
Solving POMDPs by Searching in Policy Space
Eric A. HansenComputer Science DepartmentUniversity of MassachusettsAmherst, MA 01003hansen@cs.umass.eduAbstractMost algorithms for solving POMDPs itera-tively improve a value function that implic-itly represents a policy and are said to searchin value function space. This paper presentsan approach to solving POMDPs that repre-sents a policy explicitly as a �nite-state con-troller and iteratively improves the controllerby search in policy space. Two related al-gorithms illustrate this approach. The �rstis a policy iteration algorithm that can out-perform value iteration in solving in�nite-horizon POMDPs. It provides the founda-tion for a new heuristic search algorithm thatpromises further speedup by focusing compu-tational e�ort on regions of the problem spacethat are reachable, or likely to be reached,from a start state.1 IntroductionA partially observable Markov decision process(POMDP) provides an elegant mathematical modelfor planning and control problems for which there canbe uncertainty about the e�ects of actions and aboutthe current state. It is well-known that a state prob-ability distribution updated by Bayesian reasoning isa su�cient statistic that summarizes all informationabout the history of the process necessary for optimalaction selection. Therefore the standard approach tosolving a POMDP is to recast it as a completely ob-servable MDP with a state space that consists of allpossible state probability distributions. In this form, itis solved using dynamic programming or related tech-niques that rely on the Markov assumption.Algorithms for solving POMDPs in this way rely ona value function that maps state probability distribu-tions to expected values. A value function de�ned for

all possible state probability distributions can be rep-resented in di�erent ways; for example, as a set of vec-tors and a max operator (Smallwood & Sondik 1973)or as a grid of point values with an interpolation rule(e.g., Hauskrecht 1997). Given some explicit represen-tation of the value function, a policy is represented im-plicitly by the same value function and one-step looka-head. Most algorithms for solving POMDPs representa policy implicitly in this way and improve the policyby gradually improving the value function, typically byrepeated \backups" using value iteration or reinforce-ment learning. Because the policy is only representedimplicitly by the value function, such algorithms aresaid to search in value function space.This paper presents an approach to solving POMDPsthat represents a policy explicitly and relies on searchin policy space. In this approach, choice of how torepresent a policy is critical in a way that it is notfor algorithms that search in value function space. Itis possible to represent a policy explicitly as a map-ping from state probability distributions to actions bypartitioning probability space into a �nite set of re-gions and mapping each region to some action. Sondik(1978) describes a policy iteration algorithm that rep-resents a policy in this way. However this algorithmis very complex and di�cult to implement and, as aresult, is not used in practice.In this paper, we consider an alternative represen-tation of a policy as a �nite-state controller andpresent two related algorithms for solving in�nite-horizon POMDPs by searching in a policy space of�nite-state controllers. The �rst is a policy iterationalgorithm, �rst described by Hansen (1998a), that sim-pli�es policy iteration for POMDPs by representing apolicy as a �nite-state controller. It provides the foun-dation for a related heuristic search algorithm, pre-sented here for the �rst time, that can focus compu-tational e�ort on regions of the search space that arereachable, or likely to be reached, from a given startstate.



