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1 Probability, Conditional Probability and Bayes Formula

The intuition of chance and probability develops at very early ages.1 However, a formal, precise definition
of the probability is elusive.

If the experiment can be repeated potentially infinitely many times, then the probability of an event can
be defined through relative frequencies. For instance, if we rolled a die repeatedly, we could construct a
frequency distribution table showing how many times each face came up. These frequencies (ni) can be
expressed as proportions or relative frequencies by dividing them by the total number of tossesn : fi =
ni/n. If we saw six dots showing on 107 out of 600 tosses, that face’s proportion or relative frequency is
f6 = 107/600 = 0.178 As more tosses are made, we “expect” the proportion of sixes to stabilize around1

6 .

Famous Coin Tosses: Buffon tossed a coin 4040 times. Heads appeared 2048 times. K. Pearson tossed a
coin 12000 times and 24000 times. The heads appeared 6019 times and 12012, respectively. For these three
tosses the relative frequencies of heads are 0.5049, 0.5016,and 0.5005.

What if the experiments can not be repeated? For example what is probability that guinea pig Squiki
survives its first treatment by a particular drug. Or “the experiment” of you taking ISyE8843 course in
Fall 2004. It is legitimate to ask for a probability of getting a grade of anA. In such cases we can define
probabilitysubjectivelyas a measure of strength of belief.

Figure 1: A gem proof condition 1913 Liberty Head nickel, one of only five known and the finest of the five.
Collector Jay Parrino of Kansas City bought the elusive nickel for a record $1,485,000, the first and only
time an American coin has sold for over $1 million.

Tutubalin’s Problem. In a desk drawer in the house of Mr Jay Parrino of Kansas City there is a coin, 1913
Liberty Head nickel. What is the probability that the coin is heads up?

Thesymmetryproperties of the experiment lead to the classical definition of probability. An ideal die is
symmetric. All sides are “equiprobable”. The probability of 6, in our example is a ratio of the number of
favorable outcomes (in our example only one favorable outcome, namely, 6 itself) and the number of all
possible outcomes, 1/6.2

1Piaget, J. and Inhelder B.The Origin of the Idea of Chance in Children, W. W. Norton & Comp., N.Y.
2This definition is attacked by philosophers because of the fallacy calledcirculus vitiosus. One defines the notion of probability

supposing that outcomes are equiprobable.
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(Frequentist) An event’sprobability is the proportion of times that we expect the event to
occur, if the experiment were repeated a large number of times.

(Subjectivist) A subjectiveprobability is an individual’s degree of belief in the occurrence
of an event.

(Classical) An event’sprobability is the ratio of the number of favorable outcomes and
possible outcomes in a (symmetric) experiment.

Term Description Example

Experiment Phenomenon where outcomes are un-
certain

Single throws of a six-sided die

Sample space Set of all outcomes of the experiment
S =
{1, 2, 3, 4, 5, 6}, (1, 2, 3, 4, 5, or 6
dots show)

Event A collection of outcomes; a subset of S
A = {3} (3 dots show), B =
{3, 4, 5, or 6} (3, 4, 5, or 6 dots show)
or ’at least three dots show’

Probability A number between 0 and 1 assigned to
an event.

P (A) = 1
6 . P (B) = 4

6 .

Sure eventoccursevery timean experiment is repeated and has the probability 1. Sure event is in fact
the sample spaceS.

An event thatneveroccurs when an experiment is performed is calledimpossible event. The probability
of an impossible event, denoted usually by∅ is 0.

For any event A, the probability that A will occur is a number between 0 and 1,
inclusive:

0 ≤ P (A) ≤ 1,

P (∅) = 0, P (S) = 1.

The intersection (product)A ·B of two events A and B is an event that occurs if both events Aand B
occur. The key word in the definition of the intersection isand.

In the case when the eventsA andB are independent the probability of the intersection is the product of
probabilities:P (A ·B) = P (A)P (B).
Example: The outcomes of two consecutive flips of a fair coin are independent events.

