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Abstract. We give dimension-free and data-dependent bounds for lin-
ear multi-task learning where a common linear operator is chosen to
preprocess data for a vector of task speci�c linear-thresholding classi-
�ers. The complexity penalty of multi-task learning is bounded by a
simple expression involving the margins of the task-speci�c classi�ers,
the Hilbert-Schmidt norm of the selected preprocessor and the Hilbert-
Schmidt norm of the covariance operator for the total mixture of all task
distributions, or, alternatively, the Frobenius norm of the total Gramian
matrix for the data-dependent version. The results can be compared to
state-of-the-art results on linear single-task learning.

1 Introduction

Simultaneous learning of di¤erent tasks under some common constraint, often
called multi-task learning, has been tested in practice with good results under a
variety of di¤erent circumstances (see [5], [8], [17], [18]). The technique has been
analyzed theoretically and in some generality (see Baxter [6] and Zhang[18]).
The purpose of this paper is to improve some of these theoretical results in a
special case of practical importance, when input data is represented in a linear,
potentially in�nite dimensional space, and the common constraint is a linear
preprocessor.

A simple way to understand multi-task learning and its potential advantages
is perhaps agnostic learning with an input space X and a �nite set F of hy-
potheses f : X !f0; 1g. For a hypothesis f 2 F let er(f) be the expected error
and e�r(f)the empirical error on a training sample S of size n (drawn iid from
the underlying task distribution) respectively. Combining Hoe¤ding�s inequality
with a union bound one shows (see e.g. [1]), that with probability greater than
1� � we have for every f 2 F the error bound

er (f) � e�r (f) + 1p
2n

p
ln jFj+ ln (1=�): (1)

Suppose now that there are a set Y, a rather large set G of preprocessors g :
X ! Y, and another set H of classi�ers h : Y ! f0; 1g with jHj � jFj. For a
cleverly chosen preprocessor g 2 G it will likely be the case that we �nd some
h 2 H such that h � g has the same or even a smaller empirical error than the
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best f 2 F . But this will lead to an improvement of the bound above (replacing
jFj by jHj) only if we choose g before seeing the data, otherwise we incur a large
estimation penalty for the selection of g (replacing jFj by jH � Gj).
The situation is improved if we have a set of m di¤erent learning tasks with

corresponding task distributions and samples S1; :::; Sm, each of size n and drawn
iid from the corresponding distributions. We now consider solutions h1 � g; :::
hm � g for each of the m tasks where the preprocessing map g 2 G is constrained
to be the same for all tasks and only the hl 2 H specialize to each task l at hand.
Again Hoe¤ding�s inequality and a union bound imply that with probability
greater 1� � we have for all (h1; :::; hm) 2 Hm and every g 2 G

1

m

mX
l=1

erl (hl � g) �
1

m

mX
l=1

e�rl (hl � g) +
1p
2n

r
ln jHj+ ln jGj+ ln (1=�)

m
: (2)

Here erl (f) and e�rl (f) denote the expected error in task l and the empirical
error on training sample Sl respectively. The left hand side above is an average
of the expected errors, so that the guarantee implied by the bound is a little
weaker than the usual PAC guarantees (but see Ben-David [7] for bounds on
the individual errors). The �rst term on the right is the average empirical error,
which a multi-task learning algorithm seeks to minimize. We can take it as an
operational de�nition of task-relatedness relative to (H;G) that we are able to
obtain a very small value for this term. The remaining term, which bounds the
estimation error, now exhibits the advantage of multi-task learning: Sharing the
preprocessor implies sharing its cost of estimation, and the entropy contribution
arising from the selection of g 2 G decreases with the number of learning tasks.
Since by assumption jHj � jFj, the estimation error in the multi-task bound
(2) can become much smaller than in the single task case (1) if the number m
of tasks becomes large.
The choice of the preprocessor g 2 G can also be viewed as the selection of

the hypothesis space H � g. This leads to an alternative formulation of multi-
task learning, where the common object is a hypothesis space chosen from a
class of hypothesis spaces (in this case fH � g : g 2 Gg), and the classi�ers for
the individual tasks are all chosen from the selected hypothesis space. Here
we prefer the functional formulation of selecting a preprocessor instead of a
hypothesis space, because it is more intuitive and su¢ cient in the situations
which we consider.