2 BackgroundConsider a discrete-time POMDP with a �nite setof states S, a �nite set of actions A, and a �niteset of observations Z. Each time period, the sys-tem is in some state s 2 S, an agent chooses anaction a 2 A for which it receives an immediate re-ward with expected value r(s; a) 2 <, the systemmakes a transition to state s0 2 S with probabilityPr(s0js; a) 2 [0; 1], and the agent observes z 2 Z withprobability Pr(zjs0; a) 2 [0; 1]. The state of the systemcannot be directly observed, but the probability thatit is in a given state can be calculated. Let b denote avector of state probabilities, called a belief state, whereb(s) denotes the probability that the system is in states. If action a is taken and observation z follows, thesuccessor belief state, denoted baz , is determined by re-vising each state probability as follows,baz(s0) = Pr(zjs0; a)Ps2S Pr(s0js; a)b(s)Pr(zjb; a) ;where the denominator is a normalizing factorPr(zjb; a) =Ps02S Pr(zjs0; a)Ps2S Pr(s0js; a)b(s).A POMDP is solved by �nding a rule for selectingactions, called a policy, that optimizes a performanceobjective (or comes acceptably close to doing so). Weassume the objective is to maximize the expected totaldiscounted reward over an in�nite horizon (where � 2(0; 1] is a discount factor). By recasting a POMDP asa completely observable MDP with a continuous, jSj-dimensional state space that consists of all possiblebelief states, the problem can be solved by iterationof a dynamic-programming update that performs thefollowing \one-step backup" for each belief state b:V 0(b) := maxa2A "Xs2S b(s)r(s; a) + �Xz2Z Pr(zjb; a)V (baz)# :(1)In words, this says that the value of belief state b is setequal to the immediate reward for taking the best ac-tion for b plus the discounted expected value of theresulting belief state baz . Iteration of the dynamic-programming update, called value iteration, convergesto the optimal value function in the limit. However thenumber of belief states that must be \backed-up" eachiteration is uncountably in�nite and it is not obvioushow to do this.The key to computing the dynamic-programming up-date is Smallwood and Sondik's (1973) proof thatit preserves the piecewise linearity and convexity ofthe value function. A piecewise linear and con-vex value function V can be represented by a �-nite set of jSj-dimensional vectors of real numbers,V = fv0; v1; : : : ; vkg, such that the value of each belief

state is de�ned as follows:V (b) = max0�i�kXs2S b(s)vi(s):The dynamic-programming update transforms a valuefunction V represented in this way into an improvedvalue function V 0 represented by another �nite set ofvectors, V 0. Several algorithms for performing thedynamic-programming update have been developed.All rely heavily on linear programming and are com-putationally intensive; the algorithm that is presentlythe fastest is described by Cassandra, Littman andZhang (1997). We do not describe here how to com-pute the dynamic-programming update and instead re-fer to this paper, Kaelbling et al. (1996), Cassandraet al. (1994), and references therein.Algorithms that search in value function space, such asvalue iteration, must be able to extract a policy fromthe value function they iteratively improve. There aretwo possible ways to do so that correspond to two pos-sible representations of a policy.One possibility is to view a policy as a mapping frombelief states to actions. Given some representation of avalue function mapping belief states to values, a policy� is extracted using one-step lookahead,�(b) = argmaxa2A "�(b; a) + �Xz2Z Pr(zjb; a)V (baz)# ;(2)where �(b; a) = Ps2S b(s)r(s; a) is the expected im-mediate reward for taking action a in belief state b.A second possibility is to represent a policy as a �nite-state controller. A correspondence between vectorsand one-step policy choices plays an important role inthis interpretation of a policy. Each vector in V 0 cor-responds to the choice of an action, and for each pos-sible observation, choice of a vector in V . Among allpossible one-step policy choices, the vectors in V 0 cor-respond to those that optimize the value of some beliefstate. To describe this correspondence between vectorsand one-step policy choices, we introduce the follow-ing notation. For each vector vi in V 0, let a(i) denotethe choice of action and, for each possible observationz, let l(i; z) denote the index of the successor vectorin V . Given this correspondence between vectors andone-step policy choices, Kaelbling et al. (1996) pointout that an optimal policy for a �nite-horizon POMDPcan be represented by an acyclic �nite-state controllerin which each machine state corresponds to a vectorin a nonstationary value function.Value iteration can also be used to solve in�nite-horizon POMDPs. The optimal value function foran in�nite-horizon POMDP is not necessarily piece-wise linear, although it is convex. However it can
