
Symbolic Dynamic Programming

Scott Sanner
Department of Computer Science, University of Toronto, Toronto, ON, M5S
3H5, CANADA

Kristian Kersting
CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge,
MA, 02139-4307, USA

Synonyms

Relational Dynamic Programming, Dynamic Programming for Relational
Domains, Relational Value Iteration

Definition

Symbolic dynamic programming is a generalization of the dynamic program-
ming technique for solving Markov decision processes that aims to exploit
symbolic structure in the solution of relational and first-order logical Markov
decision processes by avoiding the full state and action enumeration of clas-
sical solution techniques.

Motivation and Background

Decision-theoretic planning aims at constructing a policy for acting in an
uncertain environment that maximizes an agent’s expected utility along a
sequence of steps that solve a goal. For this task, Markov decision pro-
cesses (MDPs) have become the standard model. However, classical dynamic
programming algorithms for solving MDPs require explicit state and action
enumeration, which is often impractical: the number of states and actions
grows very quickly with the number of domain objects and relations. In
contrast, symbolic dynamic programming (SDP) algorithms seek to avoid
explicit state and action enumeration through the symbolic representation of
an MDP and a corresponding symbolic derivation of its solution, such as a
value function. In essence, SDP algorithms exploit the symbolic structure of

1

the MDP representation to construct a minimal logical partition of the state
space required to make all necessary value distinctions. As computations are
performed once per abstract state instead of once per explicit state, SDP
offers a great potential for computational benefit.

Theory and Solution

Consider an agent acting in a simple variant of the BoxWorld problem.
There are several cities such as london, paris etc., trucks truck1, truck2 etc.,
and boxes box1, box2 etc. The agent can load a box onto a truck or unload it
and can drive a truck from one city to another. Only when a particular box,
say box box1, is in a particular city, say paris, the agent receives a positive
reward. The agent’s learning task is now to find a policy for action selection
that maximizes its reward over the long term.

A great variety of techniques for solving such decision-theoretic planning
tasks have been developed over the last decades. Most of them assume atomic
representations, which essentially amounts to enumerating all unique config-
urations of trucks, cities, and boxes. It might then be possible to learn, for
example, that taking action action234 in state state42 is worth 6.2 and leads
to state state654321. Atomic representations are simple and learning can be
implemented using simple look-up tables. These look-up tables, however, can
be intractably large as atomic representations easily explode. Furthermore,
they do not easily generalize across different numbers of domain objects.1

In contrast, symbolic dynamic programming (SDP) assumes a relational
or first-order logical representation of an MDP (as given in Fig. 1) to exploit
the existence of domain objects, relations over these objects, and the abil-
ity to express objectives and action effects using quantification. It is then
possible to learn that to get box b to paris, the agent essentially drives a
truck to the city of b, loads box1 on the truck, drives the truck to paris,
and finally unloads the box box1 in paris. This is essentially encoded in the
symbolic value function shown in Fig. 2, which was computed by discounting
rewards t time steps into the future by 0.9t. The key features to note here
are the state and action abstraction in the value and policy representation
that are afforded by the first-order specification and solution of the problem.
That is, this solution does not refer to any specific set of domain objects,

1We use the term domain in the first-order logical sense of an object universe. The term
should not be confused with a planning problem such as BoxWorld or BlocksWorld.

2

Figure 1: A formal desciption of the BoxWorld adapted from [1]. We use a
simple STRIPS [2] add and delete list representation of actions and, as a simple
probabilistic extension in the spirit of PSTRIPS [3], we assign probabilities that
an action successfully executes conditioned on various state properties.

