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Abstract
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combined with an integrated Laplace approximation, we derive Empirical Bayes and
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criteria is assessed via simulation and compared to other criteria such as AIC and BIC

on normal, logistic and Poisson regression model classes. A Fully Bayes criterion based
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1 Introduction

The variable selection problem for Generalized Linear Models (GLMs) may be stated as fol-

lows. Suppose we observe Y = (y1, . . . , yn)T which follows an exponential family distribution

p(Y|θ, φ) =
n∏

i=1

exp
{

yiθi − b(θi)
φ

+ c(yi, φ)
}

, (1)

where θ = (θ1, . . . , θn)T and φ are unknown parameters that may depend on p observed

variables X1 . . . ,Xp. Let γ = 1, 2, . . . , 2p index all subsets of these variables and let qγ denote

the size of the γth subset. Then the vaguely stated problem we consider is that of selecting

the “best” model of the form

g(E(Y)) = Xγβγ , (2)

where g is a known link function, Xγ is a n × (qγ + 1) design matrix with 1’s in the first

column and the γth subset of Xj ’s in the remaining columns, and βγ is a (qγ + 1)× 1 vector

of regression coefficients.

There has been substantial recent interest in Bayesian variable selection for GLMs, for

example Raftery and Richardson, 1993; George, McCulloch, and Tsay, 1994; Raftery, 1996;

Dellaportas and Forster, 1999; Clyde, 1999; Dellaportas, Forster and Ntzoufras, 2000 and

2002; Ntzoufras, Dellaportas and Forster, 2002; and Meyer and Laud, 2002. In this paper,

we propose new selection criteria for GLMs based on extensions of the hierarchical Bayes for-

mulations of George and Foster (2000) and Cui (2002). These extensions are obtained using

an integrated Laplace approximation that yields analytical tractability, thereby bypassing the

need for computation via simulation methods such as MCMC. By choosing particular hyper-

parameter values, we obtain model posteriors with modes corresponding to the commonly

used AIC and BIC selection criteria for GLMs. We then proceed to develop and evaluate

new selection criteria based on both Empirical Bayes (EB) and Fully Bayes (FB) approaches.

Simulation evaluations are used to compare the performance of the various criteria for normal,

logistic and Poisson linear models.

The article is organized as follows. Section 2 introduces a general hierarchical mixture

Bayesian setup for the variable selection problem, and Section 3 describes a particular imple-

mentation for GLMs. Section 4 develops an analytically tractable integrated Laplace approx-

imation for GLMs with canonical links. Section 5 proposes particular EB and FB selection

criteria based on this approximation. Section 6 describes the straightforward generalization of

all these results for noncanonical link GLMs. Section 7 provides a simulation evaluation and

comparison of various selection criteria including ours. Section 8 concludes with a discussion.
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2 A Hierarchical Bayes Setup for Variable Selection

To model variable selection uncertainty for the general GLM setup in (1) and (2), we consider

prior formulations of the form

π(βγ , γ|ψ1, ψ2) = π(βγ |γ, ψ2)π(γ|ψ1) (3)

where ψ1 and ψ2 are unknown hyperparameters indexing the priors on γ and βγ , respectively.

Such prior distributions lead to posterior distributions over γ of the form:

π(γ|Y, ψ1, ψ2) =
p(Y|γ, ψ2)π(γ|ψ1)∑
γ p(Y|γ, ψ2)π(γ|ψ1)

(4)

where

p(Y|γ, ψ2) =
∫

p(Y|βγ , γ)π(βγ |γ, ψ2) dβγ (5)

is the marginal distribution of the data Y given γ and ψ2.

To deal with the unknown hyperparameters ψ1 and ψ2, we consider two basic approaches:

(1) an Empirical Bayes (EB) approach that estimates ψ1 and ψ2, based on the data, and then

uses π(γ|Y, ψ̂1, ψ̂2) as the basis for selection, and (2) a Fully Bayes (FB) approach that puts

priors on ψ1 and ψ2, integrates them out, and then uses π(γ|Y) as as the basis for selection.

Note that

π(γ|Y) =
∫∫

D
π(γ|Y, ψ1,ψ2)π(ψ1, ψ2|Y) dψ1 dψ2

=
∫∫

D

p(Y|γ, ψ2)π(γ|ψ1)
p(Y|ψ1, ψ2)

· p(Y|ψ1,ψ2)π(ψ1, ψ2)
p(Y)

dψ1 dψ2

=
∫∫

D

p(Y|γ, ψ2)π(γ|ψ1)
p(Y)

· π(ψ1,ψ2) dψ1 dψ2 (6)

where p(Y|γ, ψ2) is given by (5), and D is the region of all possible (ψ1,ψ2) values under

π(ψ1, ψ2) on ψ1,ψ2. It is often reasonable to assume ψ1 and ψ2 are apriori independent, in

which case π(ψ1, ψ2) = π(ψ1)π(ψ2).

Implementation of the EB and FB approaches requires prior forms for both π(βγ |γ, ψ2)

and π(γ|ψ1), and for the FB approach, π(ψ1, ψ2) is also needed. Such choices must con-

front the difficulty that the integration to obtain p(Y|γ, ψ2) in (5) is analytically intractable

for most GLMs. This computational difficulty has previously been addressed using Laplace

approximations and Monte Carlo methods (Kass and Raftery, 1995; Raftery, 1996), and by

transformations to the more tractable normal case (Clyde, 1999). In the next section, we

propose general priors for γ and βγ , which when combined with an integrated Laplace ap-

proximation to p(Y|γ, ψ2), yield tractable and accurate large sample approximations for (4)

and (6).
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3 GLM Implementations

For simplicity, we begin by restricting attention to GLMs with canonical links, in which case

θ = Xβ and the link function is g(·) = b′−1(·). Straightforward extensions for noncanonical

link function will be later described in Section 6. Under a canonical link, the γth model for

Y in (1) and (2), may be expressed as

p (Y|βγ , γ) = exp

{
YTXγβγ − bT (Xγβγ) · 1

φ
+ cT (Y, φ) · 1

}
(7)

where b(θ) = (b(θ1), b(θ2), · · · , b(θn))T , c(Y, φ) = (c(y1, φ, ), c(y2, φ), · · · , c(yn, φ))T and 1 is

the n× 1 vector of all 1’s.

For the prior on γ, we follow George and Foster (2000) and use the simple independence

prior

π(γ|ω) = ωqγ (1− ω)p−qγ for ω ∈ (0, 1) (8)

where ω is the prior probability that any Xi is included. For the prior on the model-specific

parameters βγ , we first suppose φ is known, and consider the generalization of the conjugate

prior for the normal linear model,

βγ |γ, c ∼ Nqγ+1(mγ , c φ (XT
γ VγXγ)−1) for c ∈ (0, +∞), (9)

where

Vγ =




b′′(θ̂γ1) 0 0 0

0 b′′(θ̂γ2) 0 0

0 0
. . . 0

0 0 0 b′′(θ̂γn)




n×n

(10)

and θ̂γ = Xγβ̂γ and β̂γ is the maximum likelihood estimator of βγ under model γ. The prior

covariance matrix in (9) corresponds to the estimated information matrix XT
γ VγXγ/φ under

a canonical link GLM (see Kass and Wasserman 1995 and Ntzoufras, Dellaportas and Forster

2001), and depends on the data through b′′(θ̂γ) which depends on β̂γ . As will be seen in

next section, an advantage of the form (9) is its analytical tractability under an integrated

Laplace approximation.