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Figure 1: Example of a simple �nite-state controllerand corresponding value function for a POMDP with twostates, two actions (a1,a2) and two observations (z1,z2).Each machine state is labeled by a unique number and byan action to take in that state; state transitions are la-beled by observations. Each vector of the value functionis labeled by the number of the machine state to whichit corresponds. For a two-state POMDP, the belief statecan be represented by a single real number between 0 and 1that represents the probability of being in one of the states;the horizontal axis in the �gure on the right represents thebelief state in this way. The vertical axes represent theexpected value of a belief state. The value function is theupper surface of the vectors and re
ects the rule that thecontroller is started in the machine state that optimizesthe value of the starting belief state.be approximated arbitrarily closely by a piecewise lin-ear and convex function. Moreover Sondik (1978) andCassandra et al. (1994) point out that sometimes, al-though not reliably, value iteration converges to anoptimal piecewise linear and convex value functionthat is equivalent to a cyclic �nite-state controller.The �nite-state controller can be extracted from thevalue function using the correspondence between vec-tors and one-step policy choices noted earlier. Howevera �nite-state controller cannot reliably be extractedfrom a suboptimal value function and so a policy foran in�nite-horizon POMDP is generally viewed as amapping from belief states to actions represented im-plicitly by a value function and extracted using equa-tion (2).For algorithms that search in value function space, itis important to be able to extract a policy from a valuefunction. For algorithms that search in policy space, itis equally important to be able to compute the valuefunction of a policy; this is called policy evaluation.We conclude this review by pointing out that for apolicy represented as a �nite-state controller, policyevaluation is straightforward. A piecewise linear andconvex value function can be computed by solving thefollowing system of linear equations, where there is oneequation for each pair of machine state i and systemstate s:vi(s) = r(s; a(i))+ (3)�Ps0;z Pr(s0js; a(i))Pr(zjs0; a(i))vl(i;z)(s0):The value function has one linear facet or jSj-vectorfor each machine state of the �nite-state controller. Al-

though the policy is a �nite-state controller, the valuefunction is de�ned for belief space and the controlleris started in the machine state that corresponds to thevector that optimizes the value of the starting beliefstate. (See Figure 1.)3 Policy IterationThe �rst algorithm we consider that solves a POMDPby searching in policy space is policy iteration. Be-cause it includes a policy evaluation step that com-putes the value function of a given policy, it must rep-resent the policy explicitly and independently of thevalue function. Sondik (1978) describes a policy itera-tion algorithm for POMDPs that represents a policy asa mapping from a �nite number of polyhedral regionsof belief space to actions. Each region of belief spaceis represented by a set of linear inequalities that de�neits boundaries. Because there is no known method forcomputing the value function of a policy representedin this way, the policy evaluation step of Sondik's al-gorithm converts a policy from this representation toan equivalent, or approximately equivalent, �nite-statecontroller; as we have seen, the value function of a�nite-state controller can be computed in a straight-forward way. However conversion between these tworepresentations is extremely complicated and di�cultto implement. As a result, Sondik's algorithm is notused in practice.We now show that policy iteration for POMDPs can besimpli�ed by representing a policy as a �nite-state con-troller. The obvious simpli�cation is that this makespolicy evaluation, the most di�cult step of Sondik'salgorithm, straightforward. But for this approach towork, we must show that the dynamic-programmingupdate can be interpreted as the transformation of a�nite-state controller � into an improved �nite-statecontroller �0; that is, we must show how to performpolicy improvement on �nite-state controllers. We dothis by showing that a simple comparison of the vec-tors in V� and V 0 provides the basis for such a transfor-mation, where V� is the set of vectors that representsthe value function of the current �nite-state controller� and V 0 is the output of the dynamic-programmingupdate given V� as input.First recall that every vector vi in V� is associated withan action, denoted a(i), and for each possible observa-tion z, a transition to another vector in V�, with indexl(i; z). This follows from the fact that V� is computedby evaluating a �nite-state controller. Similarly everyvector vj in V 0 found by the dynamic-programmingupdate is associated with an action, a(j), and for eachpossible observation z, a transition to a vector in V�,where l(j; z) denotes the index of the vector.