• Domain Object Types (i.e., sorts): Box , Truck , City = {paris, . . .}

• Relations (with parameter sorts):
BoxIn(Box ,City), TruckIn(Truck ,City), BoxOn(Box ,Truck)

• Reward: if ∃b.BoxIn(b, paris) 10 else 0

• Actions (with parameter sorts):

– load(Box : b,Truck : t,City : c):

∗ Success Probability: if (BoxIn(b, c) ∧ TruckIn(t, c)) then .9 else 0
∗ Add Effects on Success: {BoxOn(b, t)}
∗ Delete Effects on Success: {BoxIn(b, c)}

– unload(Box : b,Truck : t,City : c):

∗ Success Probability: if (BoxOn(b, t) ∧ TruckIn(t, c)) then .9 else 0
∗ Add Effects on Success: {BoxIn(b, c)}
∗ Delete Effects on Success: {BoxOn(b, t)}

– drive(Truck : t,City : c1,City : c2):

∗ Success Probability: if (TruckIn(t, c1)) then 1 else 0
∗ Add Effects on Success: {TruckIn(t, c2)}
∗ Delete Effects on Success: {TruckIn(t, c1)}

– noop

∗ Success Probability: 1
∗ Add Effects on Success: ∅
∗ Delete Effects on Success: ∅

say just City = {paris , berlin, london}, but rather it provides a solution
for all possible domain object instantiations. And while classical dynamic
programming techniques could never solve these problems for large domain
instantiations (since they would have to enumerate all states and actions), a

3

Figure 2: A decision-list representation of the optimal policy and expected dis-
counted reward value for the BoxWorld problem.

if (∃b.BoxIn(b, paris)) then do noop (value = 100.00)
else if (∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t)) then do unload(b, t) (value = 89.0)
else if (∃b, c, t.BoxOn(b, t) ∧ TruckIn(t, c)) then do drive(t, c, paris) (value = 80.0)
else if (∃b, c, t.BoxIn(b, c) ∧ TruckIn(t, c)) then do load(b, t) (value = 72.0)
else if (∃b, c1, t, c2.BoxIn(b, c1)∧TruckIn(t, c2)) then do drive(t, c2, c1) (value = 64.7)
else do noop (value = 0.0)

domain-independent SDP solution to this particular problem is quite simple
due to the power of state and action abstraction.

Background: Markov Decision Processes (MDPs)

In the MDP [4] model, an agent is assumed to fully observe the current state
and choose an action to execute from that state. Based on that state and
action, nature then chooses a next state according to some fixed probability
distribution. In an infinite-horizon MDP, this process repeats itself indefi-
nitely. Assuming there is a reward associated with each state and action,
the goal of the agent is to maximize the expected sum of discounted rewards
received over an infinite horizon.2 This criterion assumes that a reward re-
ceived t steps in the future is discounted by γt where γ is a discount factor
satisfying 0 ≤ γ < 1. The goal of the agent is to choose its actions in order
to maximize the expected, discounted future reward in this model.

Formally, a finite state and action MDP is a tuple: 〈S,A, T,R〉 where: S
is a finite state space, A is a finite set of actions, T is a transition function:
T : S×A×S → [0, 1] where T (s, a, ·) is a probability distribution over S for
any s ∈ S and a ∈ A, and R is a bounded reward function R : S × A→ R.

As stated above, our goal is to find a policy that maximizes the infinite
horizon, discounted reward criterion: Eπ[

∑∞
t=0 γ

t ·rt|s0], where rt is a reward
obtained at time t, γ is a discount factor as defined above, π is the policy

2Although we do not discuss it here, there are other alternatives to discounting such
as averaging the reward received over an infinite horizon.

4

being executed, and s0 is the initial starting state. Based on this reward
criterion, we define the value function for a policy π as the following:

Vπ(s) = Eπ

[
∞∑

t=0

γt · rt
∣∣∣ s0 = s

]
(1)

Intuitively, the value function for a policy π is the expected sum of discounted
rewards accumulated while executing that policy when starting from state s.

For the MDP model discussed here, the optimal policy can be shown to
be stationary [4]. Consequently, we use a stationary policy representation of
the form π : S → A, with π(s) denoting the action to be executed in state
s. An optimal policy π∗ is the policy that maximizes the value function for
all states. We denote the optimal value function over an indefinite horizon
as V ∗(s) and note that it satisfies the following equality:

V ∗(s) = max
a

{
R(s, a) + γ

∑
t∈S

T (s, a, t) · V ∗(t)

}
(2)

Bellman’s principle of optimality [5] establishes the following relationship
between the optimal value function with a finite horizon of t steps remaining
and the optimal value function with a finite horizon of t− 1 steps remaining:

V ∗
t (s) = max

a∈A

{
R(s, π(s)) + γ

∑
t∈S

T (s, π(s), t) · V ∗
t−1(t)

}
(3)

A dynamic programming approach for computing the optimal value function
over an indefinite horizon is known as value iteration and directly implements
Eq. 3 to compute Eq. 1 by successive approximation. As sketched in Fig. 3,
we start with V 0(s) = maxaR(s) and perform the Bellman backup given in
Eq. 3 for each state V 1(s) using the value of V 0(s). We repeat this process
for each t to compute V t(s) from the memoized values for V t−1(s) until we
have computed the intended t-stage-to-go value function. This process will
converge linearly to the optimal value function [4].

Often, the Bellman backup is rewritten in two steps to separate out the
action regression and maximization steps. In this case, we first compute the
t-stage-to-go Q-function for every action and state:

Qt(s, a) = R(s, a) + γ ·
∑
t∈S

T (s, a, t) · V t−1(t) (4)

5

2

S1

S2

S1

S2S2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

S1

V (s)
2

S1

1 1 1
V (s)

1

1
V (s)

V (s)V (s)
1

V (s)V (s)
23

0

0

2 2 2 2

V (s)
3

S

Figure 3: A diagram demonstrating a dynamic programming regression-based eval-
uation of the MDP value function. Dashed lines are used in the expectation com-
putation of the Q-function: for each action, take the expectation over the value of
possible successor states. Solid lines are used in the max computation: determine
the highest valued action to take in each state.

Then we maximize over each action to determine the value of the regressed
state:

V t(s) = max
a∈A

{
Qt(s, a)

}
(5)

This is clearly equivalent to Eq. 3 but is in a form that we will refer to
later since it separates the algorithm into its two conceptual components:
decision-theoretic regression and maximization.

First-order Markov Decision Processes

A first-order MDP (FOMDP) can be thought of as a universal MDP that
abstractly defines the state, action, transition, and reward tuple 〈S,A, T,R〉
for an infinite number of ground MDPs. To make this idea more concrete,
consider the BoxWorld problem defined earlier. While we have not yet
formalized the details of the FOMDP representation, it should be clear that
the BoxWorld dynamics hold for any instantiation of the domain objects:
Box , Truck , and City . For instance, assume the domain instantiation con-
sists of two boxes Box = {box 1, box 2}, two trucks Truck = {truck 1, truck 2}

6

and two cities City = {paris , berlin}. Then the resulting ground MDP
has 12 state-variable atoms (each atom being true or false in a state),
four atoms for BoxIn such as BoxIn(box 1, paris), BoxIn(box 2, paris), . . ., four
atoms for TruckIn such as TruckIn(truck 2, paris), . . . and four atoms for
BoxOn such as BoxOn(box 2, truck 1), There are also 24 possible actions
(eight for each of load ,unload , and drive) such as load(box 1, truck 1, paris),
load(box 1, truck 1, berlin), drive(truck 2, paris , paris), drive(truck 2, paris , berlin),
etc. where the transition function directly follows from the ground instan-
tions of the corresponding PSTRIPS operators. The reward function looks
like: if (BoxIn(box 1, paris) ∨ BoxIn(box 2, paris)) 10 else 0.

Therefore, to solve a FOMDP, we could ground it for a specific domain
instantiation to obtain a corresponding ground MDP. Then we could apply
classical MDP solution techniques to solve this ground MDP. However, the
obvious drawback to this approach is that the number of state variables
and actions in the ground MDP grow at least linearly as the domain size
increases. And even if the ground MDP could be represented within memory
constraints, the number of distinct ground states grows exponentially with
the number of state variables, thus rendering solutions that scale with state
size intractable even for moderately small numbers of domain objects.

