguity, In
other words, all of the strategically irrelevant information
has already been discarded.

4.3. Strategic equivalence relations

Now we turn our attention to partitioning an agent’s co-
policy space in terms of best responses, and show how this
relates to strategic ambiguity.

All of the strategically unambiguous subsets of Π−i that
contain no irrelevant information are given by taking the
preimage of the best response function for agent i.

Theorem 1. The strategically unambiguous subsets of Π−i

that contain no irrelevant information are given by the preim-
age of the best-response map BRi : Π−i → P(Πi).
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Player Y
C D E

Player X A 1 0 1

B 0 1 0

(a) A common-payoff game between two players.

C

D E
(b) The strategic equivalence relation over player Y ’s policy space.
Vertices represent pure strategies.

Figure 2: Figure 2a shows a common-payoff game between two players with multiple Nash equilibria. In Figure 2b, the
red region (upper right) represents the policies for which A is a best response, the blue region (lower left) represents the
policies for which B is a best response, and the green region (separating line, which technically has zero width) represents
the policies for which both A and B are best responses.

Proof. We will show that a strategically unambiguous sub-
sets of Π−i contain no irrelevant information if and only
if it is in the preimage of the best-response map. Consider
BR−1

i : P(Πi)→ Π−i, the inverse of BRi.

( ⇐= ) Let B = BR−1
i (A) be the preimage of A, an ar-

bitrary set in the domain of BRi. By definition, for any
co-policy π−i ∈ Π−i, we have BRi(π−i) = A if and only
if π−i ∈ B. Therefore, any strict superset of B must contain
a policy that has a best-response set different from A, which
would introduce strategic ambiguity. Therefore, B contains
no irrelevant information.

( =⇒ ) Now let B be a strategically unambiguous subset
of Π−i that contains no irrelevant information. Since B
is strategically unambiguous, by definition, all policies in
B must have the same best-response set; call this set A.
Since B contains no irrelevant information, it must contain
all policies in Π−i that induce best response A. Therefore,
B = BR−1

i (A) and is in the preimage of BRi.

In this sense, the preimage of BRi gives us the coarsest
(fewest element) partitioning of Π−i into subsets that are
strategically unambiguous. We call the relation induced by
this partitioning the strategic equivalence relation.

Definition 4.3. The strategic equivalence relation (SER)
∼i for player i is the equivalence relation over the co-policy
space Π−i such that π−i ∼i π

′
−i if and only if BRi(π−i) =

BRi(π
′
−i). We refer to the equivalence classes of the SER

as strategic equivalence classes (SECs), which partition the
co-policy space. We write [[π−i]] to denote the SEC that
contains π−i.

Figure 1 shows how the best-response function partitions
the co-policy space into SECs. The SECs are exactly the
strategically unambiguous subsets of Π−i that contain no
irrelevant information. If two policies fall in the SEC, then
they must induce the same best response from agent i, by
definition. Knowledge that allows agent i to differentiate
between policies within the same class is extraneous, since it
has no affect on agent i’s choice of optimal policies. In this
sense, which equivalence class contains π−i is the minimum

knowledge that agent i needs to compute their set of best
responses.

Consider the payoffs in Table 2a. Suppose player X knows
that player Y ’s policy takes the form w1C + w2E. Notice
that although different weights w1, w2 give distinct policies,
they all fall into the same SEC because they induce the
same best response, A, from player X . All policies that
are more likely to choose D than C or E (combined) fall
into a separate SEC and policies that choose D and C or
E (combined) with equal probability fall in a third. Figure
2b shows player Y ’s mixed policy space and its three SECs.
In order for player X to play optimally, they only need to
know which of the three SECs player Y ’s policy falls in.

SERs partition policies into classes depending on the best
response that they induce, regardless of the payoff that those
policies induce. It is possible for two policies to be strategi-
cally equivalent π−i ∼i π̂−i (i.e., they induce the same best
response from agent i), while inducing different payoffs. A
valued strategic equivalence relation is a refinement of an
SER that differentiates such policies.

Definition 4.4. A valued strategic equivalence relation
(VSER) v∼i for player i is an equivalence relation over the
co-policy space Π−i such that π−i

v∼i π̂−i if and only if,

(i) BRi(π−i) = BRi(π̂−i), and

(ii) R(πi, π−i) = R(πi, π̂−i) for all πi ∈ BRi(π−i).