1. Specify an initial �nite-state controller, �, andselect � for detecting convergence to an �-optimal policy.2. Policy evaluation: Compute the value functionfor � by solving the system of equations givenby equation (4).3. Policy improvement:(a) Perform a dynamic-programming updatethat transforms a set of vectors V� into aset of vectors V 0.(b) For each vector vi in V 0:i. If the action and successor links asso-ciated with it are the same as those ofa machine state already in �, then keepthat machine state unchanged in �0.ii. Else if the vector vi pointwise domi-nates a vector associated with a ma-chine state of �, change the action andsuccessor links of that machine stateto those that correspond to vi. (Ifit pointwise dominates the vectors ofmore than one machine state, theycan be combined into a single machinestate.)iii. Else add a machine state to �0 that hasthe action and successor links associ-ated with vi.(c) Prune any machine state of �0 for whichthere is no corresponding vector in V 0, aslong as it is not reachable from a machinestate to which a vector in V 0 does corre-spond.4. Termination test. Calculate the Bellman resid-ual and if it is less than or equal to �(1��)=�,exit with an �-optimal policy. Otherwise set �to �0. If some node was changed in step (3b),goto step 2; otherwise goto step 3.Figure 2: Policy iteration algorithm for POMDPs.Vectors in V 0 can be duplicates of vectors in V�, that is,they can have the same action and successor links (inwhich case their vector values will be pointwise equal).If they are not duplicates, they indicate how the �nite-state controller can be changed to improve the valuefunction { either by changing a machine state (thatis, changing its corresponding action and/or successorlinks) or by adding a machine state. There may also besome machine states for which there is no correspond-ing vector in V 0 and they can be pruned, but only ifthey are not reachable from a machine state that corre-sponds to a vector in V 0. (This last point is important
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Figure 3: Example of how the �nite-state controller ofFigure 1 can be improved by a step of policy iteration. Thedynamic-programming update returns vectors 3, 4 and 5which have corresponding potential machine states shownin the left panel as dashed circles. Node 3 is a duplicateof machine state 1 and causes no change. Node 4 becomesa new machine state. The vector for node 5 pointwisedominates the vector for machine state 2 and therefore theaction and observation links for machine state 2 can bechanged accordingly. The improved �nite-state controllerand its value function are shown in the right panel.because it preserves the integrity of the �nite-statecontroller.) Thus a �nite-state controller can be it-eratively improved using a combination of three trans-formations; changing machine states, adding machinestates, and pruning machine states.Figure 2 outlines a policy iteration algorithm with apolicy improvement step that uses these simple trans-formations to improve a �nite-state controller. Fig-ure 3 illustrates the policy improvement step with asimple example. Transformation of the �nite-statecontroller after performing the dynamic-programmingupdate adds little overhead to the policy improvementstep because it simply compares the vectors in V 0 tothe vectors in V� and modi�es the �nite-state con-troller accordingly. If a machine state is changed, thepolicy evaluation step is invoked to compute the valuefunction of the transformed �nite-state controller. Wecan prove the following generalization of Howards'spolicy improvement theorem (Hansen 1998b).Theorem 1 If a �nite-state controller is not optimal,policy improvement transforms it into a �nite-statecontroller with a value function that is as good or betterfor every belief state and better for some belief state.If the policy improvement step does not change the�nite-state controller, that is, if all the vectors in V 0are duplicates of vectors in V �, then the Bellman opti-mality equation is satis�ed and the �nite-state con-troller must be optimal. Therefore policy iterationcan detect convergence to an optimal �nite-state con-troller. However not every POMDP has an optimal�nite-state controller and policy iteration may simply