Events are said to bemutually exclusive if they have no outcomes in common. In other words, it is
impossible that both could occur in a single trial of the experiment. For mutually exclusive events holds
P (A ·B) = P (∅) = 0.

2



In the die-toss example, eventsA = {3} andB = {3, 4, 5, 6} are not mutually exclusive, since the
outcome{3} belongs to both of them. On the other hand, the eventsA = {3} andC = {1, 2} are mutually
exclusive.

The unionA∪B of two eventsA andB is an event that occurs if at least one of the eventsA or B occur.
The key word in the definition of the union isor.

For mutually exclusive events, the probability that at least one of them occurs is

P (A ∪ C) = P (A) + P (C)

For example, if the probability of eventA = {3} is 1/6, and the probability of the eventC = {1, 2} is
1/3, then the probability of A or C is

P (A ∪ C) = P (A) + P (C) = 1/6 + 1/3 = 1/2.

Theadditivityproperty is valid for any number of mutually exclusive eventsA1, A2, A3, . . . :

P (A1 ∪A2 ∪A3 ∪ . . . ) = P (A1) + P (A2) + P (A3) + . . .

What isP (A ∪B) if the eventsA andB are not mutually exclusive.

For any two eventsA andB, the probability that eitherA or B will occur is given by
the inclusion-exclusionrule

P (A ∪B) = P (A) + P (B)− P (A ·B)

If the eventsA abdB are exclusive, thenP (A · B) = 0, and we get the familiar formulaP (A ∪ B) =
P (A) + P (B).

The inclusion-exclusion rule can be generalized to unions of arbitrary number of events. For example,
for three eventsA,Ba andC, the rule is:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ·B)− P (A · C)− P (B · C) + P (A ·B · C).

For every event defined onS, we can define a counterpart-event called itscomplement. The complement
Ac of an eventA consists of all outcomes that are inS, but arenot in A. The key word in the definition of
an complement isnot. In our example,Ac consists of the outcomes:{1, 2, 3, 4, 5}.

The eventsA andAc are mutually exclusive by definition. Consequently,

P (A ∪Ac) = P (A) + P (Ac)

Since we also know from the definition ofAc that it includes all the events in the sample space,S, that
are not inA, so

P (A) + P (Ac) = P (S) = 1

For any complementary eventsA andAc,
P (A) + P (Ac) = 1, P (A) = 1− P (Ac), P (Ac) = 1− P (A)
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These equations simplify solutions of some probability problems. IfP (Ac) is easier to calculate than
P (A), thenP (Ac) and equations above let us obtainP (A) indirectly.

This and some other properties of probability are summarized in table below.

Property Notation

If event S willalwaysoccur, its probability is 1. P (S) = 1

If event∅ will neveroccur, its probability is 0. P (∅) = 0

Probabilities are always between 0 and 1, inclusive 0 ≤ P (A) ≤ 1

If A,B, C, . . . are all mutually exclusive thenP (A ∪B ∪
C . . . ) can be found by addition.

P (A ∪ B ∪ C . . . ) = P (A) +
P (B) + P (C) + . . .

If A andB are mutually exclusive thenP (A ∪ B) can be
found by addition.

P (A ∪B) = P (A) + P (B)

Addition rule:

The generaladdition rulefor probabilities
P (A ∪ B) = P (A) + P (B) −
P (A ·B)

SinceA andAc are mutually exclusive and between them
include all possible outcomes,P (A ∪Ac) is 1.

P (A∪Ac) = P (A) + P (Ac) =
P (S) = 1, andP (Ac) = 1 −
P (A)

2 Conditional Probability and Independence

A conditional probability is the probability of one event if another event occurred. In the “die-toss”
example, the probability of event A, three dots showing, isP (A) = 1

6 on a single toss. But what if we
know that event B, at least three dots showing, occurred? Then there are only four possible outcomes, one
of which is A. The probability ofA = {3} is 1

4 , given that B = {3, 4, 5, 6} occurred. Theconditional
probability ofA given Bis writtenP (A|B).