A natural default choice for the hyperparameter mean of βγ is mγ = (0, . . . , 0), which

centers all coefficients at the neutral value 0, indicating indifference between positive and

negative values. However, in our formulation of the problem, the first component of βγ , the

intercept β0, is always to be included in the model. To minimize the effect of prior influence

on this component, we instead prefer the choice mγ = (β̄0, 0, . . . , 0), where β̄0 is the MLE

of β0 under the null model, namely g(Ȳ ) for any link function g or specifically b
′−1(Ȳ ) for

a canonical link. Of course, any available prior information may also be incorporated into
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the choice of mγ . This may be conveniently done using prior predictions for the observable

response Y, see Laud and Ibrahim (1996) and Meyer and Laud (2002).

Lastly, we consider specification for unknown φ which occurs in the Normal, Gamma

and Inverse Gaussian GLMs as well as in the binomial and Poisson GLMs with overdisper-

sion. In such cases, one may proceed as before, but with φ replaced by one of the estimates

recommended by Jorgensen (1987) under the full model γ, namely

1. φ̂1 = D(Y, µ̂γ)

n−qγ−1 which is an asymptotic unbiased estimator of φ. D(Y, µ̂γ) is the deviance

for model γ.

2. φ̂2 = P 2

n−qγ−1 , where P = (Y − µ̂γ)V −1
γ (Y − µ̂γ) is the generalized Pearson Statistic.

This is actually a moment estimator.

3. φ̂3 maximizes the following modified profile likelihood for parameter φ (Barndorff-

Nielsen, 1983): L0(φ) = φ
qγ+1

2 p(Y|θ̂γ , φ), where p(Y|θ, φ) is the density function of

Y.

McCullagh and Nelder (1989), for example, use φ̂2 under the full model as an estimate.

4 An Integrated Laplace Approximation

As mentioned earlier, a challenge for the development of Bayesian variable methods for GLMs

is the analytical intractability of the marginal distribution p(Y|γ, c). Indeed, under the prior

for βγ in (9), this marginal is of the form

p (Y|γ, c) =
∫

Rqγ+1
p (Y|βγ , γ)p (βγ |γ, c) dβγ

= (2π)−
qγ+1

2

∣∣∣∣∣
XT

γ VγXγ

cφ

∣∣∣∣∣

1
2 ∫

Rqγ+1
exp

{
YTXβγ − bT (Xγβγ) · 1

φ

+cT (Y, φ) · 1− (βγ −mγ)TXT
γ VγXγ(βγ −mγ)
2cφ

}
dβγ . (11)

Except for the normal case, when (9) is conjugate, this integral has no closed-form solution.

To mitigate this difficulty, we consider the following integrated Laplace approximation.

As in the classical application of Laplace’s method (Tierney and Kadane, 1986; Kass and

Wasserman, 1995; Raftery, 1996), we begin with a second-order Taylor series approximation

of log p(Y|βγ , γ), expanding it about β̂γ to obtain

log p (Y|βγ , γ) =
YTXβγ − bT (Xγβγ) · 1

φ
+ cT (Y, φ) · 1

≈ YTXγβ̂γ − bT (Xγβ̂γ) · 1− 1
2(βγ − β̂γ)TXT

γ VγXγ(βγ − β̂γ)
φ

+cT (Y, φ) · 1 (12)
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where Vγ is defined in (10). Inserting this approximation into (11) and then integrating out

βγ yields our approximation p̃ (Y|γ, c) of p(Y|γ, c), namely

p̃ (Y|γ, c) = (2π)−
qγ+1

2

∣∣∣∣∣
XT

γ VγXγ

cφ

∣∣∣∣∣

1
2

∫

Rqγ+1
exp

{
YTXγβ̂γ − bT (Xγβ̂γ) · 1− 1

2(βγ − β̂γ)TXT
γ VγXγ(βγ − β̂γ)

φ

+cT (Y, φ) · 1− (βγ −mγ)T (XT
γ VγXγ)(βγ −mγ)
2cφ

}
dβγ

= L̂γ · (c + 1)−
qγ+1

2 exp
{
− Tγ

2(c + 1)

}
(13)

where

L̂γ = exp

{
YTXγβ̂γ − bT (Xγβ̂γ) · 1

φ
+ cT (Y, φ) · 1

}
(14)

is the likelihood from (7) evaluated at the MLE, and

Tγ ≡ (β̂γ −mγ)T (XT
γ VγXγ)(β̂γ −mγ)/φ (15)

When Y is normally distributed so that the canonical link GLM is the familiar normal linear

model, this approximation is exact, i.e. p̃ (Y|γ, c) = p (Y|γ, c). This can be seen by noting

that in the normal case, the second-order approximation to the log-likelihood is exactly itself.

It is interesting to contrast the integrated Laplace approximation (13) with the classi-

cal Laplace approximation. The latter is obtained by first approximating p (βγ |γ, c) with

p (β̂γ |γ, c) directly in (11), and then factoring it out of the integral to obtain

p̃L(Y|γ, c) = (2π)−
qγ+1

2

∣∣∣∣∣
XT

γ VγXγ

cφ

∣∣∣∣∣

1
2

exp
{
−Tγ

2c

}

·(2π)
qγ+1

2

∣∣∣∣∣
XT

γ VγXγ

φ

∣∣∣∣∣
− 1

2

exp

{
YTXβ̂γ − bT (Xγβ̂γ) · 1

φ
+ cT (Y, φ) · 1

}

= L̂γ · c−
qγ+1

2 exp
{
−Tγ

2c

}
(16)

As is well-known, this classical Laplace approximation of p(Y|γ, c) by p̃L(Y|γ, c) is of order

O(n−1) provided the log-likelihood function satisfies certain regularity conditions, (see Kass

et. al. (1990) for details). As we show in Appendix A, the integrated Laplace approximation

of p(Y|γ, c) by p̃(Y|γ, c) in (13) is similarly of order O(n−1) under these same conditions.

However, in contrast to p̃ (Y|γ, c), p̃L (Y|γ, c) in (16) does not reduce to p (Y|γ, c) in the

normal case. Indeed, comparing the two expressions, we see that

p̃ (Y|γ, c) =
(

c

c + 1

) qγ+1

2

exp
{

Tγ

2c(c + 1)

}
p̃L (Y|γ, c). (17)
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For large c, p̃ (Y|γ, c) ≈ p̃L (Y|γ, c), but for small c the two approximations may differ

substantially. When c → 0, we have

lim
c→0

p̃ (Y|γ, c) = L̂γ · exp
{
−Tγ

2

}
, (18)

whereas limc→0 p̃L (Y|γ, c) = 0 when mγ 6= β̂γ and limc→0 p̃L (Y|γ, c) = +∞ when mγ = β̂γ .