The arguments leading to (2) can be re�ned and extended to certain in�nite
classes to give general bounds for multi-task learning ([6] and [18]). In this paper
we concentrate on the case where the input space X is a subset of the unit ball in
a Hilbert space H, the class G of preprocessors is a set A of bounded symmetric
linear operators on H, and the class H is the set of classi�ers hv obtained by
0-thresholding linear functionals v in H with kvk � B, that is

hv (x) = sign (hx; vi) and h� � T (x) = sign (hTx; vi) ; x 2 H;T 2 G, kvk � B:
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The learner now searches for a multi-classi�er hv � T = (h�1 � T; :::; h�m � T )
where the preprocessing operator T 2 A is the same for all tasks and only the
vectors vl specialize to each task l at hand. We desired multi-classi�er hv � T
should have a small value of the average error

er (hv � T ) =
1

m

mX
l=1

erl (hvl � T ) =
1

m

mX
l=1

Pr
�
sign

�

TX l; vl

��
6= Y l

	
;

where X l and Y l are the random variables modelling input-values and labels for
the l-th task. To guide this search we look for bounds on er(hv � T ) in terms of
the total observed data for all tasks, valid uniformly for all v =

�
v1; :::; vm

�
with

vl

 � B and all T 2 A. We will prove the following :

Theorem 1. Let � 2 (0; 1). With probability greater than 1 � � it holds for all
v =

�
v1; :::; vm

�
2 H with



vl

 � 1 and all bounded symmetric operators T on
H with kTkHS � 1, and for all 
 2 (0; 1) that

er (hv � T ) � e�r
 (v � T ) +
8 kTkHS


p
n

r
kCkHS +

1

m
+

s
ln 4

�


2nm
:

Here e�r
 (v � T ) is a margin-based empirical error estimate, bounded by the
relative number of examples

�
X l
i ; Y

l
i

�
in the total training sample for all tasks l,

where Y li


TX l

i ; v
l
�
< 
 (see section 4).

The quantity kTkHS is the Hilbert-Schmidt norm of T , de�ned for symmetric
T by

kTkHS =
�X

�2i

�1=2
;

where �i is the sequence of eigenvalues of T (counting multiplicities, see section
2).
C is the total covariance operator corresponding to the mixture of all the

task-input-distributions in H. Since data is constrained to the unit ball in H we
always have kCkHS � 1 (see section 3).

The above theorem is the simplest, but not the tightest or most general form
of our results. For example the factor 8 on the right hand side can be decreased
to be arbitrarily close to 2, thereby incurring only a logarithmic penalty in the
last term.
A special case results from restricting the set of candidate preprocessors to

Pd, the set of orthogonal projections in H with d-dimensional range. In this case
learning amounts to the selection of a d-dimensional subspace M of H and of an
m-tuple of vectors vl in M (components of vl orthogonal to M are irrelevant to
the projected data). All operators T 2 Pd satisfy kTkHS =

p
d, which can then

be substituted in the above bound. This covers the case considered by Ando and
Zhang ([18]), where a practical algorithm for this type of multi-task learning is
presented.
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The bound in the above theorem is dimension free, it does not require the
data distribution in H to be con�ned to a �nite dimensional subspace. Almost
to the contrary: Suppose that the input data is distributed uniformly on M \S1
where M is a k-dimensional subspace in H and S1 is the sphere consisting of
vectors with unit norm inH. Then C has the k-fold eigenvalue 1=k, the remaining
eigenvalues being zero. Therefore kCkHS = 1=

p
k, so part of the bound above

decreases to zero as the dimensionality of the data-distribution increases. The
fact that our bounds are dimension free (in contrast to those in [18], for example)
allows their general use for multi-task learning in kernel-induced Hilbert spaces
(see [9]).
If we compare the second term on the right hand side to the estimation error

bound in (2), we can recognize a certain similarity: Loosely speaking we can
identify kTk2HS =m with the cost of estimating the operator T , and kTk

2
HS kCkHS

with the cost of �nding the linear classi�ers v1; :::; vm. The order of dependence
on the number of tasks m is the same in Theorem 1 as in (2).
In the limit m ! 1 it is preferable to use a di¤erent bound (see Theorems

6 and 7), at the expense of slower convergence in m. The main inequality of the
theorem then becomes

er (hv � T ) � e�r
 (v � T ) +
2


T 2

1=2

HS

(1� �)2 

p
n

�
kCk2HS +

3

m

�1=4
+

s
ln 1

�
�2

2nm
: (3)

for some very small � > 0 to be �xed in advance. If T is an orthogonal projection
with d-dimensional range then



T 2

1=2
HS

= d1=4, so for a large number of tasks
m the bound on the estimation error becomes approximately

2d1=4 kCk1=2HS



p
n

:

One of the best dimension-free bounds for linear single-task learning (see e.g.
Bartlett and Mendelson [2] or Lemma 4 below) would give 2= (


p
n) for this

term, if all data is constrained to unit vectors. We therefore expect superior
estimation for multi-task learning of d-dimensional projections with large m,
whenever d1=4 kCk1=2HS � 1. If we again assume the data-distribution to be uni-
form on M \ S1 with M a k-dimensional subspace, this is the case whenever
d� k, that is, qualitatively speaking, whenever the dimension of the utilizable
part of the data is considerably smaller than the dimension of the total data
distribution.