5. Computing strategic equivalence relations
In the most general setting, our theory applies to strategic
equivalence relation (SER) over the space of mixed poli-
cies. Even though the number of SECs is still guaranteed
to be finite in the case of mixed policies (see Lemma 2 in
Appendix A for more details), we have a stronger bound
in the case of pure policies, where the number of strategic
equivalence classes is upper-bounded by the number of pure
policies (see Appendix B.1 for more details). Moreover, it
is computationally easier to only compute the set of best-
response policies over pure strategies in DecPOMDPs (Szer
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(a) A two-step dynamic game. The agents first take a joint action
that transitions them into one of two final states, and then they
receive a joint payoff according to their second joint action.

({a}, 1) : {a}

({b}, 1) : {b}

({a}, 2) : {a}

({b}, 1) : {b}

({b}, 2) : {b}

({a,b}, 1) : {a,b}

({b}, 2) : {b}

({a,b}, 1) : {a,b}

({a}, 2) : {a}

({a}, 2) : {a}

state 1

state 2

state 3

(b) The VSER DAG Gi for both players. Each box represents
a node in Gi with the format [(A∗

i , V
∗) : Π̂−i] where A∗

i is the
best-response set, V ∗ is the best-response value, and Π̂−i are the
one-step co-policies, the actions the co-policies in the equivalence
class prescribe at state s.

Figure 3: A dynamic game along with the VSER DAG Gi for both players (since the game is symmetric).

& Charpillet, 2006). For these reasons, we limit ourselves
to computing SERs over pure strategies. For similar com-
putational reasons, we restrict ourselves to the domain of
common-payoff games, although all of our theory extends
to general-sum games as well.

In Section 5.3 we compute the VSER over the set of
best-response policies in DecPOMDPs. In Appendix
B.6, we give a simplified (and faster) algorithm for com-
puting VSERs over Nash equilibrium in fully-observed
DecPOMDPs. For more details and rationale behind com-
puting strategic equivalence relations over subsets of the full
policy space, see Appendix B.4.

5.1. Normal-form games

As a warmup, we quickly explain how to compute the
strategic equivalence relation (Definition 4.3) of a normal-
form game (i.e., a DecPOMDP with a single state). In
order to compute the strategic equivalence relation for
agent i, we just need to enumerate the pure policies
π−i ∈ Π−i, compute the best responses BRi(π−i) =
argmaxπi∈Πi

R(πi, π−i) for each one, and group the poli-
cies that induce the same best responses.

5.2. Strategic equivalence graphs

In DecPOMDPs with multiple states, instead of explicitly
computing the policy within every valued strategic equiv-
alence class (VSEC) (see Definition 4.4), we compute a
more compact structure that takes advantage of the inher-
ently recursive nature of optimal policies. This will entail
computing a directed acyclic graph Gi as follows for each
agent i.

For simplicity, let’s first restrict ourselves to the case of a
fully-observed DecPOMDP. For each subgame starting in
state s there exist multiple nodes in Gi. Each node concep-
tually stores a single class of the intermediate VSER, the

VSER over policies restricted to the subgame starting at
state s. Each node explicitly contains the

1. The state s that it’s associated with;
2. The one-step co-policies: the actions that the co-

policies in the SEC prescribe at state s;
3. The set of best-responses A∗

i for agent i in state s;
4. The value V ∗ that they induce from agent i in state s;
5. The edges to children nodes associated with the suc-

cessor states of s that continue the VSEC in the future.

Item (5) is required because the value of agent i’s actions
at state s are dependent on what the policies of all agents
prescribe to future states. Each of these children nodes
contains the information on how the VSEC continues in the
future.

Each VSEC over the complete policy space is given by a
root node of Gi (which are each associated with the start-
ing state of the DecPOMDP) along with all of its children.
For simplicity and to give computational speedup, nodes
that share the same history, best-response actions, and best-
response value can be merged, turning Gi into a multigraph
(i.e. a graph that is allowed to have multiple edges between
the same two nodes).

Figure 3b shows Gi for the simple two-step game depicted in
Figure 3a. Each box represents a node in Gi along with it’s
information in the format [(A∗

i , V
∗) : Π̂−i], where Π̂−i are

the one-step co-policies. See Appendix B.2 for a detailed
explanation of Gi in this example.