Based on these limits, it appears that when c is small, p̃ (Y|γ, c) is better than p̃L (Y|γ, c)

for approximating p (Y|γ, c). For example, the value of p (Y|γ, c) when c = 0 is

p (Y|γ, c = 0) = exp
{

YTXγmγ − bT (Xγmγ) · 1
φ

+ cT (Y, φ) · 1
}

since βγ is fixed at mγ in this case. Comparing this with (18), we see that

lim
n→+∞ lim

c→0
p̃ (Y|γ, c) = p (Y|γ, c = 0)

whenever β̂γ → mγ as n → +∞, which occurs with probability 1 under mild regularity

conditions on the GLM. This limiting equality does not hold for p̃L (Y|γ, c).

George and Foster (2000) showed that under our hierarchical Bayes setup for the normal

linear model, selection criteria such as AIC and BIC can be calibrated to selection of the

maximum posterior model for particular hyperparameter values. The approximation p̃(Y|γ, c)

can similarly be used to obtain an asymptotic calibration to GLM deviance criteria of the

form

−2 log L̂γ + qγ g (19)

where L̂γ is the maximized likelihood in (14). In this context, criteria such as AIC and BIC

correspond to maximizing (19) with g = 2 and g = log n respectively.

Under the priors (8) and (9), asymptotic calibrations of the posterior mode to (19) become

evident from the posterior representation

π (γ|Y, c, ω) ∝ π (γ|ω)p (Y|γ, c)

= π (γ|ω)p̃ (Y|γ, c)(1 + O(n−1))

= L̂γ · ωqγ (1− ω)p−qγ (c + 1)−
qγ+1

2 exp
{
− Tγ

2(c + 1)

}
(1 + O(n−1)) (20)

= L̂γ · exp
{
−qγ

2

[
2 log

1− ω

ω
+ log(c + 1)

]}
exp

{
− Tγ

2(c + 1)

}
(1 + O(n−1)) (21)

If the prior mean mγ is set equal to β̂γ and n → ∞, maximizing π (γ|Y, c, ω) is equivalent

to minimizing

−2 log L̂γ + qγ

(
2 log

1− w

w
+ log(c + 1)

)
(22)

where L̂γ is the estimated likelihood in (14). Note that by setting mγ equal to β̂γ , both the

mean and the variance of the prior (9) on βγ will then depend on the data.
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Comparing (22) with (19) reveals that they will be identical when

g =
(

2 log
1− w

w
+ log(c + 1)

)
(23)

For example, (c, ω) = (e2 − 1, 1/2) yields g = 2 when (19) is AIC, and (c, ω) = (n − 1, 1/2)

yields g = log n when (19) is BIC. Thus, these choices of (c, ω) will yield a posterior whose

modal model corresponds to the best AIC and BIC model respectively as n →∞.

5 Adaptive Selection Criteria

When c and ω are unknown, as will typically be the case in practice, setting them equal to

arbitrary values may tend to give misleading results by concentrating the prior away from

the true underlying model. Natural alternatives that avoid such difficulties are obtained via

Empirical Bayes (EB) and Fully Bayes (FB) elaborations. The EB approach entails replacing

c and ω by estimates, and the FB approach entails margining out c and ω with respect to

hyperpriors. As we now proceed to show, the integrated Laplace approximation (13) greatly

facilitates the implementation of these approaches for GLMs.

5.1 Empirical Bayes Selection Criteria

For variable selection under the normal linear model, George and Foster (2000) proposed

two empirical Bayes criteria, MML (Maximum Marginal Likelihood) and CML (Conditional

Marginal Likelihood), that corresponded to selection of the modal posterior model under

estimators of c and ω. The MML estimates are obtained via maximization of the marginal

likelihood

L(c, ω|Y) ∝
∑

γ

π(γ|ω) p(Y|γ, c).

However, due the difficulty of summing over all 2p models, computation of the MML estimates

is not feasible when p is large, unless X1, . . . Xp are all orthogonal. In contrast, the CML

estimates are obtained via maximization of the conditional likelihood

L∗(c, ω, γ|Y) ∝ π(γ|ω) p(Y|γ, c), (24)

which is equivalent to maximizing the largest component of L(c, ω|Y). Although CML did

not not perform quite as well as MML in the simulation evaluations of George and Foster

(2000), it can be computed much more rapidly. For this reason, we narrow our focus to the

extension of CML for GLMs.

Using the integrated Laplace approximation (13), we set L∗(c, ω, γ|Y) ∝ π(γ|Y, c, ω) in

(21). Conditionally on γ, the estimators of c and ω that maximize this L∗ when n →∞ are

ĉγ =
[

Tγ

qγ + 1
− 1

]

+

(25)
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and

ω̂γ =
qγ

p
(26)

where Tγ is defined in (15) and (·)+ is the positive-part function. Inserting these into the

posterior (20) and taking the logarithm shows that when n →∞, the posterior π (γ|Y, ĉγ , ω̂γ)

is maximized by the γ that minimizes

CCML =





−2 log L̂γ + (qγ + 1)(log Tγ

qγ+1 + 1)− 2 {qγ log qγ + (p− qγ) log(p− qγ)}
if Tγ

qγ+1 > 1

−2 log L̂γ + Tγ − 2 {qγ log qγ + (p− qγ) log(p− qγ)}
if Tγ

qγ+1 ≤ 1

(27)

where L̂γ is the maximized likelihood in (14). As opposed to MML criteria, CCML can

be evaluated easily for each γ model, whether or not X1, . . . Xp are orthogonal. In situations

where 2p is very large, it can still be used to find the maximal CCML model from a manageable

subset of models, such as might be obtained by heuristic stepwise methods.

5.2 Fully Bayes Selection Criteria

For variable selection under the normal linear model, Cui (2002) developed various FB alter-

natives to the EB criteria of George and Foster (2000), focusing on their evaluation in the

case of orthogonal predictors. In contrast to the EB approach of using plug-in estimates of c

and ω to obtain π (γ|Y, ĉγ , ω̂γ), the FB approach puts priors on c and ω and then margins

them out to obtain π(γ|Y). The EB posterior π (γ|Y, ĉγ , ω̂γ) ignores the uncertainty about c

and ω by treating their estimates as if they were known. In contrast, the FB posterior π(γ|Y)

incorporates the variability due to the uncertainty about c and ω, and so may be a more

reasonable summary of posterior uncertainty. The FB approach is also attractive because it

provides a natural route for incorporating further unknown parameters such as φ into the

analysis.

To facilitate FB calculations here, it will be convenient to reparameterize c to k by defining

k ≡ 1
c+1 which yields simpler forms for the integrated Laplace approximation p̃ (Y|γ, c) in

(13). We will also restrict attention to hyperpriors under which k and ω are independent,

i.e. π(k, ω) = π(k) π(ω). For any such hyperpriors, our FB asymptotic approximation to

π(γ|Y) will then be obtained via

π(γ|Y) ∝
∫∫

k,ω
p(Y|γ, k) π(γ|ω) π(k) π(ω) dk dω

=
∫∫

k,ω
p̃(Y|γ, k) π(γ|ω) π(k) π(ω) dk dω (1 + O(n−1)) (28)

where π(γ|ω) is given by (8), and π(k) and π(ω) are hyperpriors on k and ω respectively. We

now investigate a variety of choices for π(k) and π(ω).
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5.2.1 Flat Hyperpriors on k and ω

As a natural starting point, we consider the simple automatic choice of the uniform distribu-

tion on [0,1] for both π(k) and π(ω). From (28), we have the posterior distribution of γ when

mγ 6= β̂γ ,

π(γ|Y) ∝ L̂γ

∫ 1

0

∫ 1

0
ωqγ (1− ω)p−qγk

qγ+1

2 exp
[
−kTγ

2

]
dωdk (1 + O(n−1))

= L̂γ
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
Γ(

qγ + 3
2

)
[
Tγ

2

]− qγ+3

2

G
(

qγ+3

2
,1)

(
Tγ

2

)
(1 + O(n−1)) (29)

where G
(

qγ+3

2
,1)

(·) is the CDF of the Gamma distribution with parameters α = qγ+3
2 and

β = 1. The FB selection criterion under this flat prior is simply to select the highest posterior

γ under (29).