Table 1: Comparison of value iteration and policy itera-tion on nine test problems from Cassandra et al. (1997).The last four columns show the number of CPU secondsuntil convergence to �-optimality for each of four values of�; 10.0, 1.0, 0.1, and 0.01. For each test problem, the tim-ing results for value iteration are shown above the timingresults for policy iteration. The algorithm was sometimesterminated before reaching � = 0:01.Test problem 10.0 1.0 0.1 0.01< 1 < 1 2 31D maze < 1 < 1 < 1 < 13 29 100 1714x3CO 1 3 3 32 9251 619734x3 1 868 4951 1093513 93 275 4574x4 3 17 17 1710 103 305 512Cheese 12 12 12 122 1363 1776 1852Part painting 2 10 31 3110735 19557 28289 37061Network 259 1656 2239 31324346 7545 10882 14258Shuttle 78 151 245 34061472 273678Aircraft ID 772 11548 91234�nd a succession of �nite-state controllers that are in-creasingly close approximations of an optimal policy.We use the same stopping condition Sondik uses to de-tect �-optimality: a �nite-state controller is �-optimalwhen the Bellman residual is less than or equal to�(1��)=�, where � is the discount factor, and we canprove the following convergence result (Hansen 1998b).Theorem 2 Policy iteration converges to an �-optimal �nite-state controller after a �nite number ofiterations.As with completely observable MDPs, policy itera-tion can converge to �-optimality (or optimality) infewer iterations than value iteration because inter-leaving a policy evaluation step with the dynamic-programming update accelerates improvement of thevalue function. For completely observable MDPs, thisis not a clear advantage because the policy evalua-tion step is more computationally expensive than thedynamic-programming update. For POMDPs, policyevaluation has low-order polynomial complexity com-pared to the worst-case exponential complexity of thedynamic-programming update (Littman et al. 1995).Therefore, policy iteration appears to have a cleareradvantage over value iteration for POMDPs.

Table 1 compares the performance of value iterationand policy iteration on nine test problems from Cas-sandra et al. (1997). (For these problems, the averagenumber of states is 9.3, the average number of actionsis 3.9, and the average number of observations is 4.7.)Their incremental pruning algorithm was used to per-form dynamic-programming updates in both value it-eration and policy iteration and experiments were per-formed on a AlphaStation 200/4 with a 233Mhz pro-cessor and 128M of RAM. The results show that policyiteration consistently outperforms value iteration andthe increased rate of convergence is often dramatic.A few of these test problems have small optimal �nite-state controllers (1D maze, 4x3CO, 4x4, Cheese andpart painting). For them, policy iteration convergesquickly and sometimes reduces the error bound frommore than 1.0 to zero in a single iteration. For theother problems, �nite-state controllers with betweena couple hundred and several hundred machine statesare generated without converging to optimality. Thisillustrates that the di�culty of solving a POMDP isprimarily a function of the size of the controller neededto achieve good performance and not simply a functionof the number of states, actions and observations.4 Heuristic searchAlthough policy iteration converges more quickly thatvalue iteration, both are limited to solving very smallPOMDPs. The shared bottleneck is the dynamic-programming update. The fastest algorithm for per-forming it is still prohibitively slow for problems withmore than about ten or �fteen states, actions, or ob-servations. Policy iteration is faster that value itera-tion because it takes fewer iterations of the dynamic-programming update to converge. But when a singleiteration is computationally prohibitive, policy itera-tion is as impractical as value iteration. In this section,we introduce a new approach to solving POMDPs thatis closely related to the policy iteration algorithm de-scribed in the previous section but di�ers in an impor-tant respect; it does not use the dynamic-programmingupdate to improve a policy. Instead it uses heuristicsearch.Heuristic search has been used before to solvePOMDPs approximately. Satia and Lave (1973)describe a branch-and-bound algorithm for solvingin�nite-horizon POMDPs, given an initial belief state,and Larsen (1989) andWashington (1996,1997) use thebest-�rst heuristic search algorithm AO* in a similarway. For in�nite-horizon problems, it is only possibleto search to a �nite depth and these algorithms �nd asolution that takes the form of a tree that grows withthe depth of the search. The search tree can be repre-



