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Abstract

We propose a new approach to the problem
of searching a space of policies for a Markov
decision process (MDP) or a partially observ-
able Markov decision process (POMDP), given
a model. Our approach is based on the following
observation: Any (PO)MDP can be transformed
into an “equivalent” POMDP in which all state
transitions (given the current state and action) are
deterministic. This reduces the general problem
of policy search to one in which we need only
consider POMDPs with deterministic transitions.
We give a natural way of estimating the value of
all policies in these transformed POMDPs. Pol-
icy search is then simply performed by searching
for a policy with high estimated value. We also
establish conditions under which our value esti-
mates will be good, recovering theoretical results
similar to those of Kearns, Mansour and Ng [7],
but with “sample complexity” bounds that have
only a polynomial rather than exponential depen-
dence on the horizon time. Our method applies
to arbitrary POMDPs, including ones with infi-
nite state and action spaces. We also present
empirical results for our approach on a small
discrete problem, and on a complex continuous
state/continuous action problem involving learn-
ing to ride a bicycle.

1 Introduction

In recent years, there has been growing interest in algo-
rithms for approximate planning in (exponentially or even
infinitely) large Markov decision processes (MDPs) and
partially observable MDPs (POMDPs). For such large do-
mains, the value and -functions are sometimes compli-
cated and difficult to approximate, even though there may
be simple, compactly representable policies that perform
very well. This observation has led to particular interest in
direct policy search methods (e.g., [16, 8, 15, 1, 7]), which

attempt to choose a good policy from some restricted class
of policies.
Most approaches to policy search assume access to the
POMDP either in the form of the ability to execute trajec-
tories in the POMDP, or in the form of a black-box “gen-
erative model” that enables the learner to try actions from
arbitrary states. In this paper, we will assume a stronger
model than these: roughly, we assume we have an imple-
mentation of a generative model, with the difference that
it has no internal random number generator, so that it has
to ask us to provide it with random numbers whenever it
needs them (such as if it needs a source of randomness to
draw samples from the POMDP’s transition distributions).
This small change to a generative model results in what
we will call a deterministic simulative model, and makes it
surprisingly powerful.
We show how, given a deterministic simulative model,
we can reduce the problem of policy search in an ar-
bitrary POMDP to one in which all the transitions are
deterministic—that is, a POMDP in which taking an ac-
tion in a state will always deterministically result in
transitioning to some fixed state . (The initial state in this
POMDP may still be random.) This reduction is achieved
by transforming the original POMDP into an “equivalent”
one that has only deterministic transitions.
Our policy search algorithm then operates on these “sim-
plified” transformed POMDPs. We call our method PEGA-
SUS (for Policy Evaluation-of-Goodness And Search Us-
ing Scenarios, for reasons that will become clear). Our
algorithm also bears some similarity to one used in Van
Roy [12] for value determination in the setting of fully ob-
servable MDPs.
The remainder of this paper is structured as follows: Sec-
tion 2 defines the notation that will be used in this pa-
per, and formalizes the concepts of deterministic simulative
models and of families of realizable dynamics. Section 3
then describes how we transform POMDPs into ones with
only deterministic transitions, and gives our policy search
algorithm. Section 4 goes on to establish conditions un-
der which we may give guarantees on the performance of



the algorithm, Section 5 describes our experimental results,
and Section 6 closes with conclusions.

2 Preliminaries

This section gives our notation, and introduces the concept
of the set of realizable dynamics of a POMDP under a pol-
icy class.
A Markov decision process (MDP) is a tuple

where: is a set of states;
is the initial-state distribution, from which the start-state
is drawn; is a set of actions; are the tran-

sition probabilities, with giving the next-state distri-
bution upon taking action in state ; is the
discount factor; and is the reward function, bounded
by . For the sake of concreteness, we will assume, un-
less otherwise stated, that is a -dimensional
hypercube. For simplicity, we also assume rewards are de-
terministic, and written rather than , the ex-
tensions being trivial. Lastly, everything that needs to be
measurable is assumed to be measurable.
A policy is any mapping . The value function
of a policy is a map , so that gives
the expected discounted sum of rewards for executing
starting from state . With some abuse of notation, we also
define the value of a policy, with respect to the initial-state
distribution , according to

(1)

(where the subscript indicates that the expectation
is with respect to drawn according to ). When we are
considering multiple MDPs and wish to make explicit that
a value function is for a particular MDP , we will also
write , , etc.
In the policy search setting, we have some fixed class
of policies, and desire to find a good policy . More
precisely, for a given MDP and policy class , define

(2)

Our goal is to find a policy so that is close to
.