The form of this asymptotic posterior for γ is revealing. After taking the log and ignoring

constants, we can decompose it into three parts EL + Eω + Ek. The first part EL = log L̂γ is

simply the estimated log-likelihood of model γ. The second part

Eω = log Γ (qγ + 1) + log Γ(p− qγ + 1)

is related to the integration over ω. And the third part

Ek = log Γ
(

qγ + 3
2

)
− qγ + 3

2
log

Tγ

2
− log G

(
qγ+3

2
,1)

(
Tγ

2

)

is related to the integration over k or equivalently c.

EL is increasing as variables are added to the model, and Eω is a convex function of

qγ with its minimum at qγ = [p−1
2 ]. Because Eω is identical for the null and full models,

EL + Eω will always favor the full model. Hence, Ek plays a crucial role in penalizing

the posterior for added variables. It does so through its dependence on the data through

Tγ = (β̂γ −mγ)T (XT
γ VγXγ)(β̂γ −mγ)/φ in (15), which tends to increase as variables are

added. Since log Tγ

2 and log G(Tγ

2 ) are both increasing functions of Tγ , Ek penalizes models

with larger Tγ by reversing the sign of both.

5.2.2 Restricted Region Flat Hyperpriors on k and ω

Somewhat surprisingly, simulation evaluations suggest that the FB selection criterion (29)

often incorrectly selects very large models, even in the presence of many redundant and mean-

ingless variables. To understand why this may happen, consider the penalty term coefficient

within the posterior approximation to π(γ|Y, c, ω) in (21), namely

2 log
1− ω

ω
+ log(c + 1).
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This term will be negative when c is small enough and ω is large enough, thereby rewarding

rather than penalizing the addition of variables. This is reasonable for such c and ω because

the model will then tend to have a majority of small nonzero coefficients making it especially

difficult to distinguish signal from noise. However, when c is small, it will be difficult to

distinguish small ω from large ω. Thus, this phenomenon can lead to instability of the FB

criterion when c and ω are unknown.

To mitigate this difficulty, we consider modifying the FB criteria by restricting the range

of integration in (28) to

D =
{

(k, ω) : 2 log
1− ω

ω
− log k ≥ 0

}
. (30)

By doing so, under the uniform priors on k and ω and Tγ 6= 0 (that is, mγ 6= β̂γ), we have

(calculation details in appendix B)

π (γ|Y) ∝ L̂γ · Γ
(

qγ + 3
2

)(
Tγ

2

)− qγ+3

2

{
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
B(qγ+1,p−qγ+1)

(
1
2

)
·G

(
qγ+3

2
,1)

(
Tγ

2

)

+
∫ 1

0.5
ωqγ (1− ω)p−qγ ·G

(
qγ+3

2
,1)

((
Tγ

2

)(
1
ω
− 1

)2
)

dω

}
(1 + O(n−1))(31)

where B(qγ+1,p−qγ+1)(·) is the CDF of the Beta distribution with parameters α = qγ + 1 and

β = p − qγ + 1. Although (31) is not quite in closed form, the remaining one dimensional

integration can be evaluated easily with simple numerical methods.

To get a sense of how the restriction (30) on k and ω, through the form of (31), penalizes a

model with large qγ , consider the special case where mγ = β̂γ where the penalty has a simpler

and more transparent form. In this case, without restrictions on k and ω, the posterior is

π (γ|Y) ∝ L̂γ
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
· 2
qγ + 3

· (1 + O(n−1)), (32)

whereas under the restriction (30), the posterior is

π(γ|Y) ∝ L̂γ
2

qγ + 3

[
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
Bqγ+1,p−qγ+1

(
1
2

)

+
∫ 1

1
2

ω−3(1− ω)p+3dω

]
(1 + O(n−1)) (33)

(see the calculation details in appendix B).

To obtain selection criteria forms analogous to (22) where the first part is −2 log L̂γ and

the second part is the penalty, we consider −2 times the log posterior of (32) and (33). To

compare the two penalties, we plot each of them for π (γ|Y) both with and without the
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Figure 1: The Effect of the Restriction 2 log 1−ω
ω − log k ≥ 0

restriction in Figure 1. The penalty without restriction is a concave function that penalizes

most around p/2 and least around 0 or p. In contrast, the penalty obtained with the restriction

(30) is always increasing in qγ , penalizing the most at the full model qγ = p. The essential

effect of the restriction is to substantially increase the penalty on models with large qγ .

5.2.3 Elaborations to Conjugate Hyperpriors

One can readily see from the likelihood of k and ω that the conjugate prior for k is the

truncated Gamma distribution (since k ∈ (0, 1)),

k ∼ Truncated Gamma(a, b), k ∈ (0, 1), (34)

and the conjugate prior for ω is the Beta distribution,

ω ∼ Beta(α, β). (35)

Under these priors, the integrated Laplace approximation again makes it easy to obtain a

closed form posteriors approximation, namely

π (γ|Y) ∝ L̂γ
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
Γ

(
qγ + 1

2
+ a

)

·
(

Tγ

2
+

1
b

)− qγ+1

2
−a

G
(

qγ+1

2
+a,1)

(
Tγ

2
+

1
b

)
(1 + O(n−1)) (36)

12



when Tγ

2 + 1
b 6= 0, and

π (γ|Y) ∝ L̂γ
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
· 2
qγ + 2a + 1

· (1 + O(n−1)), (37)

when Tγ

2 + 1
b = 0. Furthermore, under the restriction (30) on k and ω we have

π (γ|Y) ∝ L̂γ · Γ
(

qγ + 1
2

+ a

)
·
(

Tγ

2
+

1
b

)− qγ+1

2
−a

·
{

Γ(qγ + α)Γ(p− qγ + β)
Γ(p + α + β)

B(qγ+α,p−qγ+β)(0.5) ·G(
qγ+1

2
+a,1

)
(

Tγ

2
+

1
b

)

+
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1 ·G

(
qγ+1

2
+a,1)

((
Tγ

2
+

1
b

) (
1
ω
− 1

)2
)

dω

}

(1 + O(n−1)) (38)

when Tγ

2 + 1
b 6= 0, and

π (γ|Y) ∝ L̂γ
2

qγ + 2a + 1

[
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
B(qγ+α,p−qγ+β)(0.5)

+
∫ 1

0.5
ωα−2a−2(1− ω)p+β+2adω

]
(1 + O(n−1)) (39)

when Tγ

2 + 1
b = 0 (see calculation details in appendix B). Note that the ‘noninformative’ flat

hyperpriors on k and ω considered previously are actually the special case of these conjugate

hyperpriors with a=1, b=+∞, α = 1 and β = 1.

