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Abstract
Many applications of supervised learning require good generalization from lim-
ited labeled data. In the Bayesian setting, we can use an informative prior to try to
achieve this goal by encoding useful domain knowledge. We present an algorithm
that constructs such an informative prior for a given discrete supervised learning
task. The algorithm uses other “similar” learning problems to discover proper-
ties of optimal classifiers, expressed in terms of covariance estimates for pairs of
feature parameters. A semidefinite program is then used to combine these esti-
mates and learn a good prior for the current learning task. We apply our methods
to binary text classification, and demonstrate a 20 to 40% error reduction over a
commonly used prior.

1 Introduction
For conciseness and clarity, we restrict our attention to binary text classification, although our model
can be extended to handle other discrete multiclass classification problems.

In this task, we are given a vocabulary of words W = {w1, w2, . . . , w|W|} and a set of output
labels Y = {0, 1}. We assume that every input document X is represented as a vector X =
(X1, X2, . . . , X|W|) ∈ {0, 1}|W|, where Xi is 1 if wi occurs in X and 0 otherwise. Each document
X has a unique label Y ∈ Y . A labeled training set M = {(x(i), y(i))}mi=1 is given, and the task is
to predict label y for an unseen input instance x. Throughout this paper, we use logistic regression
as the basic prediction model. Logistic regression uses a parameter vector θ = (θ1, θ2, . . . , θ|W|) ∈

<|W| to make predictions according to the rule: P (Y = 1|X = x, θ) = 1/
(

1 + exp(−θTx)
)

. A
common learning algorithm assumes a multivariate Gaussian prior N (0, σ2I) on the parameter θ,
and then finds the maximum-a-posteriori (MAP) estimate θMAP by maximizing the (penalized)
discriminative log-likelihood of the training set M :

θMAP = arg maxθ

(

m
∑

i=1

logP (Y = y(i)|X = x(i), θ) −
1

2σ2
||θ||22

)

(1)

When training data is limited (m << |W|), the parameter values learnt often produce low perfor-
mance on unseen test data. This is to be expected from a learning theoretic viewpoint; the prior
distribution is only weakly informative as it assumes that the parameters θi are independent of each
other and have equal prior variance.

However, many classification problems naturally display rich structure in their features. Text
documents, for example, generally use many words coherently drawn from a small set of topics.
Thus, the occurrence of a word such as moon in a document with label y might make it more likely
that words “similar” to moon (such as space or astronaut) will occur in other documents
with the same label y. Further, there might be systematic trends making rare words more or less
informative about a document label than common words. We aim to model these dependencies by
placing a more informative prior over the parameters. In particular, we will construct a Gaussian



insurance mile wave mouse
rear mile air resource
honda mile wave menu
brake gear air server
meg printer ground server
brake wheel object ram
bmw seat battery mouse
desktop ram low server

Table 1: Word pairs from the classification problem rec.motorcycles versus
comp.os.ms-windows.misc that were estimated to have the most positive (left) or most negative
(right) bootstrap-corrected parameter covariance using auxiliary learning problems.

prior N (0,Σ) where Σ ∈ <|W|×|W| is a (non-diagonal) covariance matrix. For our example, if the
prior covariance between the parameters for moon and space is highly positive, we can infer that
space supports the label y even without observing this directly in training data.

2 Estimating the covariance between word parameters
We will first describe a method to estimate individual entries of this covariance matrix Σ using other
labeled text classification problems, which we shall call the auxiliary learning problems. Let C
be one of these auxiliary problems that also contains a word wi ∈ W in its vocabulary. We can
use C to estimate the prior variance Var(θi) as follows: We generate several subproblems from C
by sampling several smaller vocabularies (of size 5, say) each containing the word wi, and apply
logistic regression to each of these subproblems.1 Each subproblem produces a final learnt value for
parameter θi; the sample variance of these values gives an estimate for Var(θi). However, since we
are interested in estimating the parameter variance caused only by the word appearing in different
problems, and not the variance caused by the choice of training set, we correct the computed variance
estimate using a bootstrap correction (see, e.g., [1]). The prior covariances Cov(θi, θj) can be
similarly estimated using the bootstrap from an auxiliary problem containing both wordswi and wj .