Note that this framework also encompasses cases where our
family consists of policies that depend only on certain as-
pects of the state. In particular, in POMDPs, we can restrict
attention to policies that depend only on the observables.
This restriction results in a subclass of stochastic memory-
free policies. By introducing artificial “memory vari-
ables” into the process state, we can also define stochastic
limited-memory policies [9] (which certainly permits some
belief state tracking).

Although we have not explicitly addressed stochastic policies
so far, they are a straightforward generalization (e.g. using the
transformation to deterministic policies given in [7]).

Since we are interested in the “planning” problem, we as-
sume that we are given a model of the (PO)MDP.Much pre-
vious work has studied the case of (PO)MDPs specified via
a generative model [7, 13], which is a stochastic function
that takes as input any state-action pair, and outputs
according to (and the associated reward). In this

paper, we assume a stronger model. We assume we have a
deterministic function , so that
for any fixed -pair, if is distributed Uniform ,
then is distributed according to the transition dis-
tribution . In other words, to draw a sample from

for some fixed and , we need only draw uni-
formly in , and then take to be our sample.
We will call such a model a deterministic simulative model
for a (PO)MDP.
Since a deterministic simulative model allows us to simu-
late a generativemodel, it is clearly a stronger model. How-
ever, most computer implementations of generative models
also provide deterministic simulative models. Consider a
generative model that is implemented via a procedure that
takes and , makes at most calls to a random number
generator, and then outputs drawn according to .
Then this procedure is already providing a deterministic
simulative model. The only difference is that the determin-
istic simulative model has to make explicit (or “expose”) its
interface to the random number generator, via . (A gen-
erative model implemented via a physical simulation of an
MDP with “resets” to arbitrary states does not, however,
readily lead to a deterministic simulative model.)
Let us examine some simple examples of deterministic sim-
ulative models. Suppose that for a state-action pair
and some states and , ,

. Then we may choose so that is just
a real number, and let if , and

otherwise. As another example, suppose
, and is a normal distribution with a cumula-

tive distribution function . Again letting , we
may choose to be .
It is a fact of probability and measure theory that, given
any transition distribution , such a deterministic sim-
ulative model can always be constructed for it. (See,
e.g. [4].) Indeed, some texts (e.g. [2]) routinely define
POMDPs using essentially deterministic simulative mod-
els. However, there will often be many different choices of
for representing a (PO)MDP, and it will be up to the user

to decide which one is most “natural” to implement. As we
will see later, the particular choice of that the user makes
can indeed impact the performance of our algorithm, and
“simpler” (in a sense to be formalized) implementations are
generally preferred.
To close this section, we introduce a concept that will be
useful later, that captures the family of dynamics that a
(PO)MDP and policy class can exhibit. Assume a deter-
ministic simulative model , and fix a policy . If we are



executing from some state , the successor-state is deter-
mined by , which is a function of
and . Varying over , we get a whole family of func-
tions mapping from

into successor states . This set of functions
should be thought of as the family of dynamics realiz-

able by the POMDP and , though since its definition does
depend on the particular deterministic simulative model
that we have chosen, this is “as expressed with respect to
.” For each , also let be the -th coordinate function
(so that is the -th coordinate of ) and let
be the corresponding families of coordinate functions map-
ping from into . Thus, captures all the
ways that coordinate of the state can evolve.
We are now ready to describe our policy search method.

3 Policy search method

In this section, we show howwe transform a (PO)MDP into
an “equivalent” one that has only deterministic transitions.
This then leads to natural estimates of the policies’
values . Finally, we may search over policies to opti-
mize , to find a (hopefully) good policy.