sented by an AND/OR tree in which the nodes of thetree correspond to belief states and the root of the treeis the initial belief state. An OR node represents thechoice of an action and an AND node represent a set ofpossible observations. The value of an OR node is thevalue of the best action for the belief state that corre-sponds to it. The value of an AND node is the sum ofthe values of the belief states that follow each observa-tion, multiplied by the probability of each observation.Upper and lower bounds are computed for belief stateson the fringe of the search tree and backed-up throughthe tree to the starting belief state at its root. Thusexpanding the search tree improves the bounds at theinterior nodes of the tree. The error bound (the dif-ference between the upper and lower bounds on thevalue of the starting belief state) can be made arbi-trarily small by expanding the search tree far enoughand, for discounted POMDPs, an �-optimal policy forthe belief state at the root of the tree can be foundafter a �nite search (Satia and Lave 1973).Several possible upper bound functions for evaluatingthe fringe nodes of the search tree have been discussedby others (e.g., Hauskrecht 1997, Brafman 1997) andwe do not add to that discussion here. For a lowerbound function, we use the piecewise linear and convexvalue function of a �nite-state controller and improvethe lower bound during search by iteratively improv-ing the �nite-state controller, much as policy iterationdoes. This is the principal innovation of our heuristicsearch algorithm.Recall that every node of the search tree correspondsto a belief state. Therefore expanding an OR node(and all its child AND nodes), and backing up its lowerbound, is equivalent to performing a one-step backupfor the corresponding belief state (as in equation 1).This backup may improve the lower bound of the beliefstate and, if it does, we know that a machine state canbe added to the �nite-state controller that improvesthe value of at least this one belief state. Thereforeexpanding a search node performs a similar functionas the dynamic-programming update, and can be in-terpreted in a similar way as the (potential) modi�ca-tion of a �nite-state controller; the di�erence is that anode expansion corresponds to a one-step backup for asingle belief state whereas the dynamic-programmingupdate performs a one-step backup for all possible be-lief states.When the lower bound for a belief state in the searchtree is improved, it is backed-up through the searchtree and possibly improves the lower bound of thestarting belief state at the root. When it does so, thesearch algorithm has found a way to improve the valueof the starting belief state by modifying the �nite-statecontroller. The �nite-state controller is modi�ed as

1. Specify an initial �nite-state controller, �, andselect � for detecting convergence to an �-optimal policy.2. Policy evaluation: Compute the value funtionfor � by solving the system of equations givenby equation (4).3. Policy improvement;(a) Perform forward search from the startingbelief state and back up lower and upperbounds from the leaves of the search tree.Continue until either the lower bound ofthe starting belief state is improved or theerror bound on the value of the startingbelief state is less than or equal to �.(b) If the error bound is less than or equal to�, exit with an �-optimal policy. Otherwisecontinue.(c) Given that forward search has found achange of policy that improves the lowerbound of the starting belief state, considerevery reachable node in the search tree forwhich the lower bound has been improved.(A node is said to be reachable if it canbe reached by starting from the root nodeand always selecting actions that optimizethe lower bound). For each of these nodesin order from the leaves to the root:i. If its action and successor links are thesame as those of a machine state of�, then keep that machine state un-changed in �0.ii. Else compute the vector for this nodeand if it pointwise dominates the vec-tor for a machine state of �, changethe action and successor links of thatmachine state to those of this node.(If it pointwise dominates the vectorsof more than one machine state, theycan be combined into a single machinestate.)iii. Else add a machine state to �0 that hasthe same action and successor links asthis node.(d) Prune any machine state of �0 that is notreachable from the machine state that op-timizes the value of the starting beliefstate.4. Set � to �0. If some machine state of the con-troller has been changed in (3c), goto step 2;otherwise goto step 3.Figure 4: Heuristic search algorithm for POMDPs.
