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Abstract $0.60 +& 0.60
The paper explores a very simple agent design
method called)-decompositionwherein a com-
plex agent is built from simpler subagents. Each
subagent has its own reward function and runs
its own reinforcement learning process. It sup-
plies to a central arbitrator th@-values (accord-
ing to its own reward function) for each possible
action. The arbitrator selects an action maximiz-
ing the sum ofQ-values from all the subagents.
This approach has advantages over designs in
which subagents recommend actions. It also has
the property that if each subagent runs the Sarsa
reinforcement learning algorithm to learn its lo-
cal Q-function, then a globally optimal policy is
achieved. (On the other hand, loc@ilearning
leads to globally suboptimal behavior.) In some
cases, this form of agent decomposition allows
the localQ-functions to be expressed by much-

reduced state and action spaces. These results
are illustrated in two domains that requiriee- this with a distributed architecture in which one subagent

tive coordination of behaviors. cares only for dollars and the other only for euros.
One very common design, calledmmand arbitration
. requires each subagent to recommend an action to the arbi-
1. Introduction trator. In the simplest such scheme, the arbitrator chooses
A natural approach to developing agents for complexone of the actions and executes it (Brooks, 1986). The
tasks is to decompose the monolithic agent architectuse intproblem with this approach is that each subagent may sug-
a collection of simpler subagents and provide an arbitratogest an action that makes the other subagents very unhappy;
that combines the outputs of these subagents. The principttiere is no way to find a “compromise” action that is rea-
architectural choices in such a design concern the nature anable from every subagent’s viewpoint. In our example,
the information communicated between the arbitrator andhe dollar-seeking subagent will suggésift whereas the
the subagents and the method by which the arbitrator seeuro-seeking subagent will suggé&ight Whichever ac-
lects an action given the information it receives. tion is chosen by command arbitration, the agent is worse
We will illustrate the various architectural choices us- off than it would be if it wentUp.
ing a very simple environment (Figure 1). The agent starts  To overcome such problems, some have proposet
in stateSp and can attempt to moueeft, Up, orRight orit  mand fusionwhereby the arbitrator executes some kind of
can stay put. With probability, each movement action has combination (such as an average) of the subagents’ recom-
no dfect; otherwise, the agent reaches a terminal state witmendations (S&otti et al., 1995; Ogasawara, 1993; Lin,
rewards of dollars aridr euros as shown. If we assume 1993; Goldberg et al., in press). Unfortunately, fusing the
rough parity between dollars and euros, then the optimasubagents’ actions may be disastrous. In our example, aver-
policy is clearly to gdJp. The question is how to achieve aging the direction vectors fareft andRightyieldsNoOp

$1.00

Figure 1.A simple world with initial stateS, and three terminal
statesS,, Sy, Sg, each with an associated reward of dollars/and
euros. The discount factorjse (0, 1).
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which is the worst possible choice. Furthermore, commandiberation process. We show that this is achieved if each
fusion is often inapplicable—as, for example, when twosubagent'€Q;-function correctly reflects its own futurg
chess-playing subagents recommend a knight move andrawardsassuming future decisions are made according to

bishop move respectively. the global arbitration policy The next question is how to
The weaknesses of command arbitration have beearrange for each subagent to learn the rigifunction us-
pointed out previously by proponents aftility fu- ing a local reinforcement learning procedure, ideally one