3.1 Transformation of (PO)MDPs

Given a (PO)MDP and
a policy class , we describe how, using a determinis-
tic simulative model for , we construct our trans-
formed POMDP and
corresponding class of policies , so that has only de-
terministic transitions (though its initial state may still be
random). To simplify the exposition, we assume ,
so that the terms are just real numbers.

is constructed is as follows: The action space and dis-
count factor for are the same as in . The state space
for is . In other words, a typical state in
can be written as a vector — this consists of
a state from the original state space , followed by an
infinite sequence of real numbers in .
The rest of the transformation is straightforward. Upon
taking action in state in , we deter-
ministically transition to the state , where

. In other words, the portion of the state
(which should be thought of as the “actual” state) changes
to , and one number in the infinite sequence
is used up to generate from the correct distribution. By
the definition of the deterministic simulative model , we
see that so long as , then the “next-
state” distribution of is the same as if we had taken action
in state (randomization over ).

Finally, we choose , the initial-state distribution over
, so that drawn according to

will be so that , and the ’s are distributed i.i.d.
Uniform . For each policy , also let there be a

corresponding , given by ,
and let the reward be given by .
If one observes only the “ ”-portion (but not the ’s) of a
sequence of states generated in the POMDP using pol-
icy , one obtains a sequence that is drawn from the same
distribution as would have been generated from the original
(PO)MDP under the corresponding policy . It fol-
lows that, for corresponding policies and ,
we have that . This also implies that the
best possible expected returns in both (PO)MDPs are the
same: .
To summarize, we have shown how, using a deterministic
simulative model, we can transform any POMDP and
policy class into an “equivalent” POMDP and policy
class , so that the transitions in are deterministic;
i.e., given a state and an action , the next-state
in is exactly determined. Since policies in and
have the same values, if we can find a policy that
does well in starting from , then the corresponding
policy will also do well for the original POMDP
starting from . Hence, the problem of policy search

in general POMDPs is reduced to the problem of policy
search in POMDPs with deterministic transition dynamics.
In the next section, we show how we can exploit this fact
to derive a simple and natural policy search method.

3.2 PEGASUS: A method for policy search

As discussed, it suffices for policy search to find a good
policy for the transformed POMDP, since the cor-
responding policy will be just as good. To do this,
we first construct an approximation to , and
then search over policies to optimize (as
a proxy for optimizing the hard-to-compute ), and
thus find a (hopefully) good policy.
Recall that is given by

(3)

where the expectation is over the initial state drawn
according to . The first step in the approximation is to
replace the expectation over the distribution with a finite
sample of states. More precisely, we first draw a sam-
ple of initial states according to
. These states, also called “scenarios” (a term from the

stochastic optimization literature; see, e.g. [3]), define an
approximation to :

(4)

Since the transitions in are deterministic, for a given
state and a policy , the sequence of states
that will be visited upon executing from is exactly deter-
mined; hence the sum of discounted rewards for executing



from is also exactly determined. Thus, to calculate one
of the terms in the summation in Equation (4)
corresponding to scenario , we need only use our de-
terministic simulative model to find the sequence of states
visited by executing from , and sum up the result-
ing discounted rewards. Naturally, this would be an infinite
sum, so the second (and standard) part of the approxima-
tion is to truncate this sum after some number of steps,
where is called the horizon time. Here, we choose to
be the -horizon time , so that
(because of discounting) the truncation introduces at most

error into the approximation.

To summarize, given scenarios , our ap-
proximation to is the deterministic function

where is the sequence of states deter-
ministically visited by starting from . Given sce-
narios, this defines an approximation to for all poli-
cies .
The final implementational detail is that, since the states

are infinite-dimensional vectors, we
have no way of representing them (and their successor
states) explicitly. But because we will be simulating only

steps, we need only represent , of
the state , and so we will do
just that. Viewed in the space of the original, untrans-
formed POMDP, evaluating a policy this way is therefore
also akin to generating Monte Carlo trajectories and tak-
ing their empirical average return, but with the crucial dif-
ference that all the randomization is “fixed” in advance and
“reused” for evaluating different .
Having used scenarios to define for all , we
may search over policies to optimize . We call
this policy search method PEGASUS: Policy Evaluation-of-
Goodness And Search Using Scenarios. Since is a
deterministic function, the search procedure only needs to
optimize a deterministic function, and any number of stan-
dard optimization methods may be used. In the case that
the action space is continuous and is
a smoothly parameterized family of policies (so is
differentiable in for all ) then if all the relevant quanti-
ties are differentiable, it is also possible to find the deriva-
tives , and gradient ascent methods can be
used to optimize . One common barrier to doing
this is that is often discontinuous, being (say) 1 within
a goal region and 0 elsewhere. One approach to dealing
with this problem is to smooth out, possibly in com-
bination with “continuation” methods that gradually un-
smooth it again. An alternative approach that may be use-
ful in the setting of continuous dynamical systems is to al-
ter the reward function to use a continuous-time model of

discounting. Assuming that the time at which the agent en-
ters the goal region is differentiable, then is again
differentiable.