An alternative idea to solving a FOMDP at the ground level is to solve
the FOMDP directly at the first-order level using symbolic dynamic pro-
gramming, thereby obtaining a solution that applies universally to all pos-
sible domain instantiations. While the exact representation and symbolic
dynamic programming solution of FOMDPs differs among the variant for-
malisms, they all share the same basic first-order representation of rewards,
probabilities, and values that we outline next. To highlight this, we introduce
a graphical case notation to allow first-order specifications of the rewards,
probabilities, and values required for FOMDPs:

case =
φ1 : t1
: : :
φn : tn

Here the φi are state formulae and the ti are terms. Often the ti will be
constants and the φi will partition state space. To make this concrete, we
represent our BoxWorld FOMDP reward function as the following rCase
statement:

rCase =
∃b.BoxIn(b, paris) : 10
¬∃b.BoxIn(b, paris) : 0

7

Here we see that the first-order formulae in the case statement divide all
possible ground states into two regions of constant-value: when there exists
a box in Paris, a reward of 10 is achieved, otherwise a reward of 0 is achieved.
Likewise the value function vCase that we derive through symbolic dynamic
programming can be represented in exactly the same manner. Indeed, as we
will see shortly, vCase0 = rCase in the first-order version of value iteration.

To state the FOMDP transition function for an action, we decompose
stochastic “agent” actions into a collection of deterministic actions, each
corresponding to a possible outcome of the stochastic action. We then specify
a distribution according to which “nature” may choose a deterministic action
from this set whenever the stochastic action is executed.

Letting A(~x) be a stochastic action with nature’s choices (i.e., determin-
istic actions) n1(~x), · · · , nk(~x), we represent the distribution over ni(~x) given
A(~x) using the notation pCase(nj(~x), A(~x)). Continuing our logistics exam-
ple, if the success of driving a truck depends on whether the destination
city is paris (perhaps due to known traffic delays), then we decompose the
stochastic drive action into two deterministic actions driveS and driveF , re-
spectively denoting success and failure. Then we can specify a distribution
over nature’s choice deterministic outcome for this stochastic action:

pCase(driveS (t, c1, c2),
drive(t, c1, c2))

=
c2 = paris : 0.6
c2 6= paris : 0.9

pCase(driveF (t, c1, c2),
drive(t, c1, c2))

=
c2 = paris : 0.4
c2 6= paris : 0.1

Intuitively, to perform an operation on case statements, we simply per-
form the corresponding operation on the intersection of all case partitions of
the operands. Letting each φi and ψj denote generic first-order formulae, we
can perform the “cross-sum” ⊕ of case statements in the following manner:

φ1 : 10
φ2 : 20

⊕ ψ1 : 1
ψ2 : 2

=

φ1 ∧ ψ1 : 11
φ1 ∧ ψ2 : 12
φ2 ∧ ψ1 : 21
φ2 ∧ ψ2 : 22

Likewise, we can perform 	, ⊗, and max operations by, respectively, sub-
tracting, multiplying, or taking the max of partition values (as opposed to
adding them) to obtain the result. Some partitions resulting from the ap-
plication of the ⊕, 	, and ⊗ operators may be inconsistent; we simply dis-

8

card such partitions (since they can obviously never correspond to any world
state).

We define another operation on case statements max∃~x that is crucial for
symbolic dynamic programming. Intuitively, the meaning of max∃~x case(~x)
is a case statement where the maximal value is assigned to each region of
state space where there exists a satisfying instantiation of ~x. To make these
ideas concrete, following is an exposition of how the max ∃~x may be explicitly
computed:

max∃~x
ψ1(~x) : 1
ψ2(~x) : 2
ψ3(~x) : 3

=
∃~xψ3(~x) : 3
¬(∃~xψ3(~x)) ∧ ∃~xψ2(~x) : 2
¬(∃~xψ3(~x)) ∧ ¬(∃~xψ2(~x)) ∧ ∃~xψ1(~x) : 1

Here we have simply sorted partitions in order of value and have ensured
that the highest value is assigned to partitions in which there exists a sat-
isfying instantiation of ~x by rendering lower value partitions disjoint from
their higher-value antecedents.

Symbolic Dynamic Programming

Symbolic dynamic programming (SDP) is a dynamic programming solution
to FOMDPs that produces a logical case description of the optimal value
function. This is achieved through the operations of first-order decision-
theoretic regression and symbolic maximization that perform the traditional
dynamic programming Bellman backup at an abstract level without explicit
enumeration of either the state or action spaces of the FOMDP. Among many
uses, the application of SDP leads to a domain-independent value iteration
solution to FOMDPs.