These conjugate priors provide an easy way to incorporate available subjective prior in-

formation into the selection procedure. For example, Beta(1.5, 1.5) is symmetric concave

putting more weight on ω values close to 0.5, Beta(2, 1) is a line with a positive slope putting

more weight on large ω, and Beta(1, 2) is a line with a negative slope putting more weight on

small ω. Another ‘noninformative’ alternative is Jeffreys’ prior, the Beta(0.5, 0.5) which is

symmetric convex, putting more weight on ω values close to 0 and 1. For the prior on k, recom-

mendations in the literature have been to choose c large (Zellner 1986, Smith & Kohn 1996),

which corresponds to small k. Thus, we might consider the special form fk(k) = (1− ρ)k−ρ,

0 < ρ < 1, the truncated Gamma(1-ρ,∞), that puts more weight on small values for k.

6 Generalizations For Noncanonical Link GLMs

Beyond canonical link functions, GLMs with noncanonical link functions are also used in

practice. Such noncanonical links include square root √µ , exponent (µ + c1)c2 (c1 and c2

known), complementary log-log log( µ
n−µ) and probit Φ−1(µ

n) (µ is the mean of y, n is the

sample size). Fortunately, it is straightforward to generalize our results for such GLMs.
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Consider a GLM with a noncanonical link function g(·), which by definition is monotonic

and differentiable. Instead of θ = Xβ = b′−1(µ), we have more generally

θ = b′−1 ◦ g−1(Xβ)

where ◦ denotes function composition. Hence, we use θ(Xβ) here instead of simply θ, so that

p (Y|βγ , γ) = exp{Y
T · θ(Xγβγ)− bT (θ(Xγβγ)) · 1

φ
+ cT (Y, φ) · 1} (40)

For the prior on βγ , we generalize (9) to

βγ |γ, c ∼ Nqγ+1(mγ , c W (β̂γ)) for c ∈ (0,+∞), (41)

where

W (β̂γ) = −
(

∂2 log p (Y|βγ , γ)

∂βγ∂βT
γ

)−1

βγ= β̂γ

(42)

is a (qγ + 1)× (qγ + 1) matrix.

As in the canonical link case, the prior covariance matrix of βγ is proportional to minus the

inverse Hessian of log p (Y|βγ , γ) evaluated at β̂γ . Hence, the the Laplace approximations to

p (Y|γ, c) are essentially as in (13) and (16), with XT
γ VγXγ

φ replaced by W−1(β̂γ), and Xγβ̂γ

replaced by θ(Xγβ̂γ). For example, the integrated Laplace approximation (13) becomes

p̃ (Y|γ, c) = (c + 1)−
qγ+1

2 exp

{
YT · θ(Xγβ̂γ)− bT (θ(Xγβ̂γ) · 1

φ
+ cT (Y, φ) · 1

}

exp
{
− 1

2(c + 1)
(β̂γ −mγ)T W−1(β̂γ)(β̂γ −mγ)

}
(43)

Thus the noncanonical link case does not introduce any new essential difficulties for extending

our previous results. For example, all the EB and FB selection criteria are simply modified

by replacing XT
γ VγXγ

φ with W−1(β̂γ), and Xγβ̂γ with θ(Xγβ̂γ).

7 Simulation Comparisons

In this section we illustrate and compare the performance potential of some of our EB and

FB procedures on three particular canonical link GLMs: the normal, logistic and Poisson

linear models. In each case we considered the EB criterion CCML, and the FB criteria under

uniform hyperpriors both with and without restriction on the region of integration. We denote

these three criteria CML, FB and FBR respectively. For comparison, we also considered the

procedures ORACLE, which includes exactly the correct variables, FULL, which includes

all variables, and AIC and BIC, the well-known fixed penalty selection criteria.
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7.1 Simulation Setups

For the normal linear model, we followed aspects of the simulation setup in George and Foster

(2000), and extended it for the logistic and Poisson GLMs. For each model we considered

two cases, one with p = 20 and one with p = 50 potential independent variables. We used

n = 200 observations throughout except for the logistic model with p = 50. There we set

n = 500 to improve the convergence of finding the MLE for criteria evaluation. In each case,

the n rows of X were independently generated from a Nn(0, Σ) distribution with 0.5|i−j| as

the ijth element of Σ. We obtained similar findings using Σ = I, but have not reported those

here for reasons of space.

Given X, we simulated 250 different models with q nonzero components, where q took a

value from 0, v, 2v, . . . , uv in turn and positive integers u, v satisfy u · v = p (for p of 20, u

is set as 5 and for p of 50, u is set as 10). To do this, for each choice of q, we generated

250 different vector values of β = (β0, β1, · · · , βp) in the following way: for q = 0, they

were of the form β0 = (β0
0 , 0, · · · , 0); for q = i · v, i = 1, . . . , u, they were of the form βi =

(βi
0,Bi,Bi, · · · ,Bi,Bi), where each Bi = (bi

1, b
i
2, · · · , bi

u) has i adjacent nonzero values of bi

centered around bi
bu+1

2
c and zero values of bi otherwise. Note that there are v replicates of Bi in

βi. For example, for p = 50, the 10 Bi’s are of the form: B1 = (0, 0, 0, 0, b1
5, 0, 0, 0, 0, 0), B2 =

(0, 0, 0, 0, b2
5, b

2
6, 0, 0, 0, 0), B3 = (0, 0, 0, b3

4, b
3
5, b

3
6, 0, 0, 0, 0), B4 = (0, 0, 0, b4

4, b
4
5, b

4
6, b

4
7, 0, 0, 0),

. . ., B10 = (b10
1 , b10

2 , b10
3 , b10

4 , b10
5 , b10

6 , b10
7 , b10

8 , b10
9 , b10

10). For each i, we then simulated βi
0 and the

i nonzero values of bi from a N(0, σ) distribution where σ was chosen so that we can easily

control the generated β to yield a value of 0.5 for

Pseudo R2 = 1− log LT

log LN
(44)

≈ 1−
µT Xβ−bT (Xβ)·1

φ + cT (µ, φ) · 1
nb
′−1(µ̄)·µ−nb(b

′−1(µ̄))
φ + cT (µ, φ) · 1

. (45)

In the above, LT is the likelihood of the true model, LN is the likelihood of the null model,

µ = b
′
(θ) is the mean vector of Y and µ̄ = µ·1

n .

For each GLM and each setting of (n, p, q), X was held fixed while Y was generated based

on the 250 different vector values of β . Except for the normal linear model with p = 20, it

was not feasible to evaluate the selection criteria for all 2p models. Hence, for each case, we

instead applied the criteria to a subset of models obtained by a heuristic stepwise method.

For each simulated Y , we simply used each criterion to select a model from the subset visited

by forward selection stepwise regression.
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7.2 Assessment of Performance

We used predictive loss to measure the distance between a fitted model and the true model

with known coefficients. At each iteration, within which Y was regenerated, we summarized

the disparity between the selected γ̂ and the true γ by predictive loss defined on the fitted

scale by

L
{

β, β̂(γ̂)
}
≡ (µ̂(γ̂)− µ)T (µ̂(γ̂)− µ).