The results stated above give some insights, but they have the practical
disadvantage of being unobservable, because they depend on the properties of
the covariance operator C, which in turn depends on an unknown data distri-
bution. One way to solve this problem is using the fact that the �nite-sample
approximations to the covariance operator have good concentration properties
(see Theorem 3 below). The corresponding result is:
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Theorem 2. With probability greater than 1�� in the sample X it holds for all
v1; :::; vm 2 H with kvlk � 1 and all bounded symmetric operators T on H with
kTkHS � 1, and for all 
 2 (0; 1) that

1

m

mX
l=1

er (hvl � T ) �
1

m

mX
l=1

e�r
 (vl � T )

+
8 kTkHS


p
n

r
1

mn




Ĉ (X)



Fr
+
1

m
+

s
9 ln 8

�


2nm
:

where the



Ĉ (X)




Fr
is the Frobenius norm of the gramian.

By de�nition 


Ĉ (X)



Fr
=

0@X
l;r;i;j



X l
i ; X

r
j

�21A1=2

:

Here X l
i is the random variable describing the i-th data point in the sample

corresponding to the l-th task. The corresponding label Y li enters only in the

empirical margin error. The quantity (mn)�1



Ĉ (X)




Fr
can be regarded as an

approximation to kCkHS , valid with high probability, so that Theorem 2 is a
sample based version of Theorem 1.

In section 2 we introduce the necessary terminology and results on Hilbert-
Schmidt operators and in section 3 the covariance operator of random elements
in a Hilbert space. Section 4 gives a formal de�nition of multi-task systems and a
general PAC bound in terms of Rademacher complexities. For the readers bene�t
a proof of this bound is given in an appendix, where we follow the path prepared
by Kolchinskii and Panchenko ([11]) and Bartlett and Mendelsson ([2]). In sec-
tion 5 we study the Rademacher complexities of linear multi-task systems. In
section 6 we give bounds for non-interacting systems, which are essentially equiv-
alent to single-task learning, and derive bounds for proper, interacting multi-task
learning, including the above mentioned results. We conclude with the construc-
tion of an example to demonstrate the advantages of multi-task learning.

2 Hilbert-Schmidt operators

For a �xed real, separable Hilbert space H, with inner product h:; :i and norm
k:k, we de�ne a second real, separable Hilbert space consisting of Hilbert-Schmidt
operators. With HS we denote the real vector space of operators T on H
satisfying

P1
i=1 kTeik

2 � 1 for every orthonormal basis (ei)
1
i=1 of H. Every

T 2 HS is bounded. For S; T 2 HS and an orthonormal basis (ei) the seriesP
i hSei; T eii is absolutely summable and independent of the chosen basis. The

number hS; T iHS =
P
hSei; T eii de�nes an inner product on HS, making it into
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a Hilbert space. We denote the corresponding norm with k:kHS in contrast to
the usual operator norm k:k1 (see Reed and Simon [16] for background on func-
tional analysis). We use HS� to denote the set of symmetric Hilbert-Schmidt
operators. For every member of HS� there is a complete orthonormal basis of
eigenvectors, and for T 2 HS� the norm kTkHS is just the `2-norm of its se-
quence of eigenvalues. With HS+ we denote the members of HS� with only
nonnegative eigenvalues.
We use two simple maps from H or H2 to HS to relate the geometries of

objects in H to the geometry in HS.

De�nition 1. Let x; y 2 H. We de�ne two operators Qx and Gx;y on H by

Qxz = hz; xix, 8z 2 H
Gx;yz = hx; zi y, 8z 2 H:

We will frequently use parts of the following lemma, the proof of which is
very easy.

Lemma 1. Let x; y; x0; y0 2 H and T 2 HS. Then
(i) Qx 2 HS+ and kQxkHS = kxk

2
:

(ii) hQx; QyiHS = hx; yi
2
:

(iii) hT;QxiHS = hTx; xi.
(iv) hT �T;QviHS = kTvk

2
:

(v) QyQx = hx; yiGx;y:
(vi) Gx;y 2 HS and kGx;ykHS = kxk kyk.
(vii) hGx;y; Gx0;y0iHS = hx; x0i hy; y0i
(viii) hT;Gx;yiHS = hTx; yi.

Proof. For x = 0 (iii) is obvious. For x 6= 0 chose an orthonormal basis (ei)11 , so
that e1 = x= kxk. Then e1 is the only nonzero eigenvector of Qx with eigenvalue
kxk > 0. Also

hT;QxiHS =
X
i

hTei; Qxeii = hTx;Qxxi = kxk2 = hTx; xi ;

which gives (iii). (ii), (i) and (iv) follow from substitution of Qy, Qx and T �T
respectively for T . (v) follows directly from the de�nition when applied to any
z 2 H. Let (ek)1k=1 be any orthonormal basis. Then x =

P
k hx; eki ek, so by

boundedness of T

hTx; yi =
*
T
X
k

hx; eki ek; y
+
=
X
k

hTek; hx; eki yi =
X
k

hTek; Gx;yeki

= hT;Gx;yiHS ;

which is (viii). Similarly

hGx;y; Gx0;y0iHS =
X
k

hhx; eki y; hx0; eki y0i = hy; y0i
X
k

hx; eki hx0; eki

= hx; x0i hy; y0i ;
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which gives (vii) and (vi). �

The following application of Lemma 1 is the key to our main results.