sion(Rosenblatt, 2000; Pirjanian, 2000). In a utility-fusion that does not need to access @efunctions or rewards of
agent, each subagent calculates its own outcome probabilike other subagents.
ties for actions and its own utilities for the outcome states ~ We show in Section 3.1 that if each subagent uses the
The arbitrator combines this information to obtain a globalconventional-learning algorithm (Watkins, 1989), global
estimate of the utility of each action. Although the seman-optimality is not achieved. Instead, each subagent learns
tics of probability combination is somewhat unclear, thethe Q; values that would result if that subagent were to
method does make it possible to produce meaningful commake all future decisions for the agent. This “illusion of
promise actions. Rosenblatt reports much-improved pereontrol” means that the subagents converge to “selfish” es-
formance for an autonomous land vehicle, compared tdimates that overestimate the true values of their own re-
command arbitration. Unfortunately, his paper does notvards with respect to a globally optimal policy. For our
identify the semantics or the origin of the local utility ftin ~ dollayeuro example, locaD-learning leads in some cases
tions. We will see below that global optimality requires to a global policy that choos@&oOpin stateS.
some attention to communicating global state when updat- The principal result of the paper (Section 3.2) is the
ing local utilities, if fusion is to work. simple observation that global optimality is achieved by lo
Our proposal is th®-decompositiomethod, whichre-  cal reinforcement learning with the Sarsa algorithm (Rum-
guires each subagent to indicate a value, from its perspecnery & Niranjan, 1994), provided that on each iteration
tive, for every action. That is, subagenteports its action the arbitrator communicates its decision to the subagents.
valuesQj(s, a) for the current stats to the arbitrator; the This information allows the subagents to become realistic,
arbitrator then chooses an action maximizingghmofthe  rather than optimistic, about their own future rewards.
Q; values. In this way, an ideal compromise can be found.  Sections 4 and 5 investigafzdecomposition in worlds
The primary theoretical assumption underlyilfp  that are somewhat less trivial than the dgbaro exam-
decomposition is that the agent’s overall reward functionple. The first is the well-known “racetrack” problem with
r(s, a s) can be additively decomposed into separate retwo subagents: one wants to make progress and the other
wardsrij(s a, s) for each subagent—that is(s,a,s) =  wants to avoid crashes. The second example is a simulated
2jri(s a ). Thus, fora mobile robot, one subagent mightfishery conservation problem, in which several subagents
be concerned with obstacle avoidance and receive a negéishing boats) must learn to cooperate to extract the maxi-
tive reward for each bump, while another subagent mightnum sustainable catch. This example illustrates how con-
be concerned with navigation and receive a positive rewardlicts between selfish actors can lead to a “tragedy of the
for making progress towards a goal; the agent’s overall reecommons”.
ward function must be a sum of these two kinds of rewards.
Of course, additive decomposition calwaysbe achieved 2. Background and definitions
by choosing the right subagent reward functions. Heuris- From a “global” viewpoint, we will assume a standard
tically speaking, we are interested in decompositions thaMarkov decision processS, A, P, r,y), with (finite) state
meet two criteria. First, we want to be able to arrange thespaceS, actions#, transition measurB, bounded reward
“physical” agent design so that each subagent receives justinctionr : S x A x S — R, and discount factoy €
its own rewardr;. Second, each subagent’s action-value(0, 1]. From a “local” viewpoint, however, we assume that
function Qj(s, a), which predicts the sum of rewards the the reward signal is decomposed intoraglement vector
agent expects to receive over time, ought to be simpler to of bounded reward componemts each defined over the
express, and easier to learn, than the glép&linction for  full state and action space, such that subageeteives;
the whole agent. The arbitrator receives no reward signaland such that = Z?:l rj.
and maintains n@-functions; it only sums the subagei Denote policies byt : S — A, and associate with each
values for a particular state to determine the optimal actio reward component and policyr the expected discounted
In many cases, it should be possible to design subagents $ature valueQ; : S x A — R of a (state, action) pair:
that they need sense only a subset of the state variables and
need express preferences only over a subset of the compo- Qj(s@) =E [Zaeﬂ ri(sas)+yQ(s, ﬂ(S'))]

hents that dﬁjS(I:_Ebe the global ﬁCtIOES. 's behavior | From the additive decomposition of the global reward
We would like to ensure that the agent's behavior is¢nqtign jt follows that the action-value functi€f for the
globally optimal, even if it results from a distributed de- entire system, given policy, is the sum of the subagents’



action-value functions: 3.1.2.Q LEARNING FOR DOLLARS
a=Elr J) + S. ()] = 3", Of(s.a Suppose an agentin the dollars-and-euros world revises
s r(sas) y(?”( )] =1 QT(S’ ) its action-value estimates according to the selfjshpdate
It also follows that an arbitrator that has to evaluate thegf equation (2). Le€y denote the action-value function for
global action-value function for a particular staeonly  the dollars subagent, ar@. the action value function for

needs to receive the vectQ(s;, ) from each subagent.  the euros subagent. The polisy— Left optimizesQy:
For any suitable transition measWPgthere is a unique

fixed pointQ* : SxA — R satisfying the Bellman equation N ek

) . o Qu(so.Lef) = (1-€) )y

Q(sa) =E[I],rj(sas)+maneayQ (s.a)| (1) =
The policyn* : & — A corresponding to this action-value _ 1-e€
function is the optimal policy for the MDP. 1-ve
: : Qu(s0,NoOp = ¥Qu(so, Left)