It should be emphasized that we are simply using predictive loss to capture the closeness of

γ̂ to γ, and so do not consider further estimative improvements such as shrinkage estimation

or model averaging.

From a decision theory point of view, 0/1 loss, which is 0 if and only if γ̂ is the true γ,

is the appropriate loss for model selection. Thus we also considered 0/1 loss for illustration

and comparison. However, to insure that this loss would be a meaningful measure of our

selection criteria for each evaluation, we added the true γ to the stepwise selected subset

when it was not already there. A drawback of 0/1 loss for simulation evaluation occurs when

the probability of selecting the correct model exactly is small, such as when p, q and the

amount of noise are large. In such cases, the true model may never be selected, and the fact

that γ̂ is ‘close’ to γ is ignored. In such cases, the companion measure of predictive loss is

especially useful.

7.3 Simulation Results

In what follows, Figure 2 plots the average predictive losses by q under the normal, logistic

and Poisson linear models respectively. And in more detail, Table 1, Table 2 and Table 3

present the average predictive loss and the proportion of correct γ̂ = γ hits for each case, with

standard errors for the losses reported in italics. For a much more comprehensive simulation

evaluation, which includes the results presented here, see Wang 2002.
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Figure 2: Average Predictive Loss
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7.3.1 Normal Linear Regression

We begin with the normal linear model, for which the integrated Laplace approximation is

exact. One can see immediately from Figure 2 the adaptive nature of FBR, FB and CML.

They perform much better than AIC and FULL when q is small, and perform similarly q

is large. They perform similarly to BIC when q is small, and with the exception of FBR,

perform much better when q is large. However, FBR is substantially better than all the

others, and close to ORACLE, when q = 0.

Finally, it should be mentioned that we did not here employ the George and Foster (2000)

ad hoc adjustment to CML of picking the smaller mode in bimodal cases. This adjustment

improves CML when q is small, but denigrates its performance when q is large. Such an ad

hoc adjustment to CML was also not employed in the logistic or the Poisson cases.

7.3.2 Logistic Regression

For each Yi, under the logistic model we have:

f(yi|µi) = µyi
i (1− µi)1−yi for yi = 0, 1

where p(Yi = 1) = µi is the mean of Yi. Here φ = 1, b(θi) = log(1 + eθi) and c(yi, φ) = 0.

Also, under the canonical link function, we have µ = 1/(1 + exp(−Xβ)).

Here, only FBR seems to retain the adaptive performance from the normal case above.

It substantially beats AIC and FULL when q is very small, and beats BIC when q is large.

However, it is beaten by BIC and slightly by AIC for some small to moderate values of

q. Both FB and CML performed similarly to FULL except for small q when they were

sometime slightly better.

7.3.3 Poisson Regression

For each Yi, under the Poisson model we have:

f(yi|µi) = exp(−µi) · µyi
i

yi!

where µi is the mean of Yi and yi is a nonnegative integer. Here φ = 1, b(θi) = µi = exp(θi)

and c(yi, φ) = − log(yi!). Also, under the canonical link function, we have µ = exp(Xβ). We

deliberately generated Yi from small µi here to more easily observe differences in performance

between the Poisson and the normal linear models.

In terms of overall comparisons, the relative performances of the criteria are very similar to

what we saw in the normal case. In particular, the adaptive nature of FBR, FB and CML

is manifested by their improvements over AIC and FULL when q is small, and by their

improvements over BIC when q is large. Although FBR is not quite as good as FB and

18



CML when q is large, it is substantially better than all the others, and close to ORACLE,

when q = 0.

Table 1: Normal: Predictive Loss and Percentage Hit

Normal Loss, n=200, p=20 Normal % Hit, n=200, p=20

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 1.04 1.18 5.07 7.94 3.63 12.12 21.07 0 0.99 0.87 0.00 0.72 0.06

0.10 0.14 0.68 0.49 0.33 0.45 0.41

4 4.93 7.21 7.32 7.06 7.53 14.50 21.25 4 0.78 0.78 0.79 0.72 0.07

0.19 0.36 0.39 0.35 0.35 0.44 0.41

8 8.50 14.92 16.94 15.89 14.93 16.71 20.44 8 0.15 0.06 0.14 0.20 0.06

0.26 0.56 0.57 0.61 0.58 0.43 0.39

12 13.45 20.60 20.46 20.83 22.04 19.98 21.72 12 0.02 0.00 0.00 0.04 0.03

0.32 0.61 0.51 0.57 0.71 0.46 0.41

16 16.68 22.42 20.97 21.33 28.34 21.65 20.49 16 0.00 0.00 0.00 0.01 0.01

0.36 0.53 0.42 0.45 0.76 0.46 0.38

20 20.54 24.28 21.37 21.96 33.49 24.12 20.54 20 0.01 0.87 0.00 0.00 0.00

0.38 0.57 0.47 0.51 0.71 0.46 0.38

Normal Loss, n=200, p=50 Normal % Hit, n=200, p=50

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 0.95 1.16 7.05 9.66 8.38 28.72 50.96 0 0.99 0.91 0.00 0.37 0.00

0.07 0.17 1.24 0.78 0.49 0.64 0.60

5 6.03 8.43 8.43 8.24 12.81 30.93 51.24 5 0.80 0.80 0.82 0.40 0.00

0.20 0.40 0.40 0.40 0.52 0.66 0.63

10 10.73 20.91 24.77 23.12 21.64 33.51 50.27 10 0.13 0.09 0.11 0.13 0.00

0.29 0.89 1.12 1.05 0.80 0.70 0.61

15 16.04 34.17 39.52 37.59 33.52 39.25 51.47 15 0.01 0.00 0.00 0.02 0.00

0.33 0.91 1.04 1.00 0.79 0.71 0.61

20 20.87 39.82 43.88 42.20 39.16 39.95 50.00 20 0.00 0.00 0.00 0.00 0.00

0.42 0.98 0.97 1.00 0.92 0.71 0.65

25 26.12 47.32 49.10 49.40 47.56 43.82 50.88 25 0.00 0.00 0.00 0.00 0.00

0.45 0.98 0.77 0.84 1.04 0.73 0.62

30 31.34 53.68 51.02 51.27 53.80 47.65 51.64 30 0.00 0.00 0.00 0.00 0.00

0.45 1.02 0.72 0.76 1.02 0.70 0.60

35 37.15 58.52 52.13 53.02 60.65 50.58 51.74 35 0.00 0.00 0.00 0.00 0.00

0.54 1.02 0.73 0.79 1.10 0.76 0.65

40 40.65 59.70 51.13 51.86 61.91 51.28 50.44 40 0.00 0.00 0.00 0.00 0.00

0.58 0.94 0.65 0.69 1.06 0.70 0.63

45 46.43 65.10 52.03 53.49 68.16 54.69 51.61 45 0.00 0.00 0.00 0.00 0.00

0.62 0.98 0.65 0.74 1.05 0.74 0.63

50 50.99 66.24 52.18 53.15 71.11 55.98 50.99 50 0.00 0.92 0.00 0.00 0.00

0.64 1.09 0.71 0.76 1.01 0.79 0.64
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Table 2: Logistic: Predictive Loss and Percentage Hit