4 Main theoretical results

PEGASUS samples a number of scenarios from , and
uses them to form an approximation to . If is
a uniformly good approximation to , then we can guaran-
tee that optimizing will result in a policy with value close
to . This section establishes conditions under
which this occurs.

4.1 The case of finite action spaces

We begin by considering the case of two actions,
. Studying policy search in a similar setting,

Kearns, Mansour and Ng [7] established conditions under
which their algorithm gives uniformly good estimates of
the values of policies. A key to that result was that uniform
convergence can be established so long as the policy class
has low “complexity.” This is analogous to the setting of

supervised learning, where a learning algorithm that uses
a hypothesis class that has low complexity (such as in
the sense of low VC-dimension) will also enjoy uniform
convergence of its error estimates to their means.
In our setting, since is just a class of functions mapping
from into , it is just a set of boolean functions.
Hence, , its Vapnik-Chervonenkis dimension [14],
is well defined. That is, we say shatters a set of states
if it can realize each of the possible action combina-
tions on them, and is just the size of the largest set
shattered by . The result of Kearns et al. then suffices to
give the following theorem.

Theorem 1 Let a POMDP with actions be
given, and let be a class of strategies for this POMDP,
with Vapnik-Chervonenkis dimension . Also
let any be fixed, and let be the policy-value
estimates determined by PEGASUS using scenarios and

More precisely, if the agent enters the goal region on some
time step, then rather than giving it a reward of 1, we figure out
what fraction of that time step (measured in continuous
time) the agent had taken to enter the goal region, and then give
it reward instead. Assuming is differentiable in the system’s
dynamics, then and hence are now also differentiable
(other than on a usually-measure 0 set, for example from trunca-
tion at steps).

The algorithm of Kearns, Mansour and Ng uses a “trajectory
tree” method to find the estimates ; since each trajectory tree
is of size , they were very expensive to build. Each
scenario in PEGASUS can be viewed as a compact representation
of a trajectory tree (with a technical difference that different sub-
trees are not constructed independently), and the proof given in
Kearns et al. then applies without modification to give Theorem 1.



a horizon time of . If

(5)

then with probability at least , will be uniformly
close to :

(6)

Using the transformation given in Kearns et al., the case of
a finite action space with also gives rise to essen-
tially the same uniform-convergence result, so long as
has low “complexity.”
The bound given in the theorem has no dependence on
the size of the state space or on the “complexity” of the
POMDP’s transitions and rewards. Thus, so long as has
low VC-dimension, uniform convergence will occur, inde-
pendently of how complicated the POMDP is. As in Kearns
et al., this theorem therefore recovers the best analogous
results in supervised learning, in which uniform conver-
gence occurs so long as the hypothesis class has low VC-
dimension, regardless of the size or “complexity” of the
underlying space and target function.

4.2 The case of infinite action spaces: “Simple” is
insufficient for uniform convergence

We now consider the case of infinite action spaces.
Whereas, in the 2-action case, being “simple” was suffi-
cient to ensure uniform convergence, this is not the case in
POMDPs with infinite action spaces.
Suppose is a (countably or uncountably) infinite set
of actions. A “simple” class of policies would be

— the set of all policies that al-
ways choose the same action, regardless of the state. Intu-
itively, this is the simplest policy that actually uses an infi-
nite action space; also, any reasonable notion of complexity
of policy classes should assign a low “dimension.” If it
were true that simple policy classes imply uniform conver-
gence, then it is certainly true that this should always
enjoy uniform convergence. Unfortunately, this is not the
case, as we now show.

