
Transfer in Variable-Reward Hierarchical
Reinforcement Learning

Neville Mehta Sriraam Natarajan Prasad Tadepalli Alan Fern

School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR 97333
{mehtane,natarasr,tadepall,afern}@eecs.oregonstate.edu

Abstract

We consider the problem of transferring learned knowledge among
Markov Decision Processes (MDPs) that share the same transition dy-
namics but different reward functions. In particular, we assume that
reward functions are described as linear combinations of reward fea-
tures, and that only the feature weights vary among MDPs. We intro-
duce Variable-Reward Hierarchical Reinforcement Learning (VRHRL),
which leverages previously learned policies to speed-up learning in this
setting. With suitable design of the hierarchy, VRHRL can achieve better
transfer than its non-hierarchical counterpart.

1 Introduction

Most work in Reinforcement Learning (RL) addresses the problem of solving a single
Markov Decision Process (MDP) defined by a state transition function and a reward func-
tion. The focus on solving single MDPs makes it difficult, if not impossible, to learn
cumulatively, i.e., to transfer useful knowledge from one MDP to another. In this paper, we
considervariable-reward transfer learningwhere the objective is to speed-up learning on
a new MDP by transferring experience from previous MDPs thatshare the same dynamics
but different reward functions. In particular, we assume that reward functions are weighted
linear combinations of reward features, and that the “reward weights” vary across MDPs.

For such classes of MDPs, previous work [3] has shown how to leverage the reward struc-
ture in order to usefully transfer value functions, effectively speeding-up learning. In this
paper, we extend this work to the hierarchical setting, where we are given a task hierarchy
to be used across the entire variable-reward MDP family. Thehierarchical setting provides
advantages over the flat RL case, allowing for transfer at multiple levels of the hierarchy,
which can significantly speed-up learning. We demonstrate our results in a simplified real-
time strategy (RTS) game domain.

2 Variable-Reward Reinforcement Learning

A Semi-Markov Decision Process (SMDP)M is a tuple〈S,A,P, r, t〉, whereS is a set of
states,A is a set of temporally extended actions, and the transition functionP(s′|s, a) gives

the probability of entering states′ after taking actiona in states. The functionsr(s, a) and
t(s, a) are the expected reward and execution time respectively fortaking actiona in state
s. In this work, we assume a linear reward function such thatr(s, a) =

∑

i wi ri(s, a),
where theri(s, a) are reward features, and thewi are reward weights.

Given an SMDP, the average reward orgain ρπ of a policyπ is defined as the ratio of the
expected total reward to the expected total time forN steps of the policy from any states as
N goes to infinity. In this work, we seek to learn policies that maximize gain. Theaverage-
adjusted rewardof taking an actiona in states is defined asr(s, a) − ρπt(s, a). The limit
of the total expected average-adjusted reward starting from states and following policyπ
is called itsbiasand denoted byhπ(s). Importantly, for our linear reward setting, the gain
and bias are linear in the reward weights~w, ρπ = ~w · ~ρπ andhπ(s) = ~w ·~hπ(s), where the
i components of~ρπ and~hπ(s) are the gain and bias with respect tori(s, a) respectively.

We consider transfer learning in the context of families of MDPs that share all components
except for the reward weights. After encountering a sequence of such MDPs, the goal is to
transfer that experience to speed up learning in a new MDP given its reward weights. For
example, in our RTS experimental domain, we would like to consider changing the relative
reward weighting for bringing in units of wood, gold, and damaging the enemy, but still
leverage prior experience.

A previous approach to this problem [3] is based on the following idea. Since the above
value functions are linear in the reward weights, policies can be represented indirectly as
a set of parameters of these linear functions. Thus, the set of optimal policies for different
weights forms a convex and piecewise linear average reward and bias function. As long as
the same policy is optimal for different sets of weights, thesame parameters will suffice.
Furthermore, ifΠ represents a set of all stored previous policies, then givena new weight
vector ~wnew, we might expect the policyπinit = argmaxπ∈Π{~wnew · ~ρπ} to provide a good
starting point for learning. Thus, transfer learning is conducted by initializing the bias
and gain vectors to those ofπinit and then further optimizing via standard reinforcement
learning. The newly learned bias and gain vectors were only stored inΠ if the gain of
the new policy with respect to~wnew improved by more thanδ. With this approach, if the
optimal polices are the same or similar for many weight vectors, we will only store a small
number of policies, and achieve significant transfer.

3 Variable-Reward Hierarchical Reinforcement Learning
Framework

In HRL [1], the original MDPM is split into sub-SMDPs{M0,M1, . . . ,Mn}, where
each sub-SMDP represents a subtask (composite or primitive). Solving the root taskM0

solves the entire MDPM. The task hierarchy is represented as a directed acyclic graph
known as thetask graphthat represents the task-subtask relationships. All primitive ac-
tions of the original MDP are represented as leaf nodes in thetask graph. All subtasks
except the root and the primitive actions have explicit termination conditions; the primitive
actions terminate immediately and the root never terminates. The task hierarchy for the
RTS domain is shown in Figure 1(b).