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Figure 5: Example of how the �nite-state controller of Fig-ure 1 can be improved by heuristic search. Nodes 3, 4 and5 in the left panel are potential new machine states thatcorrespond to a path through the search tree, beginningfrom the starting belief state, for which the lower boundvalue of each belief state has been improved. Node 5 be-comes a new machine state. The vector corresponding tonode 4 pointwise dominates the vector for machine state 2and therefore the action and observation links for machinestate 2 can be changed accordingly. Node 3 is a duplicateof machine state 1 and causes no change. The improved�nite-state controller and its value function are shown inthe right panel.follows. Beginning at the root of the search tree andselecting the action that optimizes the lower bound ofeach OR node, each reachable node of the search treefor which the lower bound has been improved is identi-�ed. For each of these nodes, in backwards order fromthe fringe of the search tree, a corresponding vector iscomputed based on the current value function and the�nite-state controller is modi�ed using the same trans-formations used by the policy iteration algorithm. Thealgorithm is summarized in Figure 4 and illustrated bya simple example in Figure 5.Heuristic search can recognize when to change machinestates (by detecting pointwise dominance) as well aswhen to add them. When a machine state is changed,policy evaluation is invoked to recompute the valuefunction; like policy iteration, this algorithm inter-leaves a policy improvement step with a policy eval-uation step. Any machine state that is not reachablefrom the machine state that optimizes the value ofthe starting belief state can be pruned without a�ect-ing the value of the starting belief state and the errorbound is simply the di�erence between the upper andlower bounds for the starting belief state.In our implementation, we use AO* to perform heuris-tic search. It expands the search tree in a best-�rstorder and we use the upper bound function to identifythe most promising solution tree. To select one of itsfringe nodes for expansion, we use the following heuris-tic: select for expansion the node (and corresponding

belief state b) for which the value(UB(b)� V (b)) � (REACHPROB(b) � �DEPTH(b)is greatest, where UB denotes the upper boundfunction, the lower bound function is the the valuefunction V of the current �nite-state controller,REACHPROB(b) denotes the probability of reach-ing belief state b beginning from the starting beliefstate at the root of the tree, and DEPTH(b) denotesthe depth of belief state b in the search tree (measuredby the number of actions taken along a path from theroot). This selection heuristic focuses computationale�ort where it is most likely to improve the bounds ofthe starting belief state.There are several advantages to using heuristic searchinstead of the dynamic-programming update to im-prove a �nite-state controller. First and most im-portantly, it adds machine states to the �nite-statecontroller only if they improve the value of the start-ing belief state. By contrast, policy iteration �nds a�nite-state controller that optimizes the value of ev-ery possible belief state and this is usually a muchlarger controller. Among the test problems listed inTable 1, for example, an optimal �nite-state controllerfor the cheese grid problem has �ve machine stateswhen the starting belief state is a uniform probabilitydistribution; policy iteration converges to a �nite-statecontroller with fourteen machine states that optimizesall possible starting belief states. A related advantageof heuristic search is that it can focus computationale�ort on regions of belief space that are likely to bereached from the starting belief state; for example,it can focus search on the most probable trajectoresthrough the search tree. It also avoids use of linear pro-gramming, the most computationally intensive part ofthe dynamic-programming update.The theoretical properties of the algorithm are similarto those for policy iteration, but are specialized to astarting belief state (Hansen 1998b).Theorem 3 If a �nite-state controller does not op-timize the value of the starting belief state, heuristicsearch transforms it into a �nite-state controller withan improved value for the starting belief state.Theorem 4 The heuristic search algorithm convergesafter a �nite number of steps to a �nite-state controllerthat is �-optimal for the starting belief state.For the test problems of Table 1 and several othersmall POMDPs, this heuristic search algorithm im-proves the value of the �nite-state controller for astarting belief state faster than policy iteration, andoften considerably faster. Results are mixed for im-provement of the error bound. For some problems the