The primary change to Gi in partially-observed
DecPOMDPs is that nodes must be associated with
histories, not states, since optimal policies are computed
over history-dependent beliefs. Let Πhi

−i ⊂ Π−i denote the
subset of co-policies that are consistent with history hi, i.e.,
there exists some random outcomes that make hi a valid
history. The nodes associated with history hi in Gi store

5
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intermediate VSERs v∼ht
i

over the subsets Πhi
t based on the

best response they induce from agent i, given that they’ve
already observed hi. Formally, for π−i, π

′
−i ∈ Πhi

−i, we
have π−i

v∼ht
i
π′
−i if

BRhi(π−i) = BRhi(π
′
−i), and

R(πi, π−i) = R(πi, π
′
−i),∀πi ∈ BRhi(π−i)

(2)

where BRhi : Π
hi
−i → Πt

i maps to the set of best-response
policies for agent i from timepoint t onward, given history
hi.

Each node in Gi conceptually stores a single class of the
intermediate VSER v∼ht

i
. However, each node does not

specify the full policies in that class. Each node contains the
one-step co-policies, the partial policies for agents −i that
prescribe actions to the roots of the policy that has already
been played. The nodes also store the corresponding one-
step best response actions A∗

i and value V ∗ that they induce
from agent i given history hi. Like before, the value of
these one-step actions is dependent on the actions taken by
the policies at future timesteps. Therefore, nodes have one
edge for every action-observation pair (ai, oi) ∈ Ai × Ωi

to other nodes associated with histories hi + (ai, oi). Each
of these nodes contains information on how to continue the
SEC in the future.

5.3. DecPOMDPs

In this section we present an algorithm for simultaneously
computing the set of best-response policies in a DecPOMDP
along with the VSER over these policies. The algorithm is
based on point-based, dynamic programming approaches for
computing the set of best-response policies in DecPOMDPs
(Szer & Charpillet, 2006).

At a high-level, Algorithm 1 is based on a dynamic pro-
gramming operator (the function BackupSER) that com-
putes best-response policies starting at timestep t, along
with the intermediate VSECs over them, given the VSECs
for policies starting at timestep t+ 1. Using this dynamic
programming operator, we can then efficiently compute the
full set of best-response policies along with their strategic
equivalence classes through backwards induction over a
finite-horizon DecPOMDP. Repeated application of this op-
erator corresponds with iteratively computing the nodes of
the VSER DAG Gi from the last timestep to the first.

As hinted by the structure of Gi in Section 5.2, intermedi-
ate VSECs at history ht

i can be recursively computed in
terms of intermediate VSECs from histories that are one-
step extensions of ht

i. The following theorem captures this
idea.

Theorem 2 (Bellman backup for strategic equivalence).
For all histories ht

i and policies π−i, π
′
−i ∈ Π

ht
i

−i, we have

Algorithm 1 Computes the valued strategic equivalence
relation over best-response policies in the form of Gi.
input DecPOMDPM.

1: function Main
2: for all t ∈ {T, T − 1, . . . , 0} do BackupSER(t)
3: end function
4: function BackupSER(t)
5: for all previous joint policies πt do
6: for each agent i and history ht

i do
7: B(A∗

i , V
∗)← ∅

8: for [[π−i]] ∈ O(G, ht
i, π

t) do
9: Bellman(Q∗

i , π−i, h
t
i)

10: A∗
i ← argmaxai

Q∗
i (π−i, h

t
i, ai)

11: V ∗ ← maxaiQ
∗
i (π−i, h

t
i, ai)

12: B(A∗
i , V

∗).add([[π−i]])
13: end for
14: for all (A∗

i , V
∗) do Gi.addNode(B(A∗

i , V
∗))

15: end for
16: end for
17: end function
output {Gi}i∈[m]

π−i
v∼ht

i
π′
−i if and only if,

(i) argmax
ai

Q∗
i (π−i, h

t
i, ai) = argmax

ai

Q∗
i (π−i, h

t
i, ai),

and max
ai

Q∗
i (π−i, h

t
i, ai) = max

ai

Q∗
i (π−i, h

t
i, ai);

(ii) π−i
v∼ht

i+(ai,oi) π′
−i for all actions ai ∈

argmaxai
Q∗

i (π−i, h
t
i, ai) and corresponding possible

observations oi.

Proof. See Appendix B.3

As we see below, if we back up the optimal Q-functions,
Q∗

π−i
based on future timesteps, we can check condition

(i). Since we have already computed VSECs for all future
histories, we can check condition (ii).