For a particular classification problem constructed using the 20 newsgroups dataset [2], Table 1
shows some word pairs whose covariance was found to be the most positive or most negative when
estimated using auxiliary problems constructed from the other 18 newsgroups. Words related to
similar topics are estimated to have a highly positive covariance by this method; some of the word
pairs with highly negative covariance entries also capture useful distinctions between the classes.

3 Constructing the covariance matrix Σ

In a perfect world, we could have constructed the desired covariance matrix Σ by putting together
the above covariance estimates for all word pairs. However, this approach has two major problems:

1. Some word pairs from the current vocabulary W may not occur in any auxiliary task vo-
cabularies. For a large vocabulary W it is also computationally impractical to generate all
the |W|(|W| + 1)/2 covariance estimates needed to construct Σ.

2. A valid covariance matrix must be positive semidefinite (PSD). The matrix formed by the
noisy covariance estimates may not be PSD.

To solve the first problem, we model covariance between a pair of parameters as a function of
features of the corresponding word pair. For example, if the words are synonyms of each other,
there might be a high covariance between their parameters; so checking if the words are synonyms
might be a useful feature. Given these features, we can estimate a small fraction of the covariances
using the auxiliary classification tasks, and then learn a general transformation of the features that
allows us to approximate all the missing entries in the covariance matrix.

More formally, suppose we extract a feature vector Fij ∈ <S for each position (i, j) in the
covariance matrix, such that every element of Fij computes some feature of the word pair (wi, wj)
and the vocabulary W . We approximate each entry in the covariance matrix as a linear function
of the corresponding feature vector–i.e., given a suitable parameter vector ψ ∈ <S , we construct a
candidate matrix Σ̂ by computing its (i, j)th element as follows:

Σ̂ij = ψT fij (2)

1The small vocabulary size ensures that each parameter estimate is close to optimal.



Let the setG = {(i, j) | Cov(wi, wj)was estimated} contain the positions of the available covari-
ance estimates from the auxiliary tasks, and eij be the value of the estimate for position (i, j) ∈ G.
We could then pick ψ so that the generated values Σ̂ij are close to the available estimates eij , using
linear regression, for example.

Unfortunately, the matrix Σ̂ may not be PSD. We could project Σ̂ onto the PSD cone to obtain
a valid covariance matrix; however, Σ̂ often turns out to highly indefinite, and the projected matrix
is far from the matrix Σ̂ originally learnt through ψ. This sequential procedure is unnecessary. If
Σ is the final covariance matrix produced, we can make the PSD projection explicit by posing the
following joint optimization problem over variables ψ and Σ:

min
ψ,Σ

∑

(i,j)∈G

(eij − ψT fij)
2 + λ

|W|
∑

i=1

|W|
∑

j=1

(Σij − ψT fij)
2 s.t. Σ � 0 (3)

where Σij denotes the (i, j)th element of matrix Σ. The first term in the objective function encour-
ages ψ to better approximate the available covariance estimates eij ; the second term encourages ψ
to generate a matrix close to a PSD matrix Σ; λ represents the relative importance assigned to these
two terms.

This optimization problem can be written as a semidefinite program (SDP), and can be solved
directly using standard SDP solvers. A more scalable method is to perform optimization by
coordinate-descent onψ and Σ. Keeping Σ fixed, ψ can be optimized using a fast QP solver; keeping
ψ fixed, Σ can be optimized via a fast projection onto the PSD cone. This alternating optimization
method is guaranteed to find the global minimum.