error bound converges quickly to zero or close to it; forothers it converges more slowly and the AO* search al-gorithm used in the policy improvement step runs outof memory trying to reduce it further. How quicklythe error bound converges depends primarily on howclosely the upper bound function estimates the opti-mal value function for a particular problem. If theupper bound function is not a good estimate, the er-ror bound can only be improved by deep expansionof the search tree. Because the quality of the upperbound also determines how aggressively the search treecan be pruned, a poor upper bound function can causethe size of the search tree to quickly exceed availablememory. Sophisticated methods for computing upperbound functions have been developed that we havenot yet implemented (e.g., Hauskrecht 1997; Brafman1997) and we expect these will improve performance ofthe heuristic search algorithm and accelerate conver-gence of the error bound. We also plan to implement amemory-bounded version of AO* that can search moredeeply in the tree (Chakrabarti et al. 1990; Washing-ton 1997).The most promising aspect of this heuristic search al-gorithm is its potential for solving problems for whichthe dynamic-programming update is computationallyprohibitive. Consider a simple maze problem de-scribed by Hauskrecht (1997) that has 20 states, 6 ac-tions, and 8 observations. Although still a very smallproblem, it is out of the range of dynamic program-ming. We tested policy iteration on this problem withan initial �nite-state controller with a single machinestate. The �rst iteration of policy iteration took afraction of a second and resulted in a improved �nite-state controller with �ve machine states. The seconditeration took two minutes and resulted in a improved�nite-state controller with 172 machine states. In thethird iteration, the dynamic-programming update ranfor 20 hours without �nishing, at which point policyiteration was terminated. Clearly this is a problemfor which dynamic programming seems computation-ally prohibitive. The �nite-state controller found aftertwo iterations (and two minutes) had an error boundof 539.7 and a value of 34.3 for a starting belief statethat is a uniform state probability distribution. Onthe same maze problem, our heuristic search algorithmfound a �nite-state controller with 96 machine statesand a value of 52.2 for the same starting belief state, asigni�cant improvement in performance achieved by asmaller controller. After several minutes of expandingthe search tree, the algorithm ran out of memory afterreducing the error bound to 25.4.Of course, this is only a single example and our re-sults are preliminary. But it does at least suggest thisheuristic search algorithm may extend the range of

problems to which the policy space approach describedin this paper can be applied. It may do so for severalreasons; it eliminates the need to perform the dynamic-programming update, it improves a �nite-state con-troller in an incremental fashion that allows more �ne-grained control of problem-solving, and it focuses com-putation where it is most likely to improve the valueof the starting belief state. Testing on a wider range ofexamples using an improved implementation of the al-gorithm is planned to determine how far this approachmay extend the range of POMDPs that can be solvedby algorithms that use an exact piecewise linear andconvex representation of the value function.5 ConclusionWe have presented two related algorithms { an im-proved policy iteration algorithm and a new heuris-tic search algorithm { that solve in�nite-horizonPOMDPs by searching in a policy space of �nite-statecontrollers.Representation of a policy as a �nite-state controllerhas a number of advantages. An optimal policy for aPOMDP is sometimes equivalent to a �nite-state con-troller, and when it is not, it can be approximatedarbitrarily closely by a �nite-state controller. Evalua-tion of a �nite-state controller is straightforward andits value function is piecewise linear and convex. A�nite-state controller can also be easier to understandthan a policy represented (either explicitly or implic-itly) as a mapping from regions of belief space to ac-tions, and it can be executed without maintaining abelief state at run-time.The bottleneck of both value iteration and policy iter-ation for POMDPs is the dynamic-programming up-date; Littman et al. (1995) prove that its worst-casecomplexity is exponential in the number of actions, ob-servations, and vectors in the current value function.Policy iteration is faster than value iteration because itrequires fewer iterations of the dynamic-programmingupdate to converge to �-optimality. Because heuris-tic search can improve a �nite-state controller withoutperforming the dynamic-programming update, there issome reason to believe it may outperform policy iter-ation. Because the �nite-state controller it �nds opti-mizes the value of a starting belief state, and not thevalue of every possible belief state, it is usually smallerthan the controller found by dynamic programming.Heuristic search also focuses computational e�ort onregions of the search space, or belief space, where im-provement of the �nite-state controller is most likely.The heuristic search algorithm described here com-bines two areas of research on POMDPs that have de-veloped indepedently. On the one hand, it draws from
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