P (A|B) =
P (A ·B)

P (B)

EventA is independentof B if the conditional probability ofA givenB is the same as the unconditional
probability ofA. That is, they are independent if

P (A|B) = P (A)

In the die-toss example,P (A) = 1
6 andP (A|B) = 1

4 , so the eventsA andB are not independent.
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The probability that two eventsA andB will both occur is obtained by applying the
multiplication rule:

P (A ·B) = P (A)P (B|A) = P (B)P (A|B)

whereP (A|B) (P (B|A)) means the probability ofA givenB (B givenA).

For independent events only, the equation in the box simplifies to

P (A ·B) = P (A)P (B)

• ProveP (A1A2 . . . An) = P (A1|A2 . . . An) P (A2|A3 . . . An) . . . P (An−1|An) P (An).
Example: Let the experiment involves a random draw from a standard deck of 52 playing cards. Define
eventsA andB to be ”the card is♠ and “the card is queen”. Are the eventsA andB independent? By
definition,P (A&B) = P (Q♠) = 1

52 . This is the product ofP (♠) = 13
52 andP (Q) = 4

52 , andA andB in
question are indpendent. The intuition barely helps here. Pretend that from the original deck of cards2♥ is
excluded prior to the experiment. Now the eventsA andB become dependent since

P (A) · P (B) =
13
51
· 4
51
6= 1

51
= P (A&B).

The multiplication rule tells us how to find probabilities for composite event (A ·B). The probability of
(A ·B) is used in the generaladdition rulefor finding the probability of (A ∪B).

Rule Notation

Definitions
Theconditional probabilityof A givenB is the probability
of eventA, if eventB occurred.

P (A|B)

A is independentof B if the conditional probability ofA
givenB is the same as the unconditional probability ofA.

P (A|B) = P (A)

Multiplication rule:

The generalmultiplication rulefor probabilities
P (A · B) = P (A)P (B|A) =
P (B)P (A|B)

For independent eventsonly, the multiplication rule is sim-
plified.

P (A ·B) = P (A)P (B)

3 Pairwise and Global Independence

If three eventsA,B, andC are such that any of the pairs are exclusive, i.e.,AB = ∅, AC = ∅ or BC = ∅,
then the events are mutually exclusive, i.e,ABC = ∅. In terms of independence the picture is different.
Even if the events arepairwise independent for all three pairsA,B; A,C; and B, C, i.e., P (AB) =
P (A)P (B), P (AC) = P (A)P (C), andP (BC) = P (B)P (C), they may be dependent in the totality,
P (ABC) 6= P (A)P (B)P (C).

Here is one example.
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The four sides of a tetrahedron (regular three sided pyramid with 4 sides consisting of isosceles
triangles) are denoted by 2, 3, 5 and 30, respectively. If the tetrahedron is “rolled” the number
on the basis is the outcome of interest. Let the three events areA-the number on the base is even,
B-the number is divisible by 3, andC-the number is divisible by 5. The events are pairwise
independent, but in totality dependent.

Algebra is clear here, but what is the intuition. The “trick” is that the eventsAB, AC, BC andABC
all coincide. That isP (A|BC) = 1 althoughP (A|B) = P (A|C) = P (A).

The concept of independence (dependence) is not transitive. At first glance that may seem not correct,
as one may argue as follows, “If event A depends on B, and event B depends on C, then event A should
depend on the event C.” A simple exercise proves the above statement wrong.

Take a standard deck of 52 playing cards and replace the♣Q with ♦Q. Thus the deck now still
has 52 cards, two♦Q and no♣Q. From such a deck draw a card at random and consider three
events:A-the card is queen,B-the card is red, andC- the card is♥. It ie easy to see thatA
andB are dependent sinceP (A&B) = 3/52 6= P (A) · P (B) = 4/52 · 27/52. The events
B andC are dependent as well since the eventC is contained inB, andP (BC) = P (C) 6=
P (B) · P (C). However, the eventsA andC are independent, sinceP (AC) = P (♥Q) =
1/52 = P (A)P (C) = 13/53 · 4/52.