3. Local reinforcement learning schemes (1-e)y
3.1. LocalQ learning: The illusion of control T 1_e

Suppose that each subagent’s action-value fun€ipn = . -
is updated under the assumption that the policy followed by Qu(%o, Righy - = ey((gld(_so,)Left)
the agent will also be the optimal policy with respecQp = r&-—e9
In this case, the value update is the us@déarning update N 1-er .
(Watkins, 1989), but relies only on value information local Qd(so,Up) = 0.6(1- €) + yeQu(so, Lef))
to each subagent. In detail, = (1-¢ (0.6 + 7;(_1;))

Qi(sva) «— (1-aP)Qj(sva) + N _ _
The values are symmetric f@,, with the optimal action
o |r(su @ se1) +y maxQ;(s:1, a) (2)  for Qe from s beingRight
When the two subagent value functions are combined,
(aﬁt) is a learning rate that decays to O over time.) Observe, perverse thing happens. For certain values ahdy,
thata; is used only to associate the reward signatith a  the “optimal” behavior iNoOp even though an agent that

particular action; the learner does not reqaireo evaluate  never tries to escape can never achieve a reward:
the discounted future valuemaxaez Qj(S1, 8).

For eachj, denote the fixed point of this update proce- O(so,Lef) = OQq(so, Left) + OQu(so, Left)
dure byQ; and the corresponding policy ky.” (1-¢)+e
3.1.1. GNVERGENCE 1-ey

Even thoughr] may not optimize the sum of rewards _ 1
over all subagent values, and even though the arbitra- T l-ey
tor may never execute this policy, the following theorem = Q(so, Righ
demonstrates that this sort df-golicy update leads to the . 2(1- €)y
convergence of th@; estimates to a collection of locally Q(s0,NoOp = T-o

greedy (“selfish”) estimates.

Theorem 1. (Theorem 4 in (Tsitsiklis, 1994).) Suppose When the discount factor is ficiently large ¢ > 0.5),

that each(s,a) € S x A is visited infinitely often. Under the sum of selfish action-value estimates indicate that the

the update scheme described in equaf@y each Q will agent is betterfd doing nothing than settling on one of the

converge a.s. to éj satisfying absorbing states. Informally, the dollars subagent psefer
- . Left, but assigns a fairly high value tdoOp because it
Qi(sa) = Z P(sls a) [Rj(S,a» s)+ yTE%Qj(S’,a’)] can goleft at the next time step. The euros agent like-

ges 3) wise preferRight, but assigns a fairly high value téoOp
o ) ) because it can gRightafter that. As a result, the expected
Tsitsiklis sets out several technical assumptions, all of 5)e of receiving both the dollars and the euros on the next

which are satisfied in the current setting, and all of whichyjme sten dominates the value of receiving one or the other
are omitted for brevity. This update is analogous to thaty the current time step, even though only one can occur.

proposed by Stone and Veloso (1998), who assume that,e «jiusion of control” leads to an incorrect policy.
the action space may be partitioned into subspaces, one for

each subagent, and that rewards realized by each subagéh?. Local Sarsa: Global realism
are independent given only the local action of each sub- In equation (2), each subagent updated its estimate of
agent. (discounted) future rewards by assuming that it could have



exclusive control of the system. While this may be a usegreedy in the limit of infinite exploration. Suppose alsd tha
ful approximation (as when value functions depend on subS$ and.A are finite. Under the update scheme of equation
spaces o5 x A with small overlap), it does not in general (5), each Q will converge a.s. to a psatisfying equation
guarantee tha® will have the same values, or yield the (4).
same policy, a&*. The relationship betwee@ andQ* is
discussed below. For now, consider an alternative thasgive ~ In order to guarantee that the local Sarsa update pro-
a collection ofQ; functions whose sum converges@. vides convergence to the global optimum, itfizes to ob-

Let Q' : S x A — R denote the contribution of thgh ~ serve that the local Sarsa update is just the monolithi@Sars
reward function to the optimal value functi@t definedin  update in algebraic disguise:
Equation (1):

Qi(sa) =E[rj(sas)+yQj(s.7'(s)| () "1 Qi(sa) « 2], (1-!)Qi(s, &) +

n

To converge taQ;, the updates executed by each subagent =1 a’(jt) [Rj(St, a, Ste1) + YQj(See, a¢+1)]
must reflect the globally optimal policy. Update schemes 1- W "

that do this must replace the locally selfish updates de- Q(S[’a(tg ;( @)% 2)

scribed above with updates that are asymptotically greedy @ [R(st, 8 Se1) +¥Q(Ste1, A1)

with respect tdQ*.