Theorem 2 Let be an infinite set of actions, and let
be the corresponding set

of all “constant valued” policies. Then there exists a finite-
state MDP with action space , and a deterministic simu-
lative model for it, so that PEGASUS’ estimates using the
deterministic simulative model do not uniformly converge
to their means. i.e. There is an , so that for estimates
derived using any finite number of scenarios and any

finite horizon time, there is a policy so that

(7)

The proof of this Theorem, which is not difficult, is in Ap-
pendix A. This result shows that simplicity of is not suf-
ficient for uniform convergence in the case of infinite ac-
tion spaces. However, the counterexample used in the proof
of Theorem 2 has a very complex despite the MDP be-
ing quite simple. Indeed, a different choice for would
have made uniform convergence occur. Thus, it is natu-
ral to hypothesize that assumptions on the “complexity” of
are also needed to ensure uniform convergence. As we

will shortly see, this intuition is roughly correct. Since ac-
tions affect transitions only through , the crucial quantity
is actually the composition of policies and the determinis-
tic simulative model — in other words, the class of the
dynamics realizable in the POMDP and policy class, us-
ing a particular deterministic simulative model. In the next
section, we show how assumptions on the complexity of
leads to uniform convergence bounds of the type we desire.

4.3 Uniform convergence in the case of infinite action
spaces

For the remainder of this section, assume .
Then is a class of functions mapping from

into , and so a simple way to capture its
“complexity” is to capture the complexity of its families
of coordinate functions, , . Each is a
family of functions mapping from into

, the -th coordinate of the state vector. Thus, is
just a family of real-valued functions — the family of -th
coordinate dynamics that can realize, with respect to .
The complexity of a class of boolean functions is measured
by its VC dimension, defined to be the size of the largest set
shattered by the class. To capture the “complexity” of real-
valued families of functions such as , we need a general-
ization of the VC dimension. The pseudo-dimension, due
to Pollard [10] is defined as follows:

Definition (Pollard, 1990). Let be a family of functions
mapping from a space into . Let a sequence of points

be given. We say shatters
if there exists a sequence of real numbers such
that the subset of given by

intersects all orthants of (equivalently,
if for any sequence of bits , there is
a function such that , for
all ). The pseudo-dimension of , denoted

, is the size of the largest set that shatters, or
infinite if can shatter arbitrarily large sets.

The pseudo-dimension generalizes the VC dimension, and
coincides with it in the case that maps into . We
will use it to capture the “complexity” of the classes of the
POMDP’s realizable dynamics . We also remind readers
of the definition of Lipschitz continuity.

For example, if , otherwise; see
Appendix A.



Definition. A function is Lipschitz con-
tinuous (with respect to the Euclidean norm on its range
and domain) if there exists a constant such that for all

, . Here,
is called a Lipschitz bound. A family of functions

mapping from into is uniformly Lipschitz contin-
uous with Lipschitz bound if every function is
Lipschitz continuous with Lipschitz bound .

We now state our main theorem, with a corollary regarding
when optimizing will result in a provably good policy.

Theorem 3 Let a POMDP with state space ,
and a possibly infinite action space be given. Also let
a policy class , and a deterministic simulative model

for the POMDP be given. Let
be the corresponding family of realizable dynamics in the
POMDP, and the resulting families of coordinate func-
tions. Suppose that for each ,
and that each family is uniformly Lipschitz continuous
with Lipschitz bound at most , and that the reward func-
tion is also Lipschitz continuous
with Lipschitz bound at most . Finally, let be
given, and let be the policy-value estimates determined
by PEGASUS using scenarios and a horizon time of .
If

then with probability at least , will be uniformly
close to :

(8)

Corollary 4 Under the conditions of Theorem 1 or 3, let
be chosen as in the Theorem. Then with probability at

least , the policy chosen by optimizing the value
estimates, given by , will be near-
optimal in :

(9)

Remark. The (Lipschitz) continuity assumptions give a
sufficient but not necessary set of conditions for the the-
orem, and other sets of sufficient conditions can be en-
visaged. For example, if we assume that the distribution
on states induced by any policy at each time step has a
bounded density, then we can show uniform convergence
for a large class of (“reasonable”) discontinuous reward
functions such as if otherwise.