The optimal Q-functions Q∗
i can be backed up using a recur-

sive computation analogous to the classic Bellman backup
operator (see Lemma 3 in Appendix B.3). This operation
is defined as the function Bellman on line 9 of Algorithm
1. Now we give a detailed explanation of the remaining
components of Algorithm 1.

Lines 5 and 6 iterate over each past joint policy πt, agent i,
and possible history ht

i under πt for agent i.

The operator O(Gi, ht
i, π

t) on line 8 conceptually iterates
over the class [[π−i]] of policies that are equivalent under
condition (ii). It is implemented by (1) enumerating the one-
step co-policies, i.e., assignments of actions to the leaves
of πt

−i and (2) enumerating over choices of nodes in Gi
associated with all possible one-step extensions ht

i+(ai, oi)
of ht

i.
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(a) Overcooked – “Locked In”: cooks need
to coordinate on the timing of a recipe using
a single pot.

(b) Overcooked – “Schelling”: cooks
need to coordinate on who gets to occupy
the useful central tile to deposit two onions
in time.

(c) Overcooked – “Coordination Ring”:
cooks cannot occupy the same spot, requir-
ing them to coordinate on how they pass
around the central island.

Figure 4: The three Overcooked environments analyzed in Section 6, each requiring different types of coordination.

Consider computing the VSECs (Figure 3b) in state 1 of the
game in Figure 3a given the intermediate VSECs of states 2
and 3. The operator O enumerates all choices of nodes for
the two future states, and all assignments to the co-policy at
state 1. For example, choosing the node ({a}, 1) : {a} in

state 2 and node ({b}, 1) : {b} in state 3 and the one-step
co-policy a produces best response A∗

i = {a, b} in state 1.

Line 10 and 11 record the optimal actions and their value.
Line 12 partitions the sets of co-policies based on their val-
ued best response, i.e. checking condition (i). Finally, line
14 takes the computed classes and adds the corresponding
node and edges to Gi.

6. Experiments
The purpose of our experiments is twofold: (1) to character-
ize and gain intuition about what the strategic equivalence
relation (and its equivalence classes) look like in practice,
and (2) to empirically evaluate the scaling performance of
our algorithms. We compute the strategic equivalence rela-
tion (SER) for different environments and provide several
videos made available on our website that include 1-4 sam-
pled representative policies from each class.

Our primary evaluation environment is the Overcooked en-
vironment (Carroll et al., 2019), in which players control
chefs that cook meals in a kitchen. Agents need to coordi-
nate on the high-level strategy for collecting the different
ingredients in a dish and the low-level motion controls to
avoid getting in each other’s way. The onion and tomato
tiles hold an infinite supply of the ingredients and agents
get positive reward for placing various combinations of veg-
etables in the pots, depending on the specific environment.
Agents have access to different movement actions (depend-
ing on the environment) and an interact action which picks
up or places ingredients depending on what tile the agent is

facing. We provide analysis and visualization of additional
Overcooked environments in Appendix C.

6.1. Fully-observed settings

Overcooked – Locked-in. The first Overcooked environ-
ment we investigate is visualized in Figure 4a. We let the
agents’ action space be composed of the following: rotate
left, rotate right, and interact. The agents need to collaborate
to make a soup containing an onion and a tomato within 7
timesteps. However, the recipe requires placing the onion
into the pot precisely one timestep after the tomato to get
+1 reward, or the soup will be ruined.

This environment has two strategic equivalence classes: one
class has the left agent collecting an onion and the right
agent collecting a tomato, while the other class has the
roles switched. Because the environment is fully-observed,
both classes have both agents delaying their commitment to
either vegetable at the beginning of the episode to see which
vegetable their co-player will choose, and then at some point
breaking the symmetry by committing to a vegetable. See
the two videos on our website for visualizations.

In the rest of this section, we investigate computing val-
ued strategic equivalence relations (VSECs) over trembling-
hand subgame perfect Nash equilibrium using the optimized
algorithm described in Appendix B.6.

Overcooked – Schelling Point. This Overcooked environ-
ment is depicted in Figure 4b. Agents get a reward of +1
for each onion that is put into either of the pots. We let
agents also have a larger action space: move left, right, up,
down, stay still, and interact. We use a horizon of H = 8.
In this environment agents need to coordinate on who gets
to occupy the useful central tile without running into each
other (which results in a no-op). Optimal policies achieve a
total reward of +2.