4 Total Probability

EventsH1,H2, . . . , Hn form a partition of the sample spaceS if
(i) They are mutually exclusive (Hi ·Hj = ∅, i 6= j) and
(ii) Their union is the sample spaceS,

⋃n
i=1 Hi = S.

The eventsH1, . . . , Hn are usually calledhypothesesand from their definition follows thatP (H1) +
· · ·+ P (Hn) = 1 (= P (S)).

Let the event of interestA happens under any of the hypothesesHi with a known (conditional) probabil-
ity P (A|Hi). Assume, in addition, that the probabilities of hypothesesH1, . . . , Hn are known. ThenP (A)
can be calculated using thetotal probability formula.

Total Probability Formula.

P (A) = P (A|H1)P (H1) + · · ·+ P (A|Hn)P (Hn).

The probability ofA is the weighted average of the conditional probabilitiesP (A|Hi) with weights
P (Hi).

Stanley. Stanley takes an oral exam in statistics by answering 3 questions from an examination card drawn
at random from the set of 20 cards. There are 8 favorable cards (Stanley knows answers on all 3 questions).
Stanley will get a gradeA if he answers all 3 questions. What is the probability for Stanley to get anA if he
draws the card

(a) first
(b) second
(c) third?
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Solution: Denote withA the event that Stanley draws a favorable card (and consequently gets anA).
(i) If he draws the card first, then clearlyP (A) = 8/20 = 2/5.
(ii) If Stanley draws the second, then one card was taken by the student before him. That first card taken

might have been favorable (hypothesisH1) or unfavorable (hypothesisH2). Obviously, the hypotheses
H1 andH2 partition the sample space since no other type of cards is possible, in this context. Also, the
probabilities ofH1 andH2 are 8/20 and 12/20, respectively. Now, after one card has been taken Stanley
draws the second. IfH1 had happened, probability ofA is 7/19, and ifH2 had happened, the probability
of A is 8/19. Thus,P (A|H1) = 7/19 andP (A|H2) = 8/19. By the total probability formula,P (A) =
7/19 · 8/20 + 8/19 · 12/20 = 8/20 = 2/5.

(iii) Stanley has the same probability of getting anA after two cards have been already taken. The
hypotheses areH1={ both cards taken favorable}, H2={ exactly one card favorable}, andH3={ none of the
cards taken favorable}. P (H1) = 8/20·7/19, P (H3) = 12/20·11/19. andP (H2) = 1−P (H1)−P (H3).
Next,P (A|H1) = 6/18, P (A|H2) = 7/18, andP (A|H3) = 8/18. Therefore,P (A) = 6/18 ·7/19 ·8/20+
7/18 · ... + 8/18 · 11/19 · 12/20 = 12/20.
Moral: Stanley’s lack on the exam does not depend on the order in drawing the examination card.

Two-headed coin Out of 100 coins one has heads on both sides. One coin is chosen at random and flipped
two times. What is the probability to get

(a) two heads?
(b) two tails?

Solution:
(a) LetA be the event that two heads are obtained. Denote byH1 the event (hypothesis) that a fair coin

was chosen. The hypothesisH2 = Hc
1 is the event taht the two-headed coin was chosen.

P (A) = P (A|H1)P (H1) + P (A|H2)P (H2) = 1/4 · 99/100 + 1 · 1/100 = 103/400 = 0.2575.

(b) Exercise. [Ans. 0.2475]

5 Bayes’ Formula

Recall that multiplication rule claims:

P (AH) = P (A)P (H|A) = P (H)P (A|H).

This simple identity is the essence ofBayes’ Formula.

Bayes Formula. Let the event of interestA happens under any of hypothesesHi with
a known (conditional) probabilityP (A|Hi). Assume, in addition, that the probabili-
ties of hypothesesH1, . . . , Hn are known (prior probabilities). Then the conditional
(posterior) probability of the hypothesisHi, i = 1, 2, . . . , n, given that eventA
happened, is

P (Hi|A) =
P (A|Hi)P (Hi)

P (A)
,

where
P (A) = P (A|H1)P (H1) + · · ·+ P (A|Hn)P (Hn).
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Assume that out ofN coins in a box, one has heads at both sides. Such “two-headed” coin can be
purchased in Spencer stores. Assume that a coin is selected at random from the box, and without inspecting
it, flippedk times. All k times the coin landed up heads. What is the probability that two headed coin was
selected?