_The Sarsa algonthm (Rummery & Niranjan, 1994)’The individualQ; converge tdQ: because the policy under
which requires on-policy updates, suggests one approach ]

Rather than allowing each subagent to choose the succ Which they are updated convergeatoso that in the limit,

es- ) .
sor action it uses to compute its action-value update, eacﬁﬂey are updated under a fixed policy.
subagent uses the actian; executed by the arbitrator in  3.2.2. SrsA FOR DOLLARS

the successor statg 1: The local Sarsa update yields an intuitively correct pol-
® icy for the dollars-and-euros world. The optimal policy is
Qj(sva) « (1~ @j )Qj(s @) + to choosdJp from s, and the net value dfoOpin s van-

a(jt) [rj(St,at, Ste1) + ¥Qj (St am)] (5) ishes because the update method of equation (5) requires

that all subagents assume a single policy.
This requires that the arbitrator inform each subagentef th

successor action it actually followed, but the communica-

tion overhead for this is linear in the dimension®f Qi(so,Lefty = Qi(so, Right
3.2.1. GNVERGENCE _ -9+ 0.6ye(1-¢)
Rummery and Niranjan establish that the Sarsa update 1-ve
enforces convergence 1@* in the case when an agent Qy(so,Righ) = Qg(so, Left)
maintains a single action-value function and acts greedily 0.6ye(1-¢)
in the limit of infinite exploration. = 1-ye
Lemma 1. (Rummené Niranjan, 1994) Suppose that an Qi(so,Up) = Qu(so.Up)
agent receives a single reward signal S x Ax S — R, 0.6¢
and maintains a corresponding Q function by the update = 1C ve
Qs @) — (- o) QAs. &) + Qu(%o.NoOp = Qe(so.NoOR
) [r(s 8 %1) + YQSe1,800)] (6) _ %
—ye
Ifall (s a) € Sx A are visited infinitely oftenS and.A are
finite, and the policy pursued by the agent is greedy in the
limit of infinite exploration, then under the update scheme ) ] ] ]
of equation(6), Q will converge a.s. to Qas defined in It is easily shown from these values thiép is optimal
equation(1). forall € € [0,1] and ally € (0,1). In the undiscounted

case, the supervisor incurs no penalty for repeatedly choos
%ng NoOpfor a very long time, but it will never achieve a
reward if it does so forever.

The following theorem demonstrates that this updat
procedure yields estimates convergingQp, as defined
in equation (4), when the arbitrator asymptotically ch@ose
the optimal action. 'In MDP jargon, an agent that chooses to stay forever is pur

. suing an “improper” policy. Convergence still holds undertain
Theorem 2. Suppose that alfs,a) € S x A are visited  restrictions on the reward functions: cf. (Bertsekas & Jikiis,
infinitely often and the policy pursued by the arbitrator is 1996).



3.3. Remarks 4.2. Implementation
Note thatQj provides an optimistic estimate QT; by This paper evaluates a single racer on a 10-unit-wide
definition of the selfish action-value function: track with a 15x 20 infield. Training consisted of 4000
. episodes, with ten test episodes occurring after every ten
, ~ .| training episodes. To provide an incentive for finishing
;E;s Psisa) ,Z; [R’(& as)+y g‘e@[XQ‘(s/’ a )] quickly, experiments assumed a penalty-&1 per time
n step, but no discount factor. Exploration occurred uni-
. 3. n] formly at random; the exploration rate decreased fro20
;E; Ps1s 3) g]eaﬁ‘lsz; [RJ(& 2s)+yQ(s.a )] to 0.0625 over the first 2500 episodes, and remained con-
h stant thereafter. The update step sizeiminished from
Z P(s|s, a) maxz [Rj(& a 9) +yQi(s. a')] 0.3 to 001 over the 4000 episodes. Both training and test
o et episodes were truncated at 1000 steps; preliminary tests in
= Q'(sa) dicated that an agent could get stuck by hitting a wall at
low speed, then choosing not to accelerate in any direction.