7
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0 or 1

■ or □

observation

■ or □

action

Figure 5: Referential game: Blue (left) first randomly
observes either ■ or □. Green (right) observes a 0/1 signal
from Blue and chooses ■ or □, trying to match Blue’s
observation.

This environment has only two equivalence classes, depend-
ing on which agent gets to occupy the central square first.
After one agent occupies the central square, the symmetry
in the problem is broken and the second agent’s best re-
sponses become fixed. See the two videos on our website
for visualizations.

Overcooked – Coordination Ring. This Overcooked en-
vironment is depicted in Figure 4c. Agents get a reward
of +1 as soon as there is an onion and tomato in the same
pot. Again we let agents also have a larger action space:
move left, right, up, down, stay still, and interact. We use a
horizon of H = 11, although different values of H produce
similar results.

At first examination, one might predict that there should
be multiple VSEC in this problem, perhaps resulting from
which agent gets which vegetable, which pot to use, or the
various options for how the agents could walk around the
central island to stay out of each other’s way. However,
all of these variations are found within the same strategic
equivalence class!

Surprisingly, this environment has only a single VSEC for
either agent. Conceptually, this means that both agents do
not need to know anything about their co-policy in order to
play optimally; agents require no preexisting agreements on
how to successfully coordinate in the environment. Since
the environment is fully-observed, the blue agent is able to
watch the green agent’s actions and best respond no matter
what strategy green chooses. See the video on our website
for a visualization of this VSEC.

6.2. Partially-observed environments

Referential Game. The first partially-observed environ-
ment we investigate is a referential game between two agents
described in Figure 5. The tricky aspect of this game is that
both agents need to agree on the meaning of the signal that
is communicated across the channel.

We compute three natural VSECs in this game: one class
where the agents agree that ■ 7→ 0 and □ 7→ 1 (which
achieves optimal reward of 1), another class where the mean-
ing is swapped, and a third class where the green agent
(right) ignores the meaning of the signal and tries to guess
the blue agent’s (left) observation with expected value 1

2 .

Overcooked – Locked-in. The second partially-observed
environment we investigate is a modified version of the
Overcooked environment depicted in Figure 4a. In this ver-
sion of the environment, the central pot blocks the agents’
vision, preventing them from observing the position or ac-
tions of their co-player. This modification greatly increases
the degree of coordination required between the agents be-
cause they can not rely on observing and adapting to their
co-player’s behavior. The reward is the same as before:
agents get +1 reward whenever an onion is put into the pot
precisely one timestep after a tomato is put into the pot.

This greater degree of coordination is clearly reflected in
the size of the strategic equivalence relation: there are six
classes for either agent that vary along two axis: (1) who
takes charge of which vegetable and (2) whether the tomato
should enter the pot on timestep 4, 5, or, 6 (and onion
one timestep after). See the six videos on our website for
visualization.

6.3. Computational efficiency

Since strategic equivalence relations are a novel concept,
there are no pre-existing algorithms for computing them.
We compare our algorithms against an enumerative base-
line. The enumerative baseline computes strategic equiv-
alence relations by first flattening the (partially observed)
DecPOMDP down to a normal-form game where actions in
the normal-form game represent policies in the DecPOMDP.
Then, strategic equivalence classes are computed by enu-
merating co-policies and grouping by best response.

We experiment on increasing the horizon of policies in the
Overcooked environment depicted in Figure 4a and testing
how long it takes to compute the strategic equivalence rela-
tion using different algorithms. From Figure 6a (which is
on a log scale), we can see the clear benefit of exploiting
recursive structure to compute strategic equivalence classes,
with results amplified using the optimized algorithm for a
fully-observed version of the same setting. Figure 8 in the
Appendix shows the variant of this plot on an absolute scale.

Since our algorithm also computes the set of best-response
policies, it provides notable computational complexity im-
provements over existing algorithms (Szer & Charpillet,
2006; Seuken & Zilberstein, 2007) for computing the best-
response policies in DecPOMDPs. By grouping co-policies
into VSECs, the backup step of our algorithm avoids re-
dundant computation from computing the best-responses to
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(a) Fully-observed (Algorithm in Appendix B.6) uses the fully-
observed version of the environment. Partially-observed (Algo-
rithm 1) and Enumerative baseline (described in Section 6.3) use
the partially-observed version of the environment.
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(b) The time it take to compute the set of best-response policies
using our algorithm (Algorithm 1) and the baseline from Szer &
Charpillet (2006). Beyond a horizon of two, the baseline timed-
out at 30 minutes.