A local policyπi for the subtaskMi is a mapping from the states to the child tasks ofMi.
A hierarchical policyπ for the overall task is an assignment of a local policyπi to each sub-
MDPMi. Every subtaskMi is associated with an abstraction functionBi which abstracts
the states into groups that have the same task-specific valuefunction. The objective is to
learn a recursively optimal policy that optimizes the policy for each subtask assuming that
its children’s policies are optimized.

For Variable-Reward HRL, in every subtask (but the Root) we store the total expected

reward during that subtask, and the expected duration of thesubtask for every state. Storing
the parameters of the value function that are independent ofthe global average rewardρ
allows for the transfer of any subtree of the task hierarchy across different MDPs. For
action selection, the objective is to maximize the weightedaverage reward (the dot product
of the average reward vector with the weight vector). The value function decomposition
for a recursively optimal policy satisfies the following equations:

~hi(s) = ~r(s) if i is a primitive subtask

= 0 if s is a terminal/goal state fori

= ~hj(Bj(s)) +
∑

s′∈S

P(s′|s, j) · ~hi(s
′) otherwise,

wherej = argmax
a

{

~w ·

(

~ha(Ba(s)) − ρ · ta(Ba(s)) + E
[

~hi(s
′) − ~ρ · ti(s

′)
]

)}

At Root, we only store the average adjusted reward because itnever terminates:

~hRoot(s) = max
j

{

~w ·

(

~hj(Bj(s)) − ~ρ · ~tj(Bj(s)) +
∑

s′∈S

P(s′|s, j) · ~hj(s
′)

)

}

Our model-based algorithm learns the transition models foreach subtask and uses the above
equations to update the task-specific value functions. The agent stores the newly learned
hierarchical policy for a new weight vectorwnew only if wnew·ρ−wnew·ρinitial > δ. Further,
the value function for a subtask is stored only when at least one of its components for at
least one of the states is different from previously stored versions of this subtask by more
thanε; otherwise, a pointer to this previously stored subtask value function suffices.

4 Experimental Results

(a)

Root

Harvest(l) Deposit Attack

Goto(k)pick put

north south east west

attack

idle

(b)

Figure 1: RTS domain and the corresponding task hierarchy.

We consider a simplified RTS game shown in Figure 1(a). It is a grid world that contains
peasants, the peasants’ home base, resource locations (forests and goldmines) where the
peasants can harvest wood or gold, and an enemy base which canbe attacked. The primitive
actions available to a peasant are moving one cell to thenorth, south, east, andwest,
pick a resource,put a resource,attack the enemy base, andidle (no-op). The
following results are based on a single peasant game in a25×25 grid with 3 forests cells, 2
goldmines, a home base, and an enemy base. The resources get regenerated stochastically.
The enemy also appears stochastically and stays till it has been destroyed. Reward weights
are generated randomly and dictate the relative value of collecting the various resources or
attacking the enemy.

Figures 2(a) and 2(b) plot learning curves for a test reward weight after having seen zero
through ten previous training weights, for both the flat and VRHRL learners (averaged over
10 training sets). The learning curves converge much fasterfor VRHRL. In the flat case we
see “negative transfer” where learning based on one previous weight is worse than learning
from scratch. This is unsurprising given that currently we always attempt to transfer past
experience, even when experience is limited. HierarchicalRL seems to avoid such negative
transfer by clustering experience into similar subtasks.

As another measure of transfer, letFY be the area between the learning curve and its
optimal value for problemY with no prior learning experience onX, andFY |X be the area
between the learning curve and its optimal value for problemY given prior training onX.
The transfer ratio is defined asFX/FY |X . The transfer ratio is greater for the VRHRL
learner than for the flat learner.

-0.5

 0

 0.5

 1

 1.5

 2

0e+0 5e+5 1e+6 2e+6 2e+6

A
ve

ra
ge

 R
ew

ar
d

Time Step

0
1
2
3
4
5
6
7
8
9

10

(a) Learning curves for the VRHRL learner.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0e+0 5e+5 1e+6 2e+6 2e+6

A
ve

ra
ge

 R
ew

ar
d

Time Step

0
1
2
3
4
5
6
7
8
9

10

(b) Learning curves for the flat learner.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

T
ra

ns
fe

r
ra

tio

Training weights

(c) Transfer ratio for the VRHRL learner.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 2 4 6 8 10

T
ra

ns
fe

r
ra

tio

Training weights

(d) Transfer ratio for the flat learner.

Figure 2: Experimental results.

5 Conclusions and Future Work

In this paper, we have shown that hierarchical task structure can accelerate transfer across
variable-reward MDPs more so than in the non-hierarchical case. Extending these results
to MDP families with slightly different dynamics would be interesting. Another possible
direction is an extension to shared subtasks in the multi-agent setting [2].

References
[1] T. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function Decompo-

sition. Journal of Artificial Intelligence Research, 9:227–303, 2000.

[2] N. Mehta and P. Tadepalli. Multi-Agent Shared Hierarchy Reinforcement Learning. ICML
Workshop on Richer Representations in Reinforcement Learning, 2005.

[3] S. Natarajan and P. Tadepalli. Dynamic Preferences in Multi-Criteria Reinforcement Learning.
In Proceedings of ICML-05, 2005.