Lemma 2. Let T 2 HS and w1; :::; wm and v1; :::; vm vectors in H with kvik �
B. Then

mX
l=1

hTwl; vli � B kTkHS

0@X
l;r

jhwl; wrij

1A1=2

and
mX
l=1

hTwl; vli � Bm1=2 kT �Tk1=2HS

0@X
l;r

hwl; wri2
1A1=4

Proof. Without loss of generality assume B = 1. Using Lemma 1 (viii), Schwartz�
inequality in HS and 1 (vii) we have

mX
l=1

hTwl; vli =
*
T;

mX
l=1

Gwl;vl

+
HS

� kTkHS







mX
l=1

Gwl;vl







HS

= kTkHS

0@ mX
l;r

hwl; wri hvl; vri

1A1=2

� kTkHS

0@ mX
l;r

jhwl; wrij

1A1=2

:

This proves the �rst inequality. Also, using Schwartz�inequality in H and Rm,
Lemma 1 (iv) and Schwartz�inequality in HS

mX
l=1

hTwl; vli �
 

mX
l=1

kvlk2
!1=2 mX

l=1

kTwlk2
!1=2

�
p
m

*
T �T;

mX
l=1

Qwl

+1=2
HS

�
p
m kT �Tk1=2HS







mX
l=1

Qwl







1=2

HS

=
p
m kT �Tk1=22

0@X
l;r

hwl; wri2
1A1=4

�

The set of d-dimensional, orthogonal projections in H is denoted with Pd.
We have Pd � HS� and if P 2 Pd then kPkHS =

p
d and P 2 = P .

An operator T is called trace-class if
P1

i=1 hTei; eii is an absolutely conver-
gent series for every orthonormal basis (ei)

1
i=1 of H. In this case the number

tr (T ) =
P1

i=1 hTei; eii is called the trace of T and it is independent of the
chosen basis.
If A � HS� is a set of symmetric and bounded operators in H we use the

notation

kAkHS = sup fkTkHS : T 2 Ag and A
2 =

�
T 2 : T 2 A

	
:
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3 Vector- and operator-valued random variables

Let (
;�; �) be a probability space with expectation E [F ] =
R


Fd� for a

random variable F : 
 ! _R: Let X be a random variable with values in H,
such that E [kXk] � 1. The linear functional v 2 H 7! E [hX; vi] is bounded
by E [kXk] and thus de�nes (by the Riesz Lemma) a unique vector E [X] 2 H
such that E [hX; vi] = hE [X] ; vi ;8v 2 H, with kE [X]k � E [kXk].
We now look at the random variable QX , with values in HS. Suppose that

E
h
kXk2

i
� 1. Passing to the space HS of Hilbert-Schmidt operators the

above construction can be carried out again: By Lemma 1 (i) E [kQXkHS ] =
E
h
kXk2

i
� 1, so there is a unique operator E [QX ] 2 HS such that E [hQX ; T iHS ] =

hE [QX ] ; T iHS ;8T 2 HS.

De�nition 2. The operator E [QX ] is called the covariance operator of X.

Lemma 3. The covariance operator E [QX ] 2 HS+ has the following proper-
ties.
(i) kE [QX ]kHS � E [kQXkHS ].
(ii) hE [QX ] y; zi = E [hy;Xi hz;Xi] ;8y; z 2 H:
(iii) tr (E [QX ]) = E

h
kXk2

i
:

(iv) For H-valued independent X1 and X2 with E
h
kXik2

i
� 1 we have

hE [QX1
] ; E [QX2

]iHS = E
h
hX1; X2i2

i
:

Proof. (i) follows directly from the constructiuon, (iv) from the identity
hE [QX1 ] ; E [QX2 ]iHS = E [hQX1 ; QX2iHS ]. Let y; z 2 H. Then using 1 (viii) we
get

hE [QX ] y; zi = hE [QX ] ; Gy;ziHS = E
�
hQX ; Gy;ziHS

�
= E [hQXy; zi]

= E [hy;Xi hz;Xi]

and hence (ii). We have with orthonormal basis (ek)
1
k=1 and using (ii)

tr (E [QX ]) =
X
k

hE [QX ] ek; eki =
X
k

E [hek; Xi hek; Xi] = E
h
kXk2

i
;

which gives (iii). Substitution of an eigenvector v for both y and z in (ii) shows
that the corresponding eigenvalue must be nonnegative, so E [QX ] 2 HS+. �

Property (ii) above is sometimes taken as the de�ning property of the covari-
ance operator (see [4]).
If X is distributed uniformly onM\S1, whereM is a k-dimensional subspace

and S1 the unit sphere in H, then E
h
hX; yi2

i
= hE [QX ] y; yi is zero if and only
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if y 2 M?, so the range of E [QX ] is M , so there are exactly k-eigenvectors
corresponding to non-zero eigenvalues of E [QX ]. By symmetry these eigenval-
ues must all be equal, and by (iii) above they sum up to 1, so E [QX ] has the
k-fold eigenvalue 1=k, with zero as the only other eigenvalue. It follows that
kE [QX ]kHS = 1=

p
k. We have given this derivation to illustrate the tendency

of the Hilbert-Schmidt norm of the covariance operator of a distribution con-
centrated on unit vectors to decrease with the e¤ective dimensionality of the
distribution. This idea is relevant to the interpretation of our results.
The fact that HS is a separable Hilbertspace just as H allows to de�ne

an operator E [T ] whenever T is a random variable with values in HS and
E [kTkHS ] <1. Also any result valid in H has a corresponding analogue valid
in HS. We quote a corresponding operator-version of a Theorem of Christianini
and Shawe-Taylor [15] on the concentration of independent vector-valued random
variables.

Theorem 3. Suppose that T1; :::; Tm are independent random variables in H
with kTik � 1. Then for all � > 0 with probability greater than � we have




 1m

mX
i=1

E [Ti]�
1

m

mX
i=1

Ti







HS

� 2p
m

 
1 +

r
ln (1=�)

2

!
:

Apply this with Ti = QXi
where the Xi are iid H-valued with kXik � 1. The

theorem then shows that the covariance operator E [QX ] can be approximated in
HS-norm with high probability by the empirical estimates (1=m)

P
iQXi

. The
quantity 




X

i

QXi







HS

=

0@X
i;j

hXi; Xji2
1A1=2

is the Frobenius norm of the Gramian (or kernel-) matrix Ĉ(X)ij = hXi; Xji, de-
noted




Ĉ(X)



Fr
. An immediate corollary to the above is, that (1=m)




Ĉ(X)



Fr

is with high probability a good approximation of kE [QX ]kHS . In the proof of
Theorem 2 we will not need this fact however.

4 Multi-task systems and general bounds

For our discussion of multi-task learning we concentrate on binary labeled data.
Let (
;�; �) be a probability space. We assume that there are m independent
random variables Zl =

�
X l; Y l

�
: 
 ! X�f�1; 1g, where

� l 2 f1; :::;mg identi�es one of the m learning tasks,
�X l models the input data of the l-th task, distributed in a set X , called the
input space.

� Y l 2 f�1; 1g models the output-, or label-data of the l-th task.
�For each l 2 f1; :::;mg there is an n-tuple of independent random variables�

Zli
�n
i=1

=
�
X l
i ; Y

l
i

�n
i=1
, where each Zli is identically distributed to Z

l.
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The random variable Z =
�
Zli
�(n;m)
(i;l)=(1;1)

is called the training sample or train-

ing data. We also write X =
�
X l
i

�(n;m)
(i;l)=(1;1)

. We use the superscript l to identify
learning tasks running from 1 to m, the subscript i to identify data points in
the sample, running from 1 to n. We will use the notations x =

�
xli
�(n;m)
(i;l)=(1;1)

for

generic members of (Xn)m and z =
�
zli
�(n;m)
(i;l)=(1;1)

= (x;y) =
�
xli; y

l
i

�(n;m)
(i;l)=(1;1)

for

generic members of ((X�f�1; 1g)n)m.
A multiclassi�er is a map h : X ! f�1; 1gm. We write h =

�
h1; :::; hm

�
and

interpret hl (x) as the label assigned to the vector x when the task is known to
be l. The average error of a multiclassi�er h is the quantity

er (h) =
1

m

mX
l=1

Pr
�
hl
�
X l
�
6= Y l

	
,

which is just the misclassi�cation probability averaged over all tasks. Typically
a classi�er is chosen from some candidate set minimizing some error estimate
based on the training data Z. Here we consider zero-threshold classi�ers hf which
arise as follows:
Suppose that F is a class of vector valued functions f : X ! Rm with

f =
�
f1; :::; fm

�
. A function f 2 F de�nes a multi-classi�er hf =

�
h1f ; :::; h

m
f

�
through hlf (x) =sign

�
f l (x)

�
. To give uniform error bounds for such classi�ers

in terms of empirical estimates, we de�ne for 
 > 0 the margin functions

�
 (t) =

8<: 1 if t � 0
1� t=
 if 0 < t < 

0 if 
 � t

;

and for f 2 F the random variable

e�r
 (f) =
1

mn

mX
l=1

nX
i=1

�

�
Y li f

l
�
X l
i

��
,

called the empirical 
-margin error of f . The following Theorem (taken from [2]
with minor modi�cations to adapt to the multi-task situation and combined with
the model-selection lemma 15.5 in [1], Lemma 5 in this paper) gives a bound on
er(hf ) in terms of e�r
 (f), valid with high probability uniformly in f 2 F and 
.