Figure 6: The time (on a log scale) for computing strategic equivalence relations over policies of varying horizon using
varying algorithms in the Overcooked environment depicted in Figure 4a.

co-policies that are in the same SEC. Therefore, the num-
ber of multiagent beliefs that we need to consider for each
history no longer scales in the exponential space of our co-
policies, but rather in the number of intermediate VSECs
over those co-policies. Figure 6b shows the time it take to
compute the set of best-response policies using our algo-
rithm (Algorithm 1 and Partially-observed in Figure 6a) and
the baseline from Szer & Charpillet (2006). Both algorithms
are implemented in Python using the same data structures.

7. Discussion
We have shown that the distinction between strategically
relevant and irrelevant information can be formalized via the
novel concept of strategic equivalence relation (SER). By
providing a compact representation of this relation, and an
efficient Bellman backup to compute it, we have provided
an approach to efficiently understand what is strategically
relevant to any given task. This allows us to shed new light
on existing coordination benchmarks. For instance, we show
in Section 6 that there is non-trivial strategically relevant
information in Overcooked only in situations in which si-
multaneous decisions between incompatible optimal joint
plans must be made. Given that such situations are rare,
this provides a theoretical explanation as to why relatively
good coordination with humans is achievable in this domain
without any human data (Strouse et al., 2021). Our frame-
work also explains why the introduction of simultaneous
decisions (most easily through partial observability) can
lead to benchmarks that are specifically more challenging
for coordination, such as Hanabi (Bard et al., 2020).

The SER could serve as a critical component of both central-
ized and decentralized approaches for creating cooperative
policies. In a decentralized settings, the SER tells us ex-
actly what is needed in order to optimally coordinate with

co-players. This could allow a focused effort on few-shot
or zero-shot adaptation to co-players (Zand et al., 2022; Al-
brecht & Stone, 2019; Stone et al., 2010; Hu et al., 2021), or
tell us how to prioritize strategically relevant information if
only a limited communication bandwidth is available (Wang
et al., 2020; Mao et al., 2020; Berna-Koes et al., 2004).

In a centralized setting, the SER tells us what must be agreed
upon before the problem may be reduced to independent
single-agent problems. As such, it can provide critical in-
formation for finding useful decompositions of centralized
value functions (Jin et al., 2022; Cassano et al., 2021; Wang*
et al., 2020), or more efficient DecPOMDP planning al-
gorithms (Szer & Charpillet, 2006; Seuken & Zilberstein,
2007). In fact, in Section 6.3, we showed that our algorithm
for computing the SER already represents a complexity im-
provement in the state-of-the-art for computing the set of
best-response strategies.

While we are conscious of the computational challenges to
scale our approach to complex domains, we are optimistic
about future work to approximate our method. In this work,
we aim to provide the theoretical foundations for this ef-
fort. Ultimately, using SERs to both better understand the
challenges of cooperative tasks and to accelerate our algo-
rithms for solving cooperative problems are both exciting
directions for future research.
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A. Strategic relevance
Remark 1. The definition related to strategic ambiguity and strategic equivalence relations hold for any response function
Π−i → Πi, not just the best response function defined in the main text, which assumes the agents’ policies to be perfectly
rational. Some appealing alternatives might include models of irrationality, such as “Boltzmann” best response or ϵ-best
response. Exploring strategic equivalence relations in these contexts is left for future work.

A.1. Additional Lemmas

We can extend the notion of strategic equivalence to capture all perspectives of a team of agents. The preimage of the joint
best-response function BR : Π→ P(Π) forms an equivalence relation ∼ over Π. In turn, ∼ partitions Π into equivalence
classes that capture the minimum sufficient knowledge required to characterize the best response set for every agent. A
natural question to ask is what (if any) the connection between ∼ and ∼i is. The following Lemma answers this question.

Lemma 1. π ∼ π′ if and only if π−i ∼i π̂−i.

Proof. π ∼ π′ if and only if BR(π) = BR(π) if and only if BRi(π−i) = BRi(π
′
−i),∀i ∈ [m] if and only if π ∼i π

′,∀i ∈
[m].

Another result that follows from our definitions is that the number of strategic equivalence classes (even in the case of mixed
policies) is always finite whereas the space of policies or Nash equilibria can be infinite.

Lemma 2. The number of strategic equivalence classes is finite, upper bounded by
∏

i 2
|Ai|.