Space constraints preclude a detailed discussion, but briefly,
this is done by constructing two Lipschitz continuous reward
functions and that are “close to” and which upper- and
lower-bound (and which hence give value estimates that also
upper- and lower-bound our value estimates under ); using the
assumption of bounded densities to show our values under
and are -close to that of ; applying Theorem 3 to show uni-
form convergence occurs with and ; and lastly deducing
from this that uniform convergence occurs with as well.

Using tools from [5], it is also possible to show similar
uniform convergence results without Lipschitz continuity
assumptions, by assuming that the family is parameter-
ized by a small number of real numbers, and that (for all

), , and are each implemented by a function that
calculates their results using only a bounded number of the
usual arithmetic operations on real numbers.
The proof of Theorem 3, which uses techniques first intro-
duced by Haussler [6] and Pollard [10], is quite lengthy,
and is deferred to Appendix B.

5 Experiments

In this section, we report the results from two experiments.
The first, run to examine the behavior of PEGASUS para-
metrically, involved a simple gridworld POMDP. The sec-
ond studied a complex continuous state/continuous action
problem involving riding a bicycle.
Figure 1a shows the finite state and action POMDP used
in our first experiment. In this problem, the agent starts
in the lower-left corner, and receives a reinforcement
per step until it reaches the absorbing state in the upper-
right corner. The eight possible observations, also shown
in the figure, indicate whether each of the eight squares
adjoining the current position contains a wall. The policy
class is small, consisting of all functions map-
ping from the eight possible observations to the four ac-
tions corresponding to trying to move in each of the com-
pass directions. Actions are noisy, and result in moving
in a random direction 20% of the time. Since the policy
class is small enough to exhaustively enumerate, our opti-
mization algorithm for searching over policies was simply
exhaustive search, trying all policies on the scenarios,
and picking the best one. Our experiments were done with

and a horizon time of , and all results re-
ported on this problem are averages over 10000 trials. The
deterministic simulative model was

if
if
if
if
otherwise

where denotes the result of moving one step from
in the direction indicated by , and is if this move would
result in running into a wall.
Figure 1b shows the result of running this experiment, for
different numbers of scenarios. The value of the best policy
within is indicated by the topmost horizontal line, and the
solid curve below that is the mean policy value when using
our algorithm. As we see, even using surprisingly small
numbers of scenarios, the algorithm manages to find good
policies, and as becomes large, the value also approaches
the optimal value.
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Figure 1: (a) 5x5 gridworld, with the 8 observations. (b) PEGASUS results using the normal and complex deterministic simulative
models. The topmost horizontal line shows the value of the best policy in ; the solid curve is the mean policy value using the normal
model; the lower curve is the mean policy value using the complex model. The (almost negligible) 1 s.e. bars are also plotted.

We had previously predicted that a “complicated” deter-
ministic simulative model can lead to poor results. For
each -pair, let be a hash function
that maps any Uniform random variable into another
Uniform random variable. Then if is a determin-
istic simulative model, is an-
other one that, because of the presence of the hash function,
is a much more “complex” model than . (Here, we appeal
to the reader’s intuition about complex functions, rather
than formal measures of complexity.) We would therefore
predict that using PEGASUS with would give worse re-
sults than , and indeed this prediction is borne out by the
results as shown in Figure 1b (dashed curve). The differ-
ence between the curves is not large, and this is also not
unexpected given the small size of the problem.
Our second experiment used Randløv and Alstrøm’s [11]
bicycle simulator, where the objective is to ride to a goal
one kilometer away. The actions are the torque applied to
the handlebars and the displacement of the rider’s center-
of-gravity from the center. The six-dimensional state used
in [11] includes variables for the bicycle’s tilt angle and
orientation, and the handlebar’s angle. If the bicycle tilt
exceeds , it falls over and enters an absorbing state,
receiving a large negative reward. The randomness in the
simulator is from a uniformly distributed term added to the
intended displacement of the center-of-gravity. Rescaled
appropriately, this became the term of our deterministic
simulative model.
We performed policy search over the following space: We

In our experiments, this was implemented by choosing, for
each pair, a random integer from ,
and then letting , where
denotes the fractional part of .