Theorem 4. Let �; � 2 (0; 1)
(i) With probability greater than 1� � it holds for all f 2 F and all 
 2 (0; 1)

that

er (hf ) � e�r
 (f) +
1


 (1� �)E
h
R̂mn (F) (X)

i
+

r
ln (1= (�
�))

2nm
:

(ii) With probability greater than 1�� it holds for all f 2 F and all 
 2 (0; 1)
that

er (hf ) � e�r
 (f) +
1


 (1� �)R̂
m
n (F) (X) +

r
9 ln (2= (�
�))

2nm
:
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Here R̂mn (F) is the empirical Rademacher complexity in the sense of the
following

De�nition 3. Let
�
�li : l 2 f1; :::;mg ; i 2 f1; :::; ng

	
be a collection of indepen-

dent random variables, distributed uniformly in f�1; 1g. The empirical Rademacher
complexity of a class F of functions f : X ! Rm is the function R̂mn (F) de�ned
on (Xn)m by

R̂mn (F) (x) = E�

"
sup
f2F

2

mn

mX
l=1

nX
i=1

�lif
l
�
xli
�#
:

For the readers convenience we give a proof of Theorem 4 in the appendix.
The bounds in the Theorem each involve three terms. The last one expresses

the dependence of the estimation error on the con�dence parameter � and a
model-selection penalty ln (1= (
�)) for the choice of the margin 
. Note that it
generally decreases as 1=

p
nm. This is not an a priori advantage of multi-task

learning, but a trivial consequence of the fact that we estimate an average of
m probabilities (in contrast to Ben David [7] where bounds are valid for each
individual task - of course under more restrictive assumptions). The 1=

p
nm

decay however implies that even for moderate values of m and n the parameter
� in Theorem 4 can be chosen very small, so that the factor 1= (1� �) in the
second term on the right of the two bounds is very close to unity.
The second term involves the complexity of the function class F , either as

measured in terms of the distribution of the random variable X or in terms of
the observed sample. Since the distribution of X is unobservable in practice, the
bound (i) is primarily of theoretical importance, while (ii) can be used to drive
an algorithm which selects the multi-classi�er hf� , where (f�; 
) 2 F � (0; 1) are
chosen to minimize the right side of the bound with given �, �. It is questionable
if minimizing upper bounds is a good strategy, but it can serve as a motivating
guideline.
Of key importance in the analysis of these algorithms is the empirical Rademacher

complexity R̂mn (F) (X), as observed on the sample X, and its expectation, mea-
suring respectively the sample- and distribution-dependent complexities of the
function class F . Bounds on these quantities can be substituted in Theorem 4
to give corresponding error bounds.

5 The Rademacher complexity of linear multi-task
learning

We will now concentrate on multi-task learning in the linear case, when the data
lives in a real, separable Hilbert space H, by means of some kernel induced-
embedding (see [9]), the details of which will not concern us at this point. We
therefore take H as input space X , so that the random variables X l take values
in H for all l 2 f1; :::;mg, and we generally require



X l


 � 1. The case 

X l



 = 1
where the data is constrained to the unit sphere in H is of particular interest,
corresponding to a class of radial basis function kernels.
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We write Cl for the covariance operator E [QXl ] and C for the total co-
variance operator C = (1=m)

P
l C

l, corresponding to a uniform mixture of

distributions. By Lemma 3 we have


Cl



HS
� tr

�
Cl
�
= E

h

X l


2i � 1.

Let B > 0, let T be a �xed symmetric, bounded linear operator on H with
kTk1 � 1, and let A be a set of symmetric, bounded linear operators T on H,
all satisfying kTk1 � 1. We will consider the vector-valued function classes

FB = fx 2 H 7! (v1; :::; vm) (x) := (hx; v1i ; :::; hx; vmi) : kvik � Bg
FB � T = fx 2 H 7! (v1; :::; vm) � T (x) := (hTx; v1i ; :::; hTx; vmi) : kvik � Bg
FB � A = fx 2 H 7! (v1; :::; vm) � T (x) : kvik � B; T 2 Ag :

The algorithms which chose from FB and FB � T are essentially trivial ex-
tensions of linear single-task learning, where the tasks do not interact in the
selection of the individual classi�ers vi, which are chosen independently. In the
case of FB � T the preprocessing operator T is chosen before seeing the training
data. Since kTk1 � 1 we have FB � T � FB , so that we can expect a reduced
complexity for FB �T and the key question becomes if the choice of T (possibly
based on experience with other data) was lucky enough to allow for a su¢ ciently
low empirical error.

The non-interacting classes FB and FB � T are important for comparison
to FB � A which represents proper multi-task learning. Here the preprocessing
operator T is selected from A in response to the data. The constraint that T
be the same for all tasks forces an interaction of tasks in the choice of T and
(v1; :::; vm), deliberately aiming for a low empirical error. At the same time we
also have FB � A � FB , so that again a reduced complexity is to be expected,
giving a smaller contribution to the estimation error. The promise of multi-
task learning is based on the combination of these two ideas: Aiming for a low
empirical error, using a function class of reduced complexity.