Proof. Each best response set is the convex combination of a subset of pure strategies. There are
∏

i 2
|Ai| such unique

subsets of pure strategies.

B. Computing strategic equivalence relations
B.1. Mixed policies can have an exponential number of strategic equivalence classes

Consider two agents in a DecPOMDP with a single state and identical finite strategy sets A. The agents receive a payoff
of 1 if they play the same strategy and 0 if they differ. In this game, depending on what the co-player does, it is possible
for every single subset of A to be a strategic equivalence class. Namely, for each subset A ⊂ A, the simplex over A is the
best response to the uniform policy over A. Moreover, since π is a uniform policy, the simplex over S defines the set of
best responses to this policy. Therefore, there are an exponential (in the size of A) number of distinct strategic equivalence
classes, one for every subset of A.

B.2. Example strategic equivalence graph

Figure 3b shows the DAG Gi for the simple two-step game depicted in Figure 3a. Each box represents a node in Gi along
with it’s information in the format (A∗

i , V
∗) : Π̂−i where Π̂−i are the one-step co-policies. The two boxes in the top-right

of Figure 3b represent the two nodes in Gi associated with the subgame beginning in the top-right state in Figure 3a. The
first (second) node show that action a (b) is the best-response set to their co-player choosing action a (b) and achieves value
1. The six boxes on the left of Figure 3b represent the root nodes of the six SECs of the full game. Each box shows the
best-response set, the value of the best-response, and the actions of the policies in that class. The red and blue arrows point
to future states in the game and how that class is continued at those states. Notice the pairs of nodes in the first layer that can
be merged, because they share the same valued best response.

B.3. Miscellaneous Lemmas

Lemma 3 (Corollary of Bellman’s principle of optimality). Let bti be the belief over the state space derived from history ht
i

and co-policy π−i. Then,

Q∗
π−i

(ht
i, ai) = E

st∼bti

[R(st, at) + E
oi∈P (·,·|st,at)

[γmax
a

(Q∗
π−i

(ht
i + (ai, oi), a)))]] (3)

where at is the joint action specified by ai and the roots of πt
−i.
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Theorem 2 (Bellman backup for strategic equivalence). For all histories ht
i and policies π−i, π

′
−i ∈ Π

ht
i

−i, we have
π−i

v∼ht
i
π′
−i if and only if,

(i) argmax
ai

Q∗
i (π−i, h

t
i, ai) = argmax

ai

Q∗
i (π

′
−i, h

t
i, ai), and max

ai

Q∗
i (π−i, h

t
i, ai) = max

ai

Q∗
i (π

′
−i, h

t
i, ai);

(ii) π−i
v∼ht

i+(ai,oi) π
′
−i for all actions ai ∈ argmaxai

Q∗
i (π−i, h

t
i, ai) and corresponding possible observations oi.

Proof. We will show that π−i
v∼ht

i
π′
−i, i.e., BRht

i
(π−i) = BRht

i
(π′

−i) if and only if (i) and (ii) hold. Condition (i) ensures
that the best response actions to π and π′ are the same at timepoint t, given history ht

i. Condition (ii) recursively checks
that all other parts of the best response policies are the same: π−i

v∼hi+(ai,oi) π′
−i means that BRhi+(ai,oi)(π−i) =

BRhi+(ai,oi)(π
′
−i) for all actions ai ∈ argmaxai

Q∗
i (π−i, h

t
i, ai) and possible observations oi, ensuring that no matter

which observation agent i observes, the set of best-response subpolicies are the same.

B.4. Computing strategic equivalence relations over subsets of the policy space

In some settings it is known that agents will follow some subset of the full policy space. In our examples, we assume that
agents have some degree of rationality, so they play Nash-equilibrium or best-response policies. In these cases, it makes
sense to restrict your strategic equivalence relations to the relevant subset of policies, potentially eliminating extraneous
equivalence classes and thereby simplifying the strategy space.

One way of computing the SER over a subset of the full policy space is by computing the SER over the full policy space and
then discarding unwanted policies. This is usually undesirable, because it can introduce lots of unnecessary computation,
especially in dynamic games. Instead, we simultaneously compute the relevant subset of policies along with the SER over
them. In order to compute the SER over a subset of the policies in this way, a key characteristic is that the subset of policies
have a recursive substructure that can be exploited during backwards recursion. Best-response policies and subgame perfect
Nash equilibrium have the property that policies at time t can be computed in terms of the policies at time t+ 1.

