Transfer in Variable-Reward Hierarchical
Reinforcement Learning

Neville Mehta Sriraam Natarajan Prasad Tadepalli Alan Fern

School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97333
{nmeht ane, nat ar asr, t adepal |, af ern}@ecs. or egonst at e. edu

Abstract

We consider the problem of transferring learned knowledg®rey

Markov Decision Processes (MDPs) that share the same ttcandy-

namics but different reward functions. In particular, wewase that
reward functions are described as linear combinations warne fea-
tures, and that only the feature weights vary among MDPs. nWe-i
duce Variable-Reward Hierarchical Reinforcement LeayrfMRHRL),

which leverages previously learned policies to speed-amieg in this
setting. With suitable design of the hierarchy, VRHRL cahiaee better
transfer than its non-hierarchical counterpart.

1 Introduction

Most work in Reinforcement Learning (RL) addresses the lprobof solving a single
Markov Decision Process (MDP) defined by a state transitimetion and a reward func-
tion. The focus on solving single MDPs makes it difficult, btrimpossible, to learn
cumulatively, i.e., to transfer useful knowledge from onBRIto another. In this paper, we
considervariable-reward transfer learningvhere the objective is to speed-up learning on
a new MDP by transferring experience from previous MDPs shate the same dynamics
but different reward functions. In particular, we assura teward functions are weighted
linear combinations of reward features, and that the “rdwagights” vary across MDPs.

For such classes of MDPs, previous work [3] has shown howerége the reward struc-
ture in order to usefully transfer value functions, effeely speeding-up learning. In this
paper, we extend this work to the hierarchical setting, wiveg are given a task hierarchy
to be used across the entire variable-reward MDP family. Aiaearchical setting provides
advantages over the flat RL case, allowing for transfer atiplellevels of the hierarchy,
which can significantly speed-up learning. We demonstrateasults in a simplified real-
time strategy (RTS) game domain.

2 Variable-Reward Reinforcement Learning

A Semi-Markov Decision Process (SMDRY is a tuple(S, A, P, r,t), whereS is a set of
states A is a set of temporally extended actions, and the transitinotfonP (s|s, a) gives



the probability of entering staté after taking actior in states. The functions-(s, a) and
t(s,a) are the expected reward and execution time respectivelpkimg actiona in state
s. In this work, we assume a linear reward function such tata) = >, w; (s, a),

where ther; (s, a) are reward features, and the are reward weights.

Given an SMDP, the average rewardgatin p™ of a policy = is defined as the ratio of the
expected total reward to the expected total timeNosteps of the policy from any stateas

N goes to infinity. In this work, we seek to learn policies thaiximize gain. Thewverage-
adjusted rewardf taking an actior in states is defined as (s, a) — p™t(s,a). The limit

of the total expected average-adjusted reward starting ftates and following policyr

is called itshiasand denoted by™ (s). Importantly, for our linear reward setting, the gain

and bias are linear in the reward weightsp™ = @ - 5, andh™(s) = @ - h™(s), where the
1 components of, andh™(s) are the gain and bias with respectt¢s, a) respectively.

We consider transfer learning in the context of families @R& that share all components
except for the reward weights. After encountering a seqaefisuch MDPs, the goal is to
transfer that experience to speed up learning in a new MDéhgte reward weights. For
example, in our RTS experimental domain, we would like tosid@r changing the relative
reward weighting for bringing in units of wood, gold, and daging the enemy, but still
leverage prior experience.

A previous approach to this problem [3] is based on the fdlowidea. Since the above
value functions are linear in the reward weights, policias be represented indirectly as
a set of parameters of these linear functions. Thus, thef sgitional policies for different
weights forms a convex and piecewise linear average rewatdias function. As long as
the same policy is optimal for different sets of weights, saene parameters will suffice.
Furthermore, ifil represents a set of all stored previous policies, then giveew weight
vectorwnew, We might expect the policyinit = argmax, o {wWhew - =} t0 provide a good
starting point for learning. Thus, transfer learning is dwocted by initializing the bias
and gain vectors to those af,; and then further optimizing via standard reinforcement
learning. The newly learned bias and gain vectors were dohled inll if the gain of
the new policy with respect t@,e, improved by more than. With this approach, if the
optimal polices are the same or similar for many weight vesstwe will only store a small
number of policies, and achieve significant transfer.

3 Variable-Reward Hierarchical Reinforcement L earning
Framewor k

In HRL [1], the original MDPM is split into sub-SMDP{ M, M;,..., M, }, where
each sub-SMDP represents a subtask (composite or prijni8aving the root task\1,
solves the entire MDPM. The task hierarchy is represented as a directed acyclghgra
known as thdask graphthat represents the task-subtask relationships. All pikienac-
tions of the original MDP are represented as leaf nodes irtable graph. All subtasks
except the root and the primitive actions have explicit ieation conditions; the primitive
actions terminate immediately and the root never termgaiéhe task hierarchy for the
RTS domain is shown in Figure 1(b).

A local policy 7; for the subtask\; is a mapping from the states to the child tasks\¢f.