Denote withAk the event that randomly selected coin lands heads upk times. The hypotheses areH1-the
coin is two headed, andH2 the coin is fair. It is easy to see thatP (H1) = 1/N andP (H2) = (N − 1)/N .
The conditional probabilities areP (Ak|H1) = 1 for anyk, andP (Ak|H2) = 1/2k.

By total probability formula,

P (Ak) =
2k + N − 1

2kN
,

and

P (H1|Ak) =
2k

2k + N − 1
.

ForN = 1, 000, 000 andk = 1, 2, . . . , 30 the graph of posterior probabilities is given in Figure 2
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Figure 2: Posterior probability of the “two-headed” coin forN = 1, 000, 000 if k heads appeared.

It is interesting that our prior probabilityP (H1) = 0.000001 jumps to posterior probability of 0.9991,
after observing 30 heads in a row. The matlab codebayes1 1.m producing Figure 2 is given in the
Programs/Codes on the GTBayes Page.

Prosecutor’s FallacyThe prosecutor’s fallacy is a fallacy commonly occurring in criminal trials but also
in other various arguments involving rare events. A prosecutor has collected some evidence (for instance
a DNA match) and has an expert testify that the probability of finding this evidence if the accused were
innocent is tiny. The fallacy is committed if one then proceeds to claim that the probability of the accused
being innocent is comparably tiny. Why is this incorrect inference? Suppose there is a one-in-a-million
chance of a match given that the accused is innocent. The prosector deduces that means there is only a
one-in-a-million chance of innocence. But in a community of 10 million people, one expects 10 matches,
and the accused is just one of those ten. That would indicate only a one-in-ten chance of guilt, if no other
evidence is available.
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The fallacy thus lies in the fact that thea priori probability of guilt is not taken into account. If this
probability is small, then the only effect of the presented evidence is to increase that probability somewhat,
but not necessarily dramatically.

Consider for instance the case of Sally Clark,3 who was accused in 1998 of having killed her first child
at 11 weeks of age, then conceived another child and killed it at 8 weeks of age. The prosecution had expert
witness testify that the probability of two children dying from sudden infant death syndrome is about 1 in 73
million. To provide proper context for this number, the probability of a mother killing one child, conceiving
another and killing that one too, should have been estimated and compared to the 1 in 73 million figure,
but it wasn’t. Ms. Clark was convicted in 1999, resulting in a press release by the Royal Statistical Society
which pointed out the mistake. Sally Clark’s conviction was eventually quashed on other grounds on appeal
on 29th January 2003.

In another scenario, assume a rape has been committed in a town, and 20,000 men in the town have
their DNA compared to a sample from the crime. One of these men has matching DNA, and at his trial, it
is testified that the probability that two DNA profiles match by chance is only 1 in 10,000. This does not
mean the probability that the suspect is innocent is 1 in 10,000. Since 20,000 men were tested, there were
20,000 opportunities to find a match by chance; the probability that there was at least one DNA match is
1− (1− 1/10000)20000, about 86% – considerably more than 1 in 10,000. (The probability that exactly one
of the 20,000 men has a match is20000 · (1/10000) · (1−1/10000)19999, or about 27%, which is still rather
high.)

To explain the Prosecutor’s Fallacy we start with a thought experiment. I have a big bowl with one
thousand balls, some of them made of wood, some of them made of plastic. I know that 100% of the
wooden balls are white, and only 1% of the plastic balls are white, the others being red. Now I pull a ball
out at random, and observe that it is actually white. Given this information, how likely is it that the ball
I pulled out is made of wood? Is it 99%? No! Maybe the bowl contains only 10 wooden and 990 plastic
balls. Without that information (the a priori probability), we cannot make any statement. In this thought
experiment, you should think of the wooden balls as “accused is guilty”, the plastic balls as “accused is
innocent”, and the white balls as “the evidence is observed”.