The sum of selfish components is therefore an optimistiQL& Results
estimate of the optimal value over all components. This
can lead to overestimates of future value, as in the case (;?rfug
the three-state gridworld. For equality of the selfish an

globally-optimal policies, we require

Q(s @)

\%

\%

Figure 2 compares the values achieved by trained us-
local Q and local Sarsa updates, as well as gldbal
and global Sarsa updates. This is not an ideal domain to
illustrate the suboptimality of loc&) updates, because the
dynamics of the racetrack world couple the objectives of
completing a lap quickly and avoiding collisions. Not only
does a racer gter a negative reward when it collides with
a wall, but it loses speed, which diminishes the discounted
value of its eventual completion reward. However, the local
4. The racetrack world Sarsa learner c.)ut.performed the Io@learne_‘r by roughly

1 standard deviation after 4000 training episodes.

4.1. Description Itis also worth noting the similarity in performance be-

An agent seeking to circulate around a racetrack mUSfeen global and local Sarsa. As the above algebra sug-

trade df his speed against the cost in time and money Ofyegts. the two methods should yield identical performance
damaging his equipment by colliding with the wall or with

under identical representations, and this is borne out by
other racers. However, these goals are opposed t0 0ne agjy ;16 2 GlobalQ learning, although not hobbled by the
o_the_r: the safest race car driver is the one who never start§y ,sion of control’, underperforms Sarsa. The results of
his first lap, and the fastest one looks to win at all costs. ;. qvidual episodes suggest that the gloRalearner suf-
Define a racetrack as a rectangular gridworld with fared more collisions than the Sarsa learners, even though

excluo_led region (the “infield”) in the center, so_that thgsur the number of steps required to complete a lap compared
rounding open spaces (the “track”) are of uniform width. ¢ raply and this resulted in thefiiirence in value.
Represent the state of an agent by its position () (n-

dex of the grid square it currently occupies) and velocity5 The fisheries problem
(in squares per unit of time). At each time step, the ageng 1 Description

may alter each component of its velocity by, 0, or+1
unit/second, giving a total of nine actions. Actions succeedme
with probability Q9; the agent accelerates®4b the left or
right of the desired vector with probability@ each, the
agent accelerates 96 the left or right of the desired vec-

Q(sa)=Q(sa)

because equivalent policies will converge to identical
action-value estimates.

Consider the problem of allocating resources in a com-
rcial fishery. A commercial fishing fleet wishes to max-

imize the aggregate discounted value of its catch over time,
which requires that it show at least some concern for the

_ o ~sustainability of the fish population. Individual fishermen
tor with probability 001 each, and the agent does nOthmghowever, may choose to act selfishly and maximize their

with probability Q02. If an agent collides with a wall, its own profit, assuming that others in the fleet will reduce

position is.projecteld t_)ack onto the track, and each COMtheir catch for the viability of the fishery. If all fishermen
ponent of its velocity is reduced by 1. If the agent doe

7 ) e Sfollow the selfish policy, the resultis a “tragedy of the com-
not accelerate away from_ the wall, it WI|| continue to slip mons”: fish stocks collapse and the fishery dries up.
parallel to the WaII_, but will not cross into the |nf|eld_. To model this &ect, and compare the performance of

An agent receives a reward of 1_0_for cqmpletlng ON€the localQ and Sarsa algorithms, consider a fishery with
lap, and a penalty of1 for each collision with the wall.