Theory predicts that the difference between and ’s perfor-
mance should be at most ; see [7].

selected a vector of fifteen (simple, manually-chosen but
not fine-tuned) features of each state; actions were then
chosen with sigmoids: ,

, where
. Note that since our approach can handle

continuous actions directly, we did not, unlike [11], have
to discretize the actions. The initial-state distribution was
manually chosen to be representative of a “typical” state
distribution when riding a bicycle, and was also not fine-
tuned. We used only a small number of scenarios,

, , with the continuous-time model of
discounting discussed earlier, and (essentially) gradient as-
cent to optimize over the weights. Shaping rewards, to
reward progress towards the goal, were also used.
We ran 10 trials using our policy search algorithm, testing
each of the resulting solutions on 50 rides. Doing so, the
median riding distances to the goal of the 10 different poli-
cies ranged from about 0.995km to 1.07km. In all 500
evaluation runs for the 10 policies, the worst distance we
observed was also about 1.07km. These results are signifi-
cantly better than those of [11], which reported riding dis-
tances of about 7km (since their policies often took very
“non-linear” paths to the goal), and a single “best-ever”
trial of about 1.7km.

Running experiments without the continuous-time model of
discounting, we also obtained, using a non-gradient based hill-
climbing algorithm, equally good results as those reported here.
Our implementation of gradient ascent, using numerically evalu-
ated derivates, was run with a bound on the length of a step taken
on any iteration, to avoid problems near ’s discontinuities.

Other experimental details: The shaping reward was propor-
tional to and signed the same as the amount of progress towards
the goal. As in [11], we did not include the distance-from-goal as
one of the state variables during training; training therefore pro-
ceeding “infinitely distant” from the goal.

Distances under 1km are possible since, as in [11], the goal
has a 10m radius.



6 Conclusions

We have shown how any POMDP can be transformed into
an “equivalent” one in which all transitions are determin-
istic. By approximating the transformed POMDP’s initial
state distribution with a sample of scenarios, we defined an
estimate for the value of every policy, and finally performed
policy search by optimizing these estimates. Conditions
were established under which these estimates will be uni-
formly good, and experimental results showed our method
working well. It is also straightforward to extend these
methods and results to the cases of finite-horizon undis-
counted reward, and infinite-horizon average reward with
-mixing time .
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Appendix A: Proof of Theorem 2

Proof (of Theorem 2). We construct an MDP with states
and plus an absorbing state. The reward func-

tion is for . Discounting is ignored
in this construction. Both and transition with proba-
bility 1 to the absorbing state regardless of the action taken.
The initial-state has a .5 chance of transitioning to each
of and .
We now construct , which will depend in a complicated
way on the term. Let

be the countable set of all finite
unions of intervals with rational endpoints in [0,1]. Let
be the countable subset of that contains all elements of
that have total length (Lebesgue measure) exactly 0.5. For
example, and are both
in . Let be an enumeration of the elements
of . Also let be an enumeration of (some
countably infinite subset of) . The deterministic simula-
tive model on these actions is given by:

if
otherwise

So, for all , and this is a
correct model for the MDP. Note also that for all

.



For any finite sample of scenarios
, there exists some

such that for all . Thus, evaluating
using this set of scenarios, all simulated trajec-

tories will transition from from , so the value estimate
(assuming ) for is . Since this argu-
ment holds for any finite number of scenarios, we have
shown that does not uniformly converge to
(over ).

Appendix B: Proof of Theorem 3

Due to space constraints, this proof will be slightly dense.
The proof techniques we use are due to Haussler [6] and
Pollard [10]. Haussler [6], to which we will be repeatedly
referring, provides a readable introduction to most of the
methods used here.
We begin with some standard definitions from [6]. For a
subset of a space endowed with (pseudo-)metric , we
say is an -cover for if, for every , there
is some such that . For each , let

denote the size of the smallest -cover for .
Let be a family of functions mapping from a set into
a bounded pseudo metric space , and let be a prob-
ability measure on . Define a pseudo metric on by

. Define the capac-
ity of to be , where
the is over all probability measures on . The quan-
tity thus measures the “richness” of the class .
Note that and are both decreasing functions of , and
that for any .
The main results obtained with pseudo-dimension are uni-
form convergence of the empirical means of classes of
random variables to their true means. Let be a fam-
ily of functions mapping from into , and let
(the “training set”) be i.i.d. draws from some prob-
ability measure over . Then for each , let

be the empirical mean of
. Also let be the true mean.