In our experiments, we observed that the matrix Σ nicely captures the relative magnitudes of the
covariances, but does not adequately capture their absolute scale. This is to be expected because the
covariance entries were estimated on auxiliary problems with a particular small vocabulary size (5
in our case), while our experiments consider covariances with a much larger vocabulary size. We
thus multiply in a scaling parameter q, and use qΣ as the final covariance matrix in the prior. We use
the auxiliary problems to search for a good value of q via a simple multiplicative coordinate-ascent
procedure that locally optimizes likelihood of training sets drawn for those auxiliary problems.

4 Results

We present our results on the 20 newsgroups dataset [2]. The data was preprocessed by stemming
and removing stopwords. The newsgroups were randomly paired to construct 10 binary classifica-
tion problems. The vocabulary for each pair was constructed by picking the 250 most frequent words
from each newsgroup. We then performed a hold-out procedure, taking each of these 10 problems in
turn and letting the other 9 be auxiliary problems; covariance estimates were generated from these
auxiliary problems2 and were used to solve the SDP for the held-out problem; a scaling parameter
was estimated using the auxiliary problems, and the SDP-solution with the scaling parameter was
evaluated on the held-out problem using several randomly sampled balanced training sets. The class
labels on the held-out problem were hidden throughout. The final test error was averaged over all
these hold-out iterations. We compare against a baseline that uses a uniform diagonal prior, with
a scaling parameter that was chosen using exactly the same procedure as for the SDP-generated
covariance matrices. To verify the advantage of using a non-diagonal covariance, we also solved
Eqn. 3 constraining Σ to be diagonal. Figure 1 shows the final results. The SDP-generated covari-
ance matrices reduce error by 20-40% over the baseline; they continue to be better than the baseline
even for a training set of 100 documents. In fact, on all 10 tests, the SDP-result were better than
baseline over the full range of training set sizes. The SDP-generated diagonal covariance matrix
performs only marginally better than baseline, showing that the off-diagonal entries capture crucial
dependencies.

2In each case, we used the auxiliary problems to get covariance estimates for about 75% of the diago-
nal entries and 20% of the off-diagonal entries. About 25% of the words in each vocabulary do not occur
in any auxiliary problem, and are “novel.” Some features used WordNet (http://wordnet.princeton.edu) and
Infomap (http://infomap.stanford.edu). For optimization, we used the SeDuMi (http://sedumi.mcmaster.ca) and
Yalmip (http://control.ee.ethz.ch/j̃oloef/yalmip.php) packages.
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Figure 1: Classification results on the 20 newsgroups dataset. Training set size is graphed on a log-scale. (a)
Average test error for different training set sizes. Blue circles are for our SDP-based method, green triangles for
SDP with the diagonal covariance constraint, red stars for the baseline diagonal prior. (b) Average percentage
reduction in test error over the baseline: Blue circles are for the SDP-based method, green triangles for SDP
with the diagonal covariance constraint. (c) Percentage reduction in test error over the baseline for each of the
10 runs of the SDP-based method. [Colors where available.]

Figure 2: Graphical depiction of the final SDP-generated covariance matrix generated for the classification
problem rec.motorcycles vs. comp.os.ms-windows.misc. [Description in text.]

To graphically examine the final covariance matrices, we performed the following experiment:
For each classification task, we used all the available training data to estimate the 50 “most infor-
mative” words per class.3 From the full covariance matrix, we then extracted the rows and columns
corresponding to these words only, and arranged them in a matrix so that all words picked from a
class are together. The left half of Figure 2 shows this matrix, with brighter positions representing
higher values. On the right, Figure 2 shows the same matrix with all entries above the median entry
colored white and the rest black. These figures show a rough block structure, demonstrating that
the learnt covariance matrix is able to discover good word dependencies for the classification task at
hand without any knowledge of the labels.

5 Related and Future Work
Our algorithm is most similar in spirit to [3], where the authors use a different setup to learn the
properties of good classifiers from multiple learning tasks. We are currently working on a method
that views the prior covariance as a hyperparameter in a hierarchical Bayesian model and directly
learns it using auxiliary learning problems.
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