We �rst look at the complexity of the function class FB . The proof of the
following lemma is essentially the same as the proof of Lemma 22 in [2].

Lemma 4. We have

R̂mn (FB) (x) �
2B

nm

mX
l=1

 
nX
i=1



xli

2
!1=2

E
h
R̂mn (FB) (X)

i
� 2Bp

n

1

m

mX
l=1

�
E
h

X l



2i�1=2 = 2Bp
n

1

m

mX
l=1

tr
�
Cl
�1=2
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Proof. Using Schwartz�and Jensen�s inequality and the independence of the �li
we get

R̂mn (FB) (x) = E�

"
sup

v1;:::;vm;kvlk�B

2

nm

mX
l=1

*
nX
i=1

�lix
l
i; vl

+#

� BE�

"
2

nm

mX
l=1







nX
i=1

�lix
l
i







#

� 2B

nm

mX
l=1

0@E�
24






nX
i=1

�lix
l
i







2
351A1=2

=
2B

nm

mX
l=1

 
nX
i=1



xli

2
!1=2

:

Jensen�s inequality then gives the second conclusion �

The �rst bound in the lemma is just the average of the bounds given by
Bartlett and Mendelson in [2] on the empirical complexities for the various task-
components of the sample. For inputs constrained to the unit sphere in H, when

X l



 = 1, both bounds become 2B=
p
n, which sets the mark for comparison

with the interacting case FB �A. For motivation we next look at the case FB �T ,
working with a �xed linear preprocessor T of operator norm bounded by 1. Using
the above bound we obtain

R̂mn (FB � T ) (x) = R̂mn (FB) (Tx) �
2B

nm

mX
l=1

 
nX
i=1



Txli

2
!1=2

; (4)

which is always bounded by B=
p
n, because kTxk � kxk ;8x. Using Lemma 1

(iv) we can rewrite the right side above as

2Bp
n

1

m

mX
l=1

*
T 2;

1

n

nX
i=1

Qxli

+1=2
HS

:

Taking the expectation and using the concavity of the root function gives, with
two applications of Jensen�s inequality and an application of Schwartz�inequality
(in HS),

E
h
R̂mn (FB � T ) (X)

i
� 2Bp

n



T 2

1=2
HS
kCk1=2HS ;

which can be signi�cantly smaller than B=
p
n, for example if T is a d-dimensional

projection, and the data-distribution is spread well over a much more than d-
dimensional submanifold of the unit ball in H, as explained in the introduction
and section 3. If we substitute the bound above in Theorem 4 we obtain an
inequality which looks like (3) in the limit m!1.
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We now consider the case where T is chosen from some set A of (symmetric,
bounded) candidate operators on the basis of the same sample X, simultaneous
to the determination of the classi�cation vectors v1; :::; vl. We give two bounds
each for the Rademacher complexity and its expectation, one which is somewhat
similar to other bounds for multi-task learning (e.g. (2)) and another one which
is tighter in the limit when the number of tasks m goes to in�nity.

Theorem 5. The following inequalities hold

R̂mn (FB � A) (x) �
2B kAkHSp

n

r
1

mn




Ĉ (x)



Fr
+
1

m
(5)

R̂mn (FB � A) (x) �
2B


A2

1=2

HSp
n

 �
1

mn




Ĉ (x)



Fr

�2
+
2

m

!1=4
(6)

E
h
R̂mn (FB � A) (X)

i
� 2B kAkHSp

n

r
kCkHS +

1

m
(7)

E
h
R̂mn (FB � A) (X)

i
�
2B


A2

1=2

HSp
n

�
kCk2HS +

3

m

�1=4
: (8)

Proof. Fix x and de�ne vectors wl = wl (�) =
Pn

i=1 �
l
ix
l
i depending on the

Rademacher variables �li. Then by Lemma 2 and Jensen�s inequality

R̂ (FB � A) (x) = E�

"
sup
T2A

sup
v1;:::;vm;kv1k�B

2

nm

mX
l=1

hTwl; vli
#

(9)

� 2B

nm
kAkHS E�

264
0@X

l;r

jhwl; wrij

1A1=2
375

� 2B

nm
kAkHS

0@X
l;r

E� [jhwl; wrij]

1A1=2

:

Now we have

E�

h
kwlk2

i
=

nX
i=1

nX
j=1

E�
�
�li�

l
j

� 

xli; x

l
j

�
=

nX
i=1



xli

2 : (10)

Also, for l 6= r, we get, using Jensen�s inequality and independence of the
Rademacher variables,

(E� [jhwl; wrij])2 � E�
h
hwl; wri2

i
(11)

=
nX
i=1

nX
j=1

nX
i0=1

nX
j0=1

E�
�
�li�

r
j�

l
i0�

r
j0
� 

xli; x

r
j

� 

xli0 ; x

r
j0
�

=
nX

i:j=1



xli; x

r
j

�2
:
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Taking the square-root and inserting it together with (10) in (9) we obtain the
following intermediate bound

R̂mn (FB � A) (x) �
2B kAkHS

nm

0B@ mX
l=1

nX
i=1



xli

2 +X
l 6=r

0@ nX
i;j=1



xli; x

r
j

�21A1=2
1CA
1=2

(12)
By Jensen�s inequality we have

1

m2

X
l 6=r

0@ nX
i;j=1



xli; x

r
j

�21A1=2

�

0@ 1

m2

mX
l;r=1

nX
i;j=1



xli; x

r
j

�21A1=2

=
1

m




Ĉ (x)



Fr
;

which together with (12) and


xli

 � 1 implies (5).