The fallacy can further be analyzed using conditional probability: SupposeE is the evidence, andG
stands for “guilt”. We are interested inOdds(G|E) (the odds that the accused is guilty, given the evi-
dence) and we know thatP (E|Gc) (the probability that the evidence would be observed if the accused were
innocent) is tiny. One formulation of Bayes’ theorem then states:

Odds(G|E) = Odds(G)
P (E|G)
P (E|Gc)

. (1)

Without knowledge of the a priori odds ofG, the small value ofP (E|Gc) does not necessarily imply that
Odds(G|E) is large.

The Prosecutor’s Fallacy is therefore no fallacy if the a priori odds of guilt are assumed to be 1:1. In a
Bayesian approach to subjective probabilities, where probabilities represent degrees of belief of reasonable
persons, this assumption can be justified as follows: a completely unbiased person, without having been
shown any evidence and without any prior knowledge, will estimate the a priori odds of guilt as 1:1.

In this picture then, the fallacy consists in the fact that the prosecutor claims an absolutely low probability
of innocence, without mentioning that the information he conveniently omitted would have led to a different
estimate.

3STOLEN INNOCENCE: A Mother’s Fight for Justice. The Authorised Story of Sally Clark by John Batt, Published by Ebury
Press.
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In legal terms, the prosecutor is operating in terms of a presumption of guilt, something which is contrary
to the normal presumption of innocence where a person is assumed to be innocent unless found guilty. A
more reasonable value for the prior odds of guilt might be a value estimated from the overall frequency of
the given crime in the general population.

Two Masked Robbers.Two masked robbers try to rob a crowded bank during the lunch hour but the teller
presses a button that sets off an alarm and locks the front door. The robbers realizing they are trapped,
throw away their masks and disappear into the chaotic crowd. Confronted with 40 people claiming they
are innocent, the police gives everyone a lie detector test. Suppose that guilty people are detected with
probability 0.85 and innocent people appear to be guilty with probability 0.08. What is the probability that
Mr. Smith was one of the robbers given that the lie detector says he is?

Guessing. Subject in an experiment are told that either a red or a green light will flash. Each subject is
to guess which light will flash. The subject is told that the probability of a red light is 0.7, independent of
guesses. Assume that the subject is a probability matcher- that is , guesses red with probability .70 and green
with probability .30.

(i) What is the probability that the subject guesses correctly?
(ii) Given that a subject guesses correctly, what is the probability that the light flashed red?

False Positives. False positives are a problem in any kind of test: no test is perfect, and sometimes the
test will incorrectly report a positive result. For example, if a test for a particular disease is performed on a
patient, then there is a chance (usually small) that the test will return a positive result even if the patient does
not have the disease. The problem lies, however, not just in the chance of a false positive prior to testing, but
determining the chance that a positive result is in fact a false positive. As we will demonstrate, using Bayes’
theorem, if a condition is rare, then the majority of positive results may be false positives, even if the test for
that condition is (otherwise) reasonably accurate.

Suppose that a test for a particular disease has a very high success rate:
• if a tested patient has the disease, the test accurately reports this, a ’positive’, 99% of the time (or, with

probability 0.99), and
• if a tested patient does not have the disease, the test accurately reports that, a ’negative’, 95% of the

time (i.e. with probability 0.95).
Suppose also, however, that only 0.1% of the population have that disease (i.e. with probability 0.001).

We now have all the information required to calculate the probability that, given the test was positive, that it
is a false positive.

