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Abstract

This paper reviews several recent multi-task learning algorithms
in a general framework. Interestingly, the framework establishes
a connection to recent collaborative filtering algorithms using low-
rank matrix approximation. This connection suggests to build a
more general nonparametric approach to collaborative preference
learning that additionally explores the content features of items.

1 Introduction

Learning from multiple related tasks has been known as “multi-task learning” or
“learning to learn”[3]. It explores the dependency between learning tasks at hand,
and aims (1) to achieve a better performance than the result of learning single
tasks independently, and (2) to further generalize previously learned knowledge for
benefiting new learning tasks.

Given a hypothesis space H endowed with ΩH : H → R+ measuring the complexity
of hypotheses, a single-task learner learns a predictive function f ∈ H by general-
izing measured responses y = {yi} of f acting on inputs X = {xi}. Let `(yi, f(xi))
be the empirical loss, the learning problem amounts to

min
f

∑
i

` (yi, f(xi)) + λΩH(f) (1)

In contrast, multi-task learning considers m scenarios, where each scenario j has an
empirical data set Dj = (Xj ,yj). Intuitively, we may be able to find an optimal
hypothesis space that is suitable for all the scenarios. Therefore, let us consider a
space of hypothesis spaces S, where Hθ ∈ S is a hypothesis space, with θ being the
index or parameters of hypothesis spaces. If we can find a L(Dj ,H) to measure
the cost incurred by applying H to model the data of scenario j, then a general
multi-task learning can be formulated as

min
θ

∑
j

L(Dj , θ) + γCS(θ) (2)

where CS(θ) measures the complexity of Hθ ∈ S, playing a role similar to ΩH in
the single-task setting. Then given the optimum H∗, each predictive function fj

can be estimated via a usual single-task learning.



Optimizing the hypothesis space H amounts to capture the common structure
shared over multiple predictive tasks. This common structure describes the de-
pendency between them. If comparing the formalisms of signal-task learning (1)
and multi-task learning (2), we can find that they appear to be very similar, both
end up with minimizing an empirical loss and a complexity penalty. In contrast to
generalizing empirical examples to new data in the single-task setting, multi-task
learning aims to generalize learned knowledge to new tasks. Within the described
framework, now we are able to review several recently proposed multi-task learning
methods

Parametric Bayesian Multi-task Learning: The method in [2] considers linear
functions fj(x) = w>

j x where x has finite dimensionality and can be results of
an explicit (nonlinear) mapping from original features. Following a hierarchical
Bayesian model, each wj is sampled from a common prior Gaussian distribution
N (wj |m,Σ). Then the learning is to maximize the marginalized log-likelihood of
Dj with respect to the parameters θ = (m,Σ). This is equivalent to define the loss
L(Dj , θ) = − log

∫
p(yj |Xj ,wj)p(wj |m,Σ)dwj and then solve

min
θ

∑
j

L(Dj , θ) (3)

Compared to the formulation (2), this approach has no complexity control on θ.
The learned knowledge θ∗ from existing tasks might not be generalizable to new
tasks.

Regularized Multi-task Learning: Recently a multi-task learning algorithm
based on support vector machines was proposed [4]. It decomposes the linear func-
tion’s weights as wj = vj + w0, where w0 is the same for all the tasks and vj are
independent from each other. Let θ = w0, then the problem can be formulated as
(2) with

L(Dj , θ) = min
vj

∑
i

(y(j)
i −w>

j xi)+ + λ‖vj‖2 (4)

CS(θ) = ‖w0‖2 (5)

where (·)+ is the hinge loss. From a Bayesian point of view, the model assumes
wj following N (w0, σI). As a consequence, it only estimates those functions’ mean
f0(x) = w>

0 x while ignoring their second-order dependencies, due to the fact that
the covariance of wj is fixed, not adapted to observed tasks.

Common Feature Mapping: A family of methods [7, 9, 1] learn to explicitly
map the inputs x into a latent space via t = φθ(x). Then in the new feature
space each task can be independently treated as a single-task learning problem
fj(x) = w>

j φθ(x). Let wj follow a Gaussian with zero mean and unitary covariance,
one can easily write down the marginalized likelihood of Dj given θ. If θ follows a
prior distribution p(θ), the multi-task learning can be formulated as (2) with

L(Dj , θ) = − log p(yj |Xj , θ) (6)

CS(θ) = − log p(θ) (7)

which gives the penalized maximum likelihood estimate θ∗. Very importantly p(θ)
encodes the prior knowledge about the hypothesis space. For example, in a very
recent paper [9] θ is enforced to produce latent variables that are maximally inde-
pendent, and thus a higher order dependency of functions is considered. Usually
feature mapping methods have to limit the dimensionality of latent space, and
hence restrict the degrees of freedom of predicting functions. Another approach [1]



alleviates the problem by assuming fj(x) = v>j ψ(x) + w>
j φθ(x). Since the first

part v>j ψ(x) is independent over tasks and can possibly work with infinite dimen-
sional features, f has no direct restrictions. But the common structure itself is still
restricted by a parametric feature mapping φθ(x) with a predefined dimensionality.