A t al ) haoi d (Ng et al. 1999 oats that alternates between a “fishing” season and a “mat-
N agent aiso receives a snaping rewar (Ng etal, 1999 g” season. Assume that a fish population of Si## re-
proportional to the measure of the arc swept by its action.
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Figure 2Values for by localQ (dashed line), local Sarsa (solid

line), global Q (dot-dashed line), and global Sarsa (dotted line)

updates in the racetrack world. Arrowheads indicate onelstal

fishery had survived 100 years. With a discount factor of
v = 0.9, the contribution of the 100th episode to the initial
value was reduced by a factor a68x107°. The step size
for learning updates wasDfor the first 100 episodes, and
0.05 thereafter. Exploration occurred uniformly at random;
the exploration rate decreased from t 005 over the first
400 training episodes, and remained constant thereafter.
These experiments included both decomposed and
monolithic agents. For the decomposed agents, each
action-value estimat®; depended on three features: the
current populatiorf (t), the proportiorg;(t) fished by the
jth boat, and the total proportian () = ¥, a(t) fished
by the other boats, so th&; was defined over a 3-
dimensional spacéA radial basis function (RBF) approx-
imator represented the action-value estim&gfor the de-
composed agents, with values updated by bounded gradient
steps. The monolithic agents required that their value-func
tions span the fullrf + 1)-dimensional space, a task that

deviation for localQ; dots indicate one standard deviation for lo- would have been impossible using an RBF approximator

cal Sarsa.

produces according to a density-dependent model (Ricke

1954):
f(t+1) = f(t)exp[R(1- {2)]

whereR for a fish population without immigration or em-

with the same resolution as was used in the 3-dimensional
spacé Instead, a sigmoid neural network with a hidden

Irayer of 100 nodes was used.

5.3. Results
Presented in Figure 3 are the values achieved by the
selfish and optimal decomposed learners in the fishery

igration is the diference between the birth rate and theProPlem, as well as monolithiQ and Sarsa learners. Ev-

death rate, andn.x is the “carrying capacity” of the en-

vironment (the population at which growth diminishes to

ery ten training episodes, ten test episodes were executed
and the values averaged. As anticipated, selfish updates

0). At the beginning of each fishing season, the fish ardluickly fell victim to the “tragedy of the commons” (Fig-

assigned to one af regions with equal probability. Let
f;(t) denote the number of fish in thigh region at timet,
with 3; fj(t) = f(t). The “fisheries commissioner” (arbi-
trator) selects the proportion of the seasg(t) that each
boat will fish, based on the total fish populatibft). Let

n € (0,1) denote the fficiency of each fishing boat. The
number of fish caught by thigh boat,c;(t), is distributed
Poissonga; () f;(t)) and is capped af(t).2 The reward re-
alized by boaf at timet is given by

ri(ci(). (1) = ¢j(t) - £a8(t)

ure 4). Each boat exhausted the fish stocks in its region
because the fishery had computed the value of this self-
ish policy without regard for the actions of the other boats.
As a result, the fish population crashed within a couple
of years. Concurrent Sarsa’s “realistic” updates led to a
sustainable policy. Each boat only harvested a fraction of
the fish in its region, so enough remained for the popula-
tion to recover in the next mating cycle. Both monolithic
learners demonstrated slower value improvement than the
decomposed Sarsa learner because they represented exam-
ples over the joint state and action space and not the re-
duced subspaces of the decomposed learners. However,

for some constant. The cost of fishing increases quadrat- the monolithicQ learner did not sfiier from the dificulties
ically with a; to reflect the increase in crew and equipmentfaced by the selfish decomposed learner.

fatigue over the course of a season.

5.2. Implementation

This paper evaluates = 10 fishing boats,f(0) =
1.5 x 10° fish, a population growth rate & = 0.5, a
carrying capacity offnax = 2 x 10° fish, an dficiency of
n = 0.98, and a maximum fishing cost ¢f= 10°. Ex-

6. Related work and conclusions

Q-decomposition extends the monolithic view of rein-
forcement learning in two directions: it identifies a natura

3Multinomial sampling to construct bins and Poisson sam-
pling to simulate fishing justify this aggregation.

periments proceeded over 1000 episodes, and each episode4The decomposed learners used 725 basis components on a

. . . x 9 x 25 grid, with the highest resolution along thej-axis.
terminated when fewer than 200 fish remained or when th%uch a discretization for a global learner would require<310°

20ne can imagine fishing to be a queuing process wherein thkernels.
fish line up to be caught.
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Figure 3.Values for locakQ (dashed line), local Sarsa (solid line), - Figure 4. Characteristic depletion of fish stocks over one episode
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in the fishery world. Arrowheads indicate one standard dievia

for local Q; dots indicate one standard deviation for local Sarsa.