Let D be the event that the patient has the disease, andP be the event that the test returns a positive
result. The probability of a true positive is

P (D|P ) =
0.99× 0.001

0.99× 0.001 + 0.05× 0.999
≈ 0.019,

and hence the probability of a false positive is about (1 - 0.019) = 0.981.
Despite the apparent high accuracy of the test, the incidence of the disease is so low (one in a thousand)

that the vast majority of patients who test positive (98 in a hundred) do not have the disease. Nonetheless,
this is 20 times the proportion before we knew the outcome of the test! The test is not useless, and re-
testing may improve the reliability of the result. In particular, a test must be very reliable in reporting a
negative result when the patient does not have the disease, if it is to avoid the problem of false positives.
In mathematical terms, this would ensure that the second term in the denominator of the above calculation
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is small, relative to the first term. For example, if the test reported a negative result in patients without the
disease with probability 0.999, then using this value in the calculation yields a probability of a false positive
of roughly 0.5.

Multiple Choice. A student answers a multiple choice examination question that has 4 possible answers.
Suppose that the probability that the student knows the answer to the question is 0.80 and the probability
that the student guesses is 0.20. If student guesses, probability of correct answer is 0.25.

(i) What is the probability that the fixed question is answered correctly?
(ii) If it is answered correctly what is the probability that the student really knew the correct answer.

Manufacturing Bayes. Factory has three types of machines producing an item. Probabilities that the item
is I quality f it is produced oni-th machine are given in the following table:

machine probability of I quality
1 0.8
2 0.7
3 0.9

The total production is done 30% on type I machine, 50% on type II, and 20% on type III.
One item is selected at random from the production.
(i) What is the probability that it is of I quality?
(ii) If it is of first quality, what is the probability that it was produced on the machine I?

Two-headed coin.4 One out of 1000 coins has two tails. The coin is selected at random out of these 1000
coins and flipped 5 times. If tails appeared all 5 times, what is the probability that the selected coin was
‘two-tailed’?

Kokomo, Indiana. In Kokomo, IN, 65% are conservatives, 20% are liberals and 15% are independents.
Records show that in a particular election 82% of conservatives voted, 65% of liberals voted and 50%

of independents voted.
If the person from the city is selected at random and it is learned that he/she did not vote, what is the

probability that the person is liberal?

Inflation and Unemployment. Businesses commonly project revenues under alternative economic scenar-
ios. For a stylized example, inflation could be high or low and unemployment could be high or low. There
are four possible scenarios, with the assumed probabilities:

Scenario Inflation Unemployment Probability
1 high high 0.16
2 high low 0.24
3 low high 0.36
4 low low 0.24

(i) What is the probability of high inflation?
(ii) What is the probability of high inflation if unemployment is high?
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(iii) Are inflation and unemployment independent?

Information Channel. One of three words AAAA, BBBB, and CCCC is transmitted via an information
channel. The probabilities of these words are 0.3, 0.5, and 0.2, respectively. Each letter is transmitted
independently of the other letters and it is received correctly with probability 0.6. Since the channel is not
perfect, the letter can change to one of the other two letters with equal probabilities of 0.2. What is the
probability that word AAAA had been submitted if word ABCA was received.

Jim Albert’s Question. An automatic machine in a small factory produces metal parts. Most of the time
(90% by long records), it produces 95% good parts and the remaining have to be scrapped. Other times,
the machine slips into a less productive mode and only produces 70% good parts. The foreman observes
the quality of parts that are produced by the machine and wants to stop and adjust the machine when she
believes that the machine is not working well. Suppose that the first dozen parts produced are given by the
sequence

s u s s s s s s s u s u

wheres – satisfactory andu – unsatisfactory. After observing this sequence, what is the probability that the
machine is in its good state? If the foreman wishes to stop the machine when the probability of “good state”
is under 0.7, when should she stop?

Medical Doctors and Probabilistic Reasoning.The following problem was posed by Casscells, Schoen-
berger, and Grayboys (1978) to 60 students and staff at Harvard Medical School:If a test to detect a disease
whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a
positive result actually has the disease, assuming you know nothing about the person’s symptoms or signs?

Assuming that the probability of a positive result given the disease is 1, the answer to this problem
is approximately 2%. Casscells et al. found that only 18% of participants gave this answer. The modal
response was 95%, presumably on the supposition that, because an error rate of the test is 5%, it must get
95% of results correct.
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