B.5. Remarks on Algorithm 1

Along with providing an efficient method for computing strategic equivalence classes, Algorithm 1 implements two strict
improvements over traditional point-based, dynamic programming approaches for DecPOMDPs (Szer & Charpillet, 2006).

(i) The argmax on line 6 of the algorithm proposed in (Szer & Charpillet, 2006) only needs to be computed over the
current timestep’s possible actions (rather than the full space of t-step policy trees) since we record best responses and
their associated value functions for future histories.

(ii) By computing strategic equivalence classes associated with future histories, we can reduce the total number of co-
policies that need to be considered during the computation. Specifically, we only need to consider a single policy for
each element of each of the strategic equivalence class, since all other policies will necessary induce the same best
response.

Computing subgame perfect Nash Equilibrium. In order to compute only the subgame perfect Nash equilibrium (rather
than all of the best-response policies), we can do iterated elimination of strictly dominated strategies (IESDS) at each stage
of the backwards induction. This will leave only the subgame perfect Nash equilibrium since IESDS eliminates all of the
non-Nash equilibrium in common-payoff games.

B.6. Computing strategic equivalence relations in fully-observed settings

Here, we provide additional context to computing the valued strategic equivalence relation (VSER) in fully-observed
DecPOMDPs.

In fully-observed DecPOMDPs, optimal policies and Q-functions can be Markovian. Therefore, we consider the set of
intermediate VSERs v∼

s

i over the subgames starting at states s. Let T (s) = {s′ | ∃a ∈ A s.t. P (s, a, s′) > 0} denote the
successors of state s. Then, π−i

v∼s π
′
−i if and only if,
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(a) Overcooked – “Cramped”: cooks need to coordinate on
low-level movements to avoid getting in each other’s way.
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(b) The time (lines) and number of argmax evaluations (bars) it take
to compute the set of best-response policies using our algorithm (Al-
gorithm 1) and the baseline from (Szer & Charpillet, 2006). Beyond
a horizon of two, the baseline timed-out at 30 minutes.

Figure 7: Additional experiments.

(i) π−i
v∼
s′

i π′
−i, ∀s′ ∈ T (s), and

(ii) argmax
ai

{Qπ−i(s, ai)} = argmax
ai

{Qπ′
−i(s, ai)}.

As Qπ(s, a) = Es′ [R(s, a) + γV π(s′)], the value function is also recursively defined in terms of successor states T (s).

Given this recursive construction of the VSER of the subgames of G, we can compute the VSER over the subgame perfect
Nash equilibrium of the full game G using backwards induction similar to Algorithm 1. The two key differences are (1) we
only need to do backwards induction over the state space, not the history, and (2) Nash equilibrium can be computed directly,
since the actions of co-policies are determined by the current state, rather than having to resort to iterated elimination.

C. Additional Experiments
In this section, we provide two additional experimental results. In the first, we analyze the valued strategic equivalence
relations (VSERs) over subgame perfect Nash equilibrium of an additional fully-observed Overcooked environment (depicted
in 7a). Videos of each of the SECs in this environment is provided in the supplemental material. As in the environment
depicted in Figure 4b, agents get +1 reward anytime an onion is placed into any pot and have access to six actions: move
left, right, up, down, stay still, and interact. Optimal policies achieve a total payoff of +2. Agents need to coordinate on
low-level movements to avoid getting in each other’s way to get as many onions in the pots within a horizon of 9. This
environment gives rise to only two equivalence classes, depending on which agent collects the onions first. See the two
videos on our website for visualizations.

We also report an expanded version of Figure 6b in the form of Figure 7b that also reports the number of argmax evaluations
performed by our algorithm and the baseline from (Szer & Charpillet, 2006). Within the dynamic programming step of
either algorithm, an argmax is performed to find the optimal action (line 10 of Algorithm 1) or subpolicy (step 2.a.iii of
Figure 2 in (Szer & Charpillet, 2006)) for the current subgame. This measure provides a proxy for the number of iterations
the inner-most loop of each algorithm needs to take and is recorded in the form of bars in Figure 7b, following a trend
similar to wall-clock time.
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Figure 8: The time (on an absolute scale) for computing strategic equivalence relations over policies of varying horizon in
the Overcooked environment depicted in Figure 4a. Fully-observed (Algorithm in Appendix B.6) uses the fully-observed
version of the environment. Partially-observed (Algorithm 1) and Enumerative baseline (described in Section 6.3) use the
partially-observed version of the environment.
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