composition become morefiicult to manage over time
in sequential tasks. These dependencies limit the extent

decomposition of action-value estimates in terms of addito which a problem may be exactly decomposed. Guestrin
tive reward signals, and considers the tasks of actionseleet al. (2002) avoid the dficulties of exact updates by fix-
tion and value-function updates in terms of communicatioring an approximation basis and a “coordination graph” ex-
between an arbitrator and several subagents. Both direpressing dependencies shared betw@aomponentsQ-
tions provide broad avenues for future work. values may be computed in this setting by summing the

The concept of)-decomposition, and the correspond- factors of the coordination graph. The coordination struc-
ing notion of “subagents,” may seem superficially relatedture allows optimal selections to be communicated only
to particular methods for representing value functionsto those components that require them, eliminating a cen-
or for aligning the interests of multiple subagent®-  tral arbitrator for action selection. Gradient updatesdor
decomposition only requires that value function updategparametric basis follow because the gradient of the sum
assume a particular form to guarantee optimal agent besf components is a sum of gradients, one per basic term.
havior. In some cases, like the fishery world, this additiveMessage-passing techniques for value estimation and value
decomposition results in a more compact value functionupdating have clear advantages over methods requiring a
Other authors (Koller & Parr, 1999) have exploaggbrox-  central arbitrator, and deserve exploration in the coraéxt
imationsthat represent the true value function as a linearQ-decomposition and exact updates.
combination of basis functions, with each basis function = Q-decomposition uses all value function components
defined over a small collection of state variables. In ordemll the time to choose actions. In this sense, fifeds from
to maintain these approximations, value function updatesdelegation” techniques like feudal reinforcement leagni
must be projected back onto the basis at every time stegDayan & Hinton, 1993), MAXQ (Dietterich, 2000), and
because the evolution of the MDP over time can introduceahe hierarchical abstract machines of Parr (1997) and An-
dependencies not represented in the basis. However, sordee (2002). These methods also decompose an agent into
subagent rewards may be unconditionally independent afubagents, but only one subagent (or one branch in a hier-
some components of the state, or may depend only on agwchy of subagents) is used at a time to select actions, and
gregate values, as in the fishery world. By exposing thesenly one subagent receives a reward signal. Feudal RL sub-
independencief)-decomposition furnishes a means of se-divides the state space at multiple levels of resolutiod, an
lecting basis components without sacrificing accuracy.  each of the subagents at a particular resolution assigns re-

Representational savings are also possible by combirsponsibility for a subset of its state space to one of its-‘vas
ing Q-decomposition with graphical models of conditional sals”. MAXQ-decomposed agents and hierarchical abstract
utilities. While it may be possible to elicit and main- machines partition the decision problem by tasks, giving a
tain conditional utilities for one-step problems (Bacchushierarchical decomposition analogous to a subroutine call
& Grove, 1995; Boutilier et al., 2001), the dependenciesgraph. Each component in this procedural decomposition
introduced by both the transition model and reward de-maintains a value function relative to its own executiom an



does not receive areward when itis notin the call st§gk. Bertsekas, D. P., & Tsitsiklis, J. (1996Yeuro-dynamic program-
decomposition complements these methods: a subagent inming Belmont,MA: Athena Scientific.

: : P Boutilier, C., Bacchus, F., & Brafman, R. (2001). Ucp-netks
3a?§;i%it;)igr?mhltecwre could maintaiedecomposed A directed graphical representation of conditional u#bt

) ] o Proceedings of the Seventeenth Annual Conference on Uncer-
Devolution of value function updates moves monolithic  tainty in Artificial Intelligence(pp. 56-64). Seattle.

reinforcement learning into the “multi-body” setting, and Brooks, R. A. (1986). Achieving artificial intelligence through
suggests a spectrum of learning methods distinguished by building robots(Technical Report A. I. Memo 899). MIT Arti-
the degree of communication between modules and a cens ficial Intelligence Laboratory, Cambridge, MA.