A hierarchical policyr for the overall task is an assignment of a local pofigyo each sub-
MDP M. Every subtask\; is associated with an abstraction functiBpwhich abstracts
the states into groups that have the same task-specific ftaladion. The objective is to
learn a recursively optimal policy that optimizes the pplior each subtask assuming that
its children’s policies are optimized.

For Variable-Reward HRL, in every subtask (but the Root) weesthe total expected



reward during that subtask, and the expected duration afith&ask for every state. Storing
the parameters of the value function that are independetfiteofjlobal average rewarsl
allows for the transfer of any subtree of the task hieraratvpss different MDPs. For
action selection, the objective is to maximize the weiglaeetage reward (the dot product
of the average reward vector with the weight vector). Theiedunction decomposition
for a recursively optimal policy satisfies the following edjons:

hi(s) = #(s) if iis a primitive subtask
=0 if sisaterminal/goal state far

)+ Z (s'|s,j) - hi(s') otherwise,
s’eS

where;j = argmax {u’)’- (Ha(Ba(s)) —p-ta(By(s)) +E [EZ(S/) —p- ti(s’)] ) }
At Root, we only store the average adjusted reward becauseét terminates:

RRoot(s) = max {15' (ﬁj(Bj(S)) )+ > P(s]s,4) - ')) }

I s'eS

Our model-based algorithm learns the transition modelsdch subtask and uses the above
equations to update the task-specific value functions. Teatsstores the newly learned
hierarchical policy for a new weight vectafe, only if wpew: p — Wnew: piniial > 6. Further,
the value function for a subtask is stored only when at leastaf its components for at
least one of the states is different from previously storedions of this subtask by more
thane; otherwise, a pointer to this previously stored subtaske/éilinction suffices.

4 Experimental Results

3 ‘ |Harve£t(l)| | Deposit| lide| [Attack|

/ N\ |
= [picK] Ip%J Goto()|
—

¢ | [north| [south| [east] [west]

(@) (b)
Figure 1: RTS domain and the corresponding task hierarchy.

We consider a simplified RTS game shown in Figure 1(a). It isdgorld that contains
peasants, the peasants’ home base, resource locatioast¢fand goldmines) where the
peasants can harvest wood or gold, and an enemy base whibb attacked. The primitive
actions available to a peasant are moving one cell tathi¢ h, sout h, east , andwest ,

pi ck a resourceput a resourceattack the enemy base, anddl e (no-op). The
following results are based on a single peasant gameine5 grid with 3 forests cells, 2
goldmines, a home base, and an enemy base. The resourcegagetnated stochastically.
The enemy also appears stochastically and stays till it bas Hestroyed. Reward weights
are generated randomly and dictate the relative value #atoig the various resources or
attacking the enemy.



Figures 2(a) and 2(b) plot learning curves for a test rewag@jit after having seen zero
through ten previous training weights, for both the flat afRHRL learners (averaged over
10 training sets). The learning curves converge much f&st&RHRL. In the flat case we
see “negative transfer” where learning based on one previeight is worse than learning
from scratch. This is unsurprising given that currently leags attempt to transfer past
experience, even when experience is limited. Hierarciittateems to avoid such negative
transfer by clustering experience into similar subtasks.

As another measure of transfer, [E{- be the area between the learning curve and its
optimal value for probleny” with no prior learning experience o¥i, andFy | x be the area
between the learning curve and its optimal value for probiegiven prior training onX.

The transfer ratio is defined ds¢/Fy|x. The transfer ratio is greater for the VRHRL
learner than for the flat learner.

Wi ey
B¥o¥S s,
R A,

)

e 'uu

TR
1EaRygwnaltagg
x,xxy)‘x*’\(x‘ P
P H oy X % 1

Average Reward
Average Reward

,,,,,,,

05 L L L L L L
0e+0 5e+5 1le+6 2e+6 2e+6 0Oe+0 5e+5 le+6 2e+6 2e+6

Time Step Time Step

(a) Learning curves for the VRHRL learner. (b) Learning curves for the flat learner.

45 T T T T 3

28

26 F

Transfer ratio
Transfer ratio
~

o 2 4 6 8 10 o 2 4 6 8 10
Training weights Training weights

(c) Transfer ratio for the VRHRL learner. (d) Transfer ratio for the flat learner.
Figure 2: Experimental results.

5 Conclusions and Future Work

In this paper, we have shown that hierarchical task straaten accelerate transfer across
variable-reward MDPs more so than in the non-hierarchiaakc Extending these results
to MDP families with slightly different dynamics would bet@mesting. Another possible
direction is an extension to shared subtasks in the mudiivbsetting [2].

References
[1] T. Dietterich. Hierarchical Reinforcement Learning with the MAXQ & Function Decompo-
sition. Journal of Artificial Intelligence Research:227-303, 2000.

[2] N. Mehta and P. Tadepalli. Multi-Agent Shared Hierarchy Reinforeet Learning. ICML
Workshop on Richer Representations in Reinforcement Legard0gs.

[3] S. Natarajan and P. Tadepalli. Dynamic Preferences in Multi-CritegiafBrcement Learning.
In Proceedings of ICML-052005.