Logistic Loss, n=200, p=20 Logistic % Hit, n=200, p=20

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 0.20 0.24 3.23 4.21 0.83 2.63 4.39 0 0.99 0.40 0.00 0.63 0.04

0.02 0.03 0.17 0.11 0.06 0.10 0.10

4 0.79 2.07 3.74 3.71 1.27 2.50 3.74 4 0.44 0.00 0.02 0.68 0.06

0.03 0.10 0.07 0.08 0.06 0.07 0.07

8 1.55 3.33 3.88 3.86 2.50 3.07 3.88 8 0.02 0.00 0.00 0.21 0.04

0.05 0.09 0.07 0.08 0.08 0.08 0.07

12 2.35 3.82 3.93 3.92 3.78 3.61 3.93 25 0.00 0.00 0.00 0.00 0.00

0.06 0.08 0.08 0.08 0.11 0.09 0.08

16 2.96 3.68 3.69 3.69 4.47 3.65 3.69 16 0.00 0.00 0.00 0.00 0.02

0.06 0.07 0.07 0.07 0.11 0.08 0.07

20 3.80 3.86 3.80 3.85 5.42 4.17 3.80 20 0.11 1.00 0.00 0.00 0.02

0.07 0.07 0.07 0.07 0.12 0.08 0.07

Logistic Loss, n=500, p=50 Logistic % Hit, n=500, p=50

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 0.20 0.24 10.29 10.90 1.41 6.48 10.99 0 0.99 0.10 0.00 0.51 0.00

0.02 0.03 0.27 0.20 0.10 0.18 0.19

5 1.01 1.88 8.84 7.41 1.91 6.25 9.55 5 0.62 0.11 0.28 0.54 0.00

0.03 0.11 0.22 0.29 0.08 0.14 0.13

10 1.99 4.55 9.39 9.08 3.58 6.73 9.54 10 0.12 0.00 0.00 0.23 0.00

0.06 0.20 0.14 0.18 0.12 0.14 0.12

15 2.76 6.36 9.30 9.25 4.76 6.86 9.31 15 0.02 0.00 0.00 0.11 0.00

0.07 0.20 0.12 0.12 0.15 0.13 0.11

20 3.84 8.46 9.70 9.70 6.82 7.85 9.70 20 0.00 0.00 0.00 0.00 0.00

0.07 0.20 0.13 0.13 0.18 0.14 0.13

25 4.70 9.04 9.54 9.54 8.14 8.12 9.54 25 0.00 0.00 0.00 0.00 0.00

0.08 0.14 0.12 0.12 0.18 0.13 0.12

30 5.47 9.17 9.33 9.33 9.47 8.45 9.33 30 0.00 0.00 0.00 0.00 0.00

0.10 0.14 0.13 0.13 0.20 0.13 0.13

35 6.67 9.48 9.57 9.57 11.19 9.12 9.57 35 0.00 0.00 0.00 0.00 0.00

0.11 0.13 0.13 0.13 0.21 0.13 0.13

40 7.34 9.39 9.40 9.40 12.13 9.42 9.40 40 0.00 0.00 0.00 0.00 0.00

0.10 0.12 0.12 0.12 0.23 0.13 0.12

45 8.34 9.43 9.40 9.40 13.48 9.90 9.40 45 0.00 0.00 0.00 0.00 0.00

0.11 0.12 0.12 0.12 0.21 0.13 0.12

50 9.50 9.53 9.50 9.50 14.81 10.33 9.50 50 0.03 1.00 0.00 0.00 0.00

0.11 0.11 0.11 0.11 0.25 0.13 0.11
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Table 3: Poisson: Predictive Loss and Percentage Hit

Poisson Loss, n=200, p=20 Poisson % Hit, n=200, p=20

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 1.66 1.69 11.39 17.01 6.54 22.95 38.65 0 1.00 0.91 0.00 0.70 0.07

0.21 0.21 3.15 2.95 0.89 2.87 3.60

4 30.77 36.83 36.83 36.31 42.60 82.69 113.39 4 0.86 0.86 0.87 0.71 0.05

1.64 2.05 2.05 2.00 2.46 4.18 5.16

8 52.78 72.91 73.44 74.50 71.82 89.33 110.01 8 0.36 0.36 0.36 0.40 0.08

2.84 3.57 3.57 3.72 3.57 4.93 5.66

12 70.64 101.24 103.70 103.44 102.08 96.33 105.58 12 0.11 0.04 0.05 0.12 0.08

3.66 6.17 6.20 6.23 5.32 4.74 4.86

16 84.97 108.02 104.43 105.40 119.80 102.42 100.44 16 0.05 0.00 0.00 0.03 0.06

3.81 5.14 4.69 4.70 5.45 4.56 4.40

20 115.55 125.48 116.76 121.48 159.00 127.10 115.55 20 0.12 0.84 0.00 0.01 0.04

5.36 5.79 5.35 5.55 7.48 5.79 5.36

Poisson Loss, n=200, p=50 Poisson % Hit, n=200, p=50

q ORACLE FBR FB CML BIC AIC FULL q FBR FB CML BIC AIC

0 1.59 1.59 12.38 21.62 11.46 43.40 78.13 0 1.00 0.91 0.00 0.44 0.00

0.30 0.30 3.28 3.26 1.32 3.18 5.27

5 36.07 43.08 43.08 42.25 66.08 141.61 208.90 5 0.84 0.84 0.86 0.42 0.00

2.25 2.81 2.81 2.80 4.18 7.47 11.11

10 61.36 93.52 93.80 92.50 100.04 157.77 218.20 10 0.23 0.23 0.25 0.20 0.00

3.18 5.54 5.54 5.51 5.76 7.63 10.68

15 81.48 147.85 148.18 148.63 139.23 171.33 219.82 15 0.06 0.06 0.06 0.08 0.01

4.18 7.74 7.73 7.83 7.23 9.21 12.14

20 106.43 179.80 182.92 182.35 173.09 178.71 213.12 20 0.00 0.00 0.00 0.00 0.00

4.91 8.96 8.95 8.94 8.70 8.42 10.41

25 119.01 195.85 202.02 197.97 190.93 182.73 203.85 25 0.01 0.00 0.00 0.01 0.00

5.91 9.51 10.19 9.31 8.99 8.82 10.02

30 137.23 202.58 200.95 201.80 207.63 183.46 198.62 30 0.00 0.00 0.00 0.00 0.00

5.99 8.49 8.61 8.71 10.28 8.03 8.46

35 163.89 238.74 221.91 225.16 255.99 209.75 212.97 35 0.00 0.00 0.00 0.00 0.00

9.18 13.24 12.06 12.21 15.25 11.79 11.53

40 184.13 251.79 233.07 237.25 270.90 222.07 214.34 40 0.00 0.00 0.00 0.00 0.00

9.67 13.67 13.37 13.43 15.59 12.43 11.45

45 204.54 262.90 232.78 240.69 307.43 235.26 220.10 45 0.00 0.00 0.00 0.00 0.00

12.18 15.30 14.27 14.98 19.12 14.23 13.16

50 213.74 246.13 221.60 226.72 292.61 232.12 213.74 50 0.00 0.78 0.00 0.00 0.00

9.24 10.44 9.46 10.06 13.86 10.63 9.24
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8 Discussion

In this paper, we develop an Empirical Bayes criterion CML and Fully Bayes criteria FB

and FBR for variable selection in GLMs. These criteria are motivated within a hierarchical

Bayes setup for model uncertainty where, for GLMs other than the normal, an integrated

Laplace approximation is used to facilitate analytical tractability. CML, proposed by George

and Foster (2000), is extended here for nonnormal GLMs. FB is obtained using conjugate

hyperpriors on the hyperparameters, and FBR is obtained by suitably restricting the sup-

port of these hyperpriors. It is notable that our three criteria can be computed easily; we

obtain closed forms for CML and FB and FBR requires only a one-dimensional numerical

integration over a closed interval. The performance of our criteria under the normal, logistic

and Poisson regression models is contrasted with the fixed penalty criteria AIC and BIC in

a modest simulation study.