. .. laus, C., & Boutilier, C. (1998). The dynamics of reinfaroent
tral arbitrator. At one extreme, tradmonal RL methods as- " |earning in cooperative multiagent systerRsoceedings of the
sume closely-coupled components: a single value function Fifteenth National Conference on Artificial IntelligendeXAl-
defining a monolithic policy.Q-decomposition allows for 98). _ _ _
multiple value functions, each residing in a subagent, buPaXZ”v P., &,H"TO”' (|3| $19931; F‘;Udm re[nforS(:eTent 'Gﬁ@“'
still requires each subagent to report its value estimates t ~\dvances in Neural Information Processing Syste#zn Ma-

: N . . teo, CA: Morgan Kaufmann.
an arbitrator, and receive in turn the action that th_e a_rb'Dietterich, T. G. (2000). Hierarchical reinforcement lgag with
trator chooses. Further relaxations of the communications the MAXQ value function decompositiodournal of Artificial
requirements ofQ-decomposition include action decom-  Intelligence Resear¢hi3, 227-303. .
position and partial observability of actions. In the for- Goldberg, K., Song, D., & Levandowski, A. (in press). Collab

the action spagemay be partitioned into sub- orative tgleoperatlon using networked spatial dynamidingot
mer case _p Yy P Proceedings of the IEEE
spacesA; corresponding to subagent reward componentsiyestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordidate
in the latter, subagents maintain histories of observation reinforcement learningProceedings of the Nineteenth Inter-

(0(1),...,0(t = 1), o(t)) from which they must estimaiz national Conference on Machine Learning
to compute value updates. Koller, D., & Parr, R. (1999). Computing factored value func

Multi | . bl limi h | tions for policies in structured MDP®roceedings of the 16th
) ultiagent .earnlng. prQ ems eliminate the .centra International Joint Conference on Artificial Intelligen¢pp.
arbitrator, making optimality more flicult to achieve, 1332-1339). Stockholm.

but similar issues of communication between participantd.in, L.-J. (1993). Scaling up reinforcement learning fobob
arise. Traditional game theory considers the uncommu- control. Proceedings of the Tenth International Conference on

L . . Machine Learning
nicative extre_me of this spectrum, where part|C|pants_ _d g, A. Y., Harada, D., & Russell, S. J. (1999). Policy invaga
not share policies or value functions. Claus and Boutilier ~nder reward transformations: Theory and application o re

(1998) have proposed the “individual learner” and “joint  ward shapingProceedings of the Sixteenth International Con-
action learner” concepts to distinguish between agents in ference on Machine Learningp. 278-287). Bled, Slovenia.
cooperative games that choose actions to maximize indiNg; A Y., & Russell, S. J. (2000). Algorithms for inversemei

. . . _.__ forcement learning.Proceedings of the Seventeenth Interna-
vidual rewards, and agents that choose actions to maximize tional Conference on Machine Learning

joint rewards. A joint action learner observes the actionspgasawara, G. H. (1993)Ralph-MEA: A real-time, decision-
of its peers, and maintains belief state about the strate- theoretic agent architectureDoctoral dissertation, University

gies they follow, with the goal of maximizing the joint  of California, Berkeley. _ ) _
reward. An independent learner ignores the actions of it§ar R. & Russell, S. J. (1997). Reinforcement learninth wi

eers when “optimizing its policy, analogous to a o€l hierarchies of machine®dvances in Neural Information Pro-
p p g policy, g cessing Systems

learner. There is still no central arbitration mechanisat, b pirjanian, P."(2000). Multiple objective behavior-baseuteol.
inverse reinforcement learning techniques (Ng & Russell, Journal of Robotics and Autonomous Systems

2000) might be used to deduce the policies of other agentSicker, VF\{/- E. (195)"13)- S:joc:fgnd rsguggle'%%ulmm of the Fish-
: o eries Research Board of Canadil, 624—651.

and brldge_the communlcatlons_gap. . Rosenblatt, J. K. (2000). Optimal selection of uncertaiticas

In treating only localQ learning and local Sarsa, this  y maximizing expected utilityautonomous Robqt8, 17-25.

paper has evaluated two points in the continuum of posRummery, G. A., & Niranjan, M. (1994).0n-line Q-learning
sible representations. These fairly simple-minded ap- using connectionist system@echnical Report CUE[B-
proaches nonetheless provide evidence of the valu@-of INFENG/TR 166). Cambridge University Engineering Depart-

" . o, ment.
decomposition as a tool for functional decomposition Ofsaﬁotti, A., Konolige, K., & Ruspini, E. (1995). A multivalued

agents, and suggest a variety of future work. logic approach to integrating planning and contraitificial
Intelligence 76, 481-526.
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