Suppose we are given a value function in the form vCase. The first-order
decision-theoretic regression (FODTR) [1] of this value function through an
action A(~x) yields a case statement containing the logical description of states
and values that would give rise to vCase after doing action A(~x). This is
analogous to classical goal regression, the key difference being that action
A(~x) is stochastic. In MDP terms, the result of FODTR is a case statement
representing a Q-function.

We define the first-order decision theoretic regression (FODTR) operator

9

in the following manner:

FODTR[vCase, A(~x)] =rCase⊕ (6)

γ [⊕j{pCase(nj(~x))⊗ Regr [vCase, A(~x)]}]

Note that we have not yet defined the regression operator Regr [vCase, A(~x)].
As it turns out, the implementation of this operator is specific to a given
FOMDP language and SDP implementation. We simply remark that the
regression of a formula ψ through an action A(~x) is a formula ψ′ that holds
prior to A(~x) being performed iff ψ holds after A(~x). However, regression
is a deterministic operator and thus FODTR takes the expectation of the
regression over all all possible deterministic outcomes of a stochastic action
according to their respective probabilities.

It is important to note that the case statement resulting from FODTR
contains free variables for the action parameters ~x. That is, for any constant
binding ~c of these action parameters such that ~x = ~c, the case statement
specifies a well-defined logical description of the value that can be obtained
by taking action A(~c) and following a policy so as to obtain the value given
by vCase thereafter. However, what we really need for symbolic dynamic
programming is a logical description of a Q-function that tells us the highest
value that can be achieved for any action instantiation. This leads us to the
following qCase(A(~x)) definition of a first-order Q-function that makes use
of the previously defined max∃~x operator:

qCaset(A(~x)) = max∃~x.FODTR[vCaset−1, A(~x)] (7)

Intuitively, qCaset(A(~x)) is a logical description of the Q-function for action
A(~x) indicating the best value that could be achieved by any instantiation
of A(~x). And by using the case representation and action quantification
in the max∃~x operation, FODTR effectively achieves both action and state
abstraction.

At this point, we can regress the value function through a single ac-
tion, but to complete the dynamic programming step, we need to know
the maximum value that can be achieved by any action (e.g., in the Box-
World FOMDP, our possible action choices are unload(b, t, c), load(b, t, c),
and drive(t, c1, c2)). Fortunately, this turns out to be quite easy. Assuming
we have m actions {A1(~x1), . . . , Am(~xm)}, we can complete the SDP step in
the following manner using the previously defined max operator:

vCaset = max
a∈{A1(~x1),...,Am(~xm)}

qCaset(a) (8)

10

While the details of SDP may seem very abstract at the moment, there
are several examples for specific FOMDP languages that implement SDP
as described above, for which we provide references below. Nonetheless,
one should note that the SDP equations given here are exactly the “lifted”
versions of the traditional dynamic programming solution to MDPs given
previously in Eqs. 4 and 5. The reader may verify — on a conceptual level —
that applying SDP to the 0-stage-to-go value function (i.e., vCase0 = rCase,
given previously) yields the following 1- and 2-stage-to-go value functions in
the BoxWorld domain (¬“ indicating the conjunction of the negation of
all higher value partitions):

vCase1 =
∃b.BoxIn(b, paris) : 19.0
¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : 9.0
¬“ : 0.0

vCase2 =

∃b.BoxIn(b, paris) : 27.1
¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : 17.1
¬“ ∧ ∃b, c, t.BoxOn(b, t) ∧ TruckIn(t, c) : 8.1
¬“ : 0.0

After sufficient iterations of SDP, the t-stage-to-go value function converges,
giving the optimal value function (and corresponding policy) from Fig. 2.

Applications

(Variants of) symbolic dynamic programming have been successfully ap-
plied in decision-theoretic planning domains such as BlocksWorld, Box-
World, ZenoWorld, Elevators, Drive, PitchCatch, and Sched-
ule. The FOALP system [6] was runner-up at the probabilistic track of the
5th International Planning Competition (IPC-6). Related techniques have
been used to solve path planning problems within robotics and instances of
real-time strategy games, Tetris, and Digger.