Over twenty years ago, Freedman (1983) argued that classical variable selection methods

were woefully inadequate. In the null case where there is no relationship between the pre-

dictors and response, he showed that such methods often selected large models with highly

significant overall F values. Our simulation results at q = 0 confirm this for the fixed-penalty

criteria: AIC works poorly and seldom selects the null model; with a larger penalty, BIC

works better than AIC for the null case but its performance at large models is then sacri-

ficed. In contrast, our adaptive penalty criteria can resolve this conflict by performing well

at both small and large models. FBR, which was adaptive in all our simulation experiments,

performed remarkably well in the null case. FB and CML were adaptive in the normal and

Poisson cases, where they fared better than FBR for large models, although not as well as

FBR for smaller models. Of our three criteria, FBR appears to be the most promising overall,

especially in problems where it is suspected that most of potential predictors are irrelevant.

Finally, we should mention an important direction for future investigation. Selection

criteria such as AIC, BIC and ours are devised for the comparison of all models under con-

sideration. But for the variable selection problems we have considered, it is simply impossible

to compare all 2p models when p is large, especially when the predictors are not orthogonal.

A common approach is to use a version of greedy stepwise selection to select a manageable

subset of models, and then to apply a selection criterion to that subset. Indeed, this is what

we did in our simulations, although there we always included true model in the subset to

facilitate criteria comparisons. Of course, the true model will not be known in practice, and

stepwise methods are fallible. It may well be that alternatives search methods will lead to

better results. In particular, Bayesian MCMC methods that stochastically search for high

posterior probability models (see Clyde (1999) and the references therein) seem particularly

well suited for use with our criteria.
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A The Order of the Approximation p̃ (Y|γ, c)

Let us show that the order of the integrated Laplace approximation p̃ (Y|γ, c) to p (Y|γ, c) is

p (Y|γ, c) = p̃ (Y|γ, c)(1 + O(n−1)) (46)

which is the same order as the Laplace approximation pL (Y|γ, c) to p (Y|γ, c).

To do this, compare the Laplace approximations for

p (Y|γ, c) =
∫

Rqγ +1
p (Y|βγ , γ)p (βγ |γ, c) dβγ

and

p̃ (Y|γ, c) =
∫

Rqγ +1
p̃ (Y|βγ , γ)p (βγ |γ, c) dβγ

where log p̃ (Y|βγ , γ) is the second-order approximation to log p (Y|βγ , γ) which expands the

later around β̂γ as in (12). Note that β̂γ maximizes both log p (Y|βγ , γ) and log p̃ (Y|βγ , γ),

that they are equal at βγ = β̂γ , and that log p (Y|βγ , γ) and log p̃ (Y|βγ , γ) have the same

Hessian matrix at β̂γ . Hence p (Y|γ, c) and p̃ (Y|γ, c) have the same Laplace approximation

pL (Y|γ, c). Therefore,

pL (Y|γ, c) = p (Y|γ, c)(1 + O(n−1))

and

pL (Y|γ, c) = p̃ (Y|γ, c)(1 + O(n−1))

from which (46) follows.

B Calculation of the Restricted Range π(γ|Y)

Let us show (38) and (39), from which (31) and (33) follow as special cases. From (20), we

have that

π (γ|Y, c, ω) ∝ L̂γ · ωqγ (1− ω)p−qγk
qγ+1

2 exp
[
−Tγ

2
k

]
· (1 + O(n−1))

where L̂γ and Tγ are given by (14) and (15) respectively. Thus, under the conjugate priors

(34) and (35) on k and ω, the restricted range posterior is obtained from

π (γ|Y) ∝ L̂γ

∫∫

D
ωqγ+α−1(1− ω)p−qγ+β−1k

qγ+1

2
+a−1

· exp
[
−

(
Tγ

2
+

1
b

)
k

]
dωdk · (1 + O(n−1)) (47)

where D = {(k, ω) : 2 log 1−ω
ω − log k ≥ 0} is given in (30). D can be decomposed into D1

and D2 as shown in Figure 3. To evaluate (47), we consider two separate cases depending on

whether Tγ

2 + 1
b equals zero.
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Case 1: Tγ

2 + 1
b > 0.

∫∫

D1

ωqγ+α−1(1− ω)p−qγ+β−1k
qγ+1

2
+a−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dωdk

=
∫ 0.5

0
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ 1

0
k

qγ+1

2
+a−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dk

=
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
B(qγ+α,p−qγ+β)(0.5)

·Γ
(

qγ + 1
2

+ a

)
·
(

Tγ

2
+

1
b

)− qγ+1

2
−a

·G
(

qγ+1

2
+a,1)

(
Tγ

2
+

1
b

)

∫∫

D2

ωqγ+α−1(1− ω)p−qγ+β−1k
qγ+1

2
+a−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dωdk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ ( 1
ω
−1)2

0
k

qγ+1

2
+a−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dk

= Γ
(

qγ + 1
2

+ a

)
·
(

Tγ

2
+

1
b

)− qγ+1

2
−a ∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1

·G
(

qγ+1

2
+a,1)

((
Tγ

2
+

1
b

)(
1
ω
− 1

)2
)

dω

Adding these two integrals yields (38). The special case (31) is obtained when α = 1, β = 1,

a = 1, b = +∞ which yields the uniform priors on k and ω.

Case 2: Tγ

2 + 1
b = 0. Since both Tγ and b are non-negative, this case can only happen when

Tγ = 0 and b = ∞, i.e., mγ = β̂γ .

k = (
1

ω
− 1)2

0 0.5 1

1

ω

k

D1

D2

Figure 3: Integration Area
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∫∫

D1

ωqγ+α−1(1− ω)p−qγ+β−1k
qγ+1

2
+a−1dωdk

=
∫ 0.5

0
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ 1

0
k

qγ+1

2
+a−1dk

=
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
B(qγ+α,p−qγ+β)(0.5) · 2

qγ + 2a + 1

∫∫

D2

ωqγ+α−1(1− ω)p−qγ+β−1k
qγ+1

2
+a−1dωdk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ ( 1
ω
−1)2

0
k

qγ+1

2
+a−1dk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1 2

qγ + 2a + 1

(
1
ω
− 1

)qγ+2a+1

dω

=
2

qγ + 2a + 1

∫ 1

0.5
ωα−2a−2(1− ω)p+β+2adω

Adding these two integrals yields (39). Again, the special case (33) is obtained when α = 1,

β = 1, a = 1, b = +∞ which yields the uniform priors on k and ω.
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