We now state a few results from [6]. In [6], these are The-
orem 6 combined with Theorem 12; Lemma 7; Lemma 8;
and Theorem 9 (with being a singleton set, ,

, and ). Below, and respectively
denote the Manhattan and Euclidean metrics on . e.g.

.

Lemma 5 Let be a family of functions mapping from
into , and . Then for any probabil-
ity measure on and any , we have that

.

Lemma 6 Let each be a family of functions
mapping from into . The free product of the ’s

This is inconsistent with the definition used in [6], which has
an additional factor.

is the class of functions
mapping from into (where

). Then for any probability measure
on and ,

(10)

Lemma 7 Let be bounded
metric spaces, and for each , let be a class
of functions mapping from into . Suppose that
each is uniformly Lipschitz continuous (with respect to
the metric on its domain, and on its range), with
some Lipschitz bound . Let

be the class of functions mapping from
into given by composition of the functions in the
’s. Let be given, and let . Then

(11)

Lemma 8 Let be a family of functions mapping from
into , and let be a probability measure on . Let
be generated by independent draws from , and assume

. Then

(12)

We are now ready to prove Theorem 3. No serious attempt
has been made to tighten polynomial factors in the bound.
Proof (of Theorem 3). Our proof is in three parts. First,
gives an estimate of the discounted rewards summed over

-steps; we reduce the problem of showing uniform
convergence of to one of proving that our estimates of
the expected rewards on the -th step, , all
converge uniformly. Second, we carefully define the map-
ping from the scenarios to the -th step rewards, and
use Lemmas 5, 6 and 7 to bound its capacity. Lastly, apply-
ing Lemma 8 gives our result. To simplify the notation in
this proof, assume , and .
Part I: Reduction to uniform convergence of -th step
rewards. was defined by

For each , let be the empirical
mean of the reward on the -th step, and let

be the true expected reward on the -th step
(starting from and executing ). Thus,

.
Suppose we can show, for each , that with
probability ,

(13)



Then by the union bound, we know that with probability
, holds simulta-

neously for all and for all . This
implies that, for all ,

where we used the fact that
, by construction of the -horizon time. But this is ex-

actly the desired result. Thus, we need only prove that
Equation (13) holds with high probability for each

.
Part II: Bounding the capacity. Let be fixed.
We now write out the mapping from a scenario

to the -th step reward. Since this mapping
depends only on the first elements of the “ ”s portion
of the scenario, we will, with some abuse of notation, write
the scenario as , and ignore its other
coordinates. Thus, a scenario may now be written as

.
Given a family of functions (such as ) mapping from

into , we extend its domain to
for any finite simply by having it ignore the ex-
tra coordinates. Note this extension of the domain does
not change the pseudo-dimension of a family of functions.
Also, for each , define a mapping from

according to
. For each , let be singleton sets. Where

necessary, ’s domain is also extended as we have just de-
scribed.
For each , define

. For example, is just the space of
scenarios (with only the first elements of the ’s
kept), and . For each , de-
fine a family of maps from into according to

(where the definition of the free product of
sets of functions is as given in Lemma 6); note such an

has Lipschitz bound at most .
Also let be a singleton set containing the
reward function, and . Finally,
let be the family of maps from

into .

Now, let be the reward
received on the -th step when executing from a scenario

. As we let vary over , this defines a family
of maps from scenarios into . Clearly, this
family of maps is a subset of . Thus, if we can bound the

capacity of (and hence prove uniform converge over ),
we have also proved uniform convergence for (over
all ).
For each , since , Lemma 5
implies that .
Moreover, clearly since each
is a singleton set. Combined with Lemma 6, this implies
that, for each and ,

where we have used the fact that is decreasing in its
parameter. By taking a over probability measures ,
this is also a bound on . Now, as metrics over

, . Thus, this also gives

(14)

Finally, applying Lemma 7 with each of the ’s being the
norm on the appropriate space, , and

, we find

Part III: Proving uniform convergence. Applying
Lemma 8 with the above bound on , we find
that for there to be a probability of our estimate of
the expected -th step reward to be -close to the mean, it
suffices that

This completes the proof of the Theorem.