Future Directions

The original symbolic dynamic programming (SDP) [1] approach is a value
iteration algorithm for solving FOMDPs based on Reiter’s situations calcu-
lus. Since then, a variety of exact algorithms have been introduced to solve

11

MDPs with relational (RMDP) and first-order (FOMDP) structure.3 First-
order value iteration (FOVIA) [7, 8] and the relational Bellman algorithm
(ReBel) [9] are value iteration algorithms for solving RMDPs. In addition,
first-order decision diagrams (FODDs) have been introduced to compactly
represent case statements and to permit efficient application of symbolic dy-
namic programming operations to solve RMDPs via value iteration [10] and
policy iteration [11]. All of these algorithms have some form of guarantee on
convergence to the (ε-)optimal value function or policy.

A class of linear-value approximation algorithms have been introduced
to approximate the value function as a linear combination of weighted basis
functions. First-order approximate linear programming (FOALP) [6] directly
approximates the FOMDP value function using a linear program. First-
order approximate policy iteration (FOAPI) [12] approximately solves for
the FOMDP value function by iterating between policy and value updates
in a policy-iteration style algorithm. Somewhat weak error bounds can be
derived for a value function approximated via FOALP [6] while generally
stronger bounds can be derived from the FOAPI solution [12].

Finally, there are a number of heuristic solutions to FOMDPs and RMDPs.
Approximate policy iteration [13] induces rule-based policies from sampled
experience in small-domain instantiations of RMDPs and generalizes these
policies to larger domains. In a similar vein, inductive policy selection using
first-order regression [14] uses regression to provide the hypothesis space over
which a policy is induced. Approximate linear programming (for RMDPs) [15]
is an approximation technique using linear program optimization to find a
best-fit value function over a number of sampled RMDP domain instantia-
tions.

Recommended Readings

[1] Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for
first-order MDPs. In: IJCAI-01, Seattle (2001) 690–697

[2] Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application
of theorem proving to problem solving. AI Journal 2 (1971) 189–208

3We use the term relational MDP to refer to models that allow implicit existential
quantification, and first-order MDP for those with explicit existential and universal quan-
tification.

12

[3] Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic
planning. Artificial Intelligence 76 (1995) 239–286

[4] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley, New York (1994)

[5] Bellman, R.E.: Dynamic Programming. Princeton University Press,
Princeton, NJ (1957)

[6] Sanner, S., Boutilier, C.: Approximate linear programming for first-
order MDPs. In: UAI-2005, Edinburgh, Scotland (2005)

[7] Hölldobler, S., Skvortsova, O.: A logic-based approach to dynamic
programming. In: In AAAI-04 Workshop on Learning and Planning in
MDPs, Menlo Park, CA (2004) 31–36

[8] Karabaev, E., Skvortsova, O.: A heuristic search algorithm for solving
first-order MDPs. In: UAI-2005, Edinburgh, Scotland (2005) 292–299

[9] Kersting, K., van Otterlo, M., de Raedt, L.: Bellman goes relational.
In: ICML-04, Banff, Alberta, Canada, ACM Press (2004)

[10] Wang, C., Joshi, S., Khardon, R.: First order decision diagrams for
relational MDPs. In: IJCAI, Hyderabad, India (2007)

[11] Wang, C., Khardon, R.: Policy iteration for relational MDPs. In: UAI,
Vancouver, Canada (2007)

[12] Sanner, S., Boutilier, C.: Practical linear evaluation techniques for first-
order MDPs. In: UAI-2006, Boston, Mass. (2006)

[13] Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a
policy language bias. In: NIPS-2003, Vancouver (2003)

[14] Gretton, C., Thiebaux, S.: Exploiting first-order regression in inductive
policy selection. In: UAI-04, Banff, Canada (2004) 217–225

[15] Guestrin, C., Koller, D., Gearhart, C., Kanodia, N.: Generalizing plans
to new environments in relational MDPs. In: IJCAI-03, Acapulco, Mex-
ico (2003)

13