Nonparametric hierarchical Gaussian processes: The approach in [8] im-
proves the parametric Bayesian method [2] from two perspectives: (1) In order
to prevent overfitting, a conjugate normal-inverse-Wishart prior p(m,Σ) is used
to control the complexity of θ = (m,Σ); (2) The parametric functions are gen-
eralized to be infinite-dimensional and nonparametric. Thus the common struc-
ture is directly defined on the function space, characterized by a mean function
f0 and kernel K. Interestingly, the prior p(m,Σ) in the parametric case corre-
sponds to another normal-inverse-Wishart distribution p(f0,K) in the nonpara-
metric case. Then the multi-task learning is equivalent to kernel learning by
minf0,K

∑
j L(Dj , f0,K) + C(f0,K) with

L(Dj , f0,K) = − log
∫
p(yj |Xj , f)p(f |f0,K)df (8)

C(f0,K) = − log p(f0,K) (9)

Compared to other multi-task learning methods, hierarchical GP does not restrict
the dimensionality of either predictive functions or the shared common structure,
and models both the first (i.e. common mean) and second (i.e. kernel) order depen-
dencies of tasks.

2 Collaborative Filtering as Multi-task Learning

Collaborative filtering (CF) predicts a user’s preferences (i.e. ratings) on new prod-
ucts (i.e. items) based on other users’ ratings, following the assumption that users
sharing same ratings on past items tend to agree on new items.

2.1 Collaborative Filtering via Low-Rank Matrix Approximation

Let Y ∈ Rn×m be the matrix representing m users’s ratings on n items. Since
typically each user has rated only a small number of items, the matrix Y’s most
entries have missing values. CF can be thought as a matrix completion problem.
One way to do so is to perform a low-rank approximation Y ≈ UV> [6, 5], where
U ∈ Rn×k,V ∈ Rm×k. Given the matrix approximation, user j’s ratings on item i
can be predicted as arg miny `(y,UiV>

j ) given a predefined loss `(·, ·). A maximum-
margin factorization of the matrix Y with missing values is formulated as

min
U,V

‖U‖2
F + ‖V‖2

F + β
∑

(i,j)∈S

`(Yi,j ,UiV>
j ) (10)

where S is the index set for non-missing entries. The Frobenius norms of U and
V serve as regularization terms. When k goes infinity, [6] shows the problem can
be solved as semidefinite programming problem (SDP), which however scales to
only hundreds of users and items in their experiments. Very recently, [5] suggests
an alternating optimization that demonstrates a good scalability when k is finite,
e.g. k = 100.

2.2 Collaborative Filtering via Multi-Task Learning

We first show an equivalence between maximum-margin matrix approximation
based CF and multi-task learning. The connection will derive a new nonpara-



metric CF method which works with an infinite dimensionality while still remains
scalability on large data sets.

Theorem 2.1 If K = UU> is full rank, then the problem (10) can be formulated
as

min
K

∑
j

L(Yj ,K) + γC(K),

with

L(Yj ,K) = min
fj∈Rn

∑
i∈Sj

`(Yi,j , f j(i)) + f>j K−1f j , C(K) = trace(K)

where Yj are the ratings from user j and Sj the index set for items rated by user j

The proof is done by an application of the representor theorem and the rule ‖U‖2
F =

trace(UU>). Theorem 2.1 shows that low-rank matrix approximation based CF can
be formulated as a kernel learning problem similar to hierarchical GP multi-task
learning [8]: each user j is modeled by a predictive function f j and the common
structure is modeled by a kernel matrix K. The new model avoids to directly specify
the (possibly infinite) dimensionality of U, but just bounds the trace of K.

Based on the connection we suggest to apply hierarchical GP to collaborative filter-
ing. The new approach has certain advantages over the derived learning problem
in theorem 2.1: (1) The mean function f0 is now explicitly modeled, which re-
flects people’s average ratings on all the items; (2) The empirical loss Dj(Yj ,K)
in theorem 2.1 is computed via the mode estimate of f j , while GP computes the
loss in a more robust way by the integral over the entire distribution p(f j |f0,K);
(5) Each user j’s ratings on item i is predicted by not only the mean but also the
variance. An assessment to the confidence of predictions is necessary in building
recommender systems; (4) In hierarchical GP the kernel matrix is computed from a
basic kernel function κ(x, z), thus the problem amounts to learn a kernel function
based on the content features xi of items i, which leads to a novel collaborative
filtering algorithm that explores the content features of items; (5) The penalty in
hierarchical GP comes from a general prior on f0 and K. Replacing trace(K) by a
conjugate prior, namely a normal-inverse-Wishart distribution p(f0,K), will leads
to a tractable algorithm to estimate f0 and K. A simple EM algorithm to estimate
f0, K and f j , j = 1, . . . ,m is scalable to tens of thousands of users and thousands
of items, with the complexity O(ml3), where m is user size and l is average number
of ratings per user. Since typically a user rated a small set of items (e.g. l = 38 in
EachMovie), the algorithm has a linear scalability to the user size.

3 Preliminary Experiments

A preliminary experiment was run on EachMovie data set, with 10,000 users (having
more than 20 ratings), 1,648 movies. and 380,000 ratings taking values {1, . . . , 6}.
30% ratings were hold out for evaluation. The algorithm took about 5 hours on
a laptop with a 1.6 GHz CPU. The normalized mean absolute error (NMAE) was
0.442, comparable to the best results reported so far (see [5]). Very interestingly,
GP model produced very accurate estimates of prediction errors, computed as sum-
mation of predictive variance and estimated noise variance. This feature will enable
us to know how reliable an individual recommendation is. Currently we are testing
the algorithm on several data sets and making comparisons with other algorithms.
Besides NMAE, some ranking score will also be evaluated.
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