To prove (6) �rst use the second part of Lemma 2 and Jensen�s inequality to
get

R̂ (FB � A) (x) �
2B

n
p
m



A2

1=2
HS

0@X
l;r

E�

h
hwl; wri2

i1A1=4

: (13)

Now we have E�
�
�li�

l
j�
l
i0�

l
j0
�
� �ij�i0j0 + �ii0�jj0 + �ij0�ji0 so

E�

h
hwl; wli2

i
�

nX
i;j=1

�

X l
i



2 

X l
j



2 + 2 
X l
i ; X

l
j

�2�

� 2
 

nX
i=1



X l
i



2!2 + nX
i;j=1



X l
i ; X

l
j

�2

Inserting this together with (11) in (13) gives

R̂mn (FB � A) (x) �
2B


A2

1=2

HS

n
p
m

0@2 mX
l=1

 
nX
i=1



xli

2
!2
+

mX
l;r=1

nX
i;j=1



xli; x

r
j

�21A1=4

;

(14)
which together with



xli

 � 1 gives (6).
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Taking the expectation of (12), using Jensen�s inequality,


X l



 � 1 and
independence of X l and Xr for l 6= r, and Jensen�s inequality again, we get

E
h
R̂mn (FB � A) (X)

i

� 2B kAkHS
nm

0B@nm+X
l 6=r

0@E
24 nX
i;j=1



X l
i ; X

r
j

�2351A1=2
1CA
1=2

=
2B kAkHS

nm

0B@X
l 6=r

0@E
24* 1

n

nX
i=1

QXl
i
;
1

n

nX
j=1

QXr
j

+
HS

351A1=2

+ nm

1CA
1=2

=
2B kAkHSp

n

0@ 1

m2

X
l 6=r
hE [QXl ] ; E [QXr ]i1=2HS +

1

m

1A1=2

� 2B kAkHSp
n

0@* 1
m

mX
l=1

E [QXl ] ;
1

m

mX
r=1

E [QXr ]

+1=2
HS

+
1

m

1A1=2

;

which gives (7). In a similar way we obtain from (14)

E
h
R̂mn (FB � A) (X)

i

�
2B


A2

1=2

HS

n
p
m

0BB@2mn2 +mn+ mX
l;r

nX
i;j=1

(l;i) 6=(r;j)

D
E
h
QXl

i

i
; E
h
QXr

j

iE21CCA
1=4

�
2B


A2

1=2

HS

n
p
m

0@3mn2 +m2n2






E
"
1

mn

mX
l=1

nX
i=1

QXl
i

#





2

HS

1A1=4

;

which gives (8) �

6 Bounds for multi-task learning

Inserting the bounds of Theorem 5 in Theorem 4 immediately gives

Theorem 6. Let A be a be set of bounded, symmetric operators in H and �; � 2
(0; 1)
(i) With probability greater than 1 � � it holds for all f = (v1; :::; vm) � T 2

FB � A and all 
 2 (0; 1) that

er (hf ) � e�r
 (f) +
1


 (1� �)A+
r
ln (1= (�
�))

2nm
;
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where A is either

A =
2B kAkHSp

n

r
kCkHS +

1

m
(15)

or

A =
2B


A2

1=2

HSp
n

�
kCk2HS +

3

m

�1=4
: (16)

(ii) With probability greater than 1� � it holds for all f = (v1; :::; vm) � T 2
FB � A and for all 
 2 (0; 1) that

er (hf ) � e�r
 (f) +
1


 (1� �)A (X) +
r
9 ln (2= (�
�))

2nm
;

where the random variable A (X) is either

A (X) =
2B kAkHSp

n

r
1

mn




Ĉ (x)



Fr
+
1

m

or

A (X) =
2B


A2

1=2

HSp
n

 �
1

mn




Ĉ (x)



Fr

�2
+
2

m

!1=4
:

We can invoke again Lemma 5 to stratify over di¤erent operator norms. This
will give a very similar looking result, which we state in abbreviated fashion.

Theorem 7. Theorem 6 holds with the following modi�cations:

�The class FB � A is replaced by all of FB �HS�.
� kAkHS and



A2


HS

are replaced by kTkHS _1 and


T 2



HS
_1 respectively.

� (1� �) and (�
�) are replaced by (1� �)2 and
�
�
�2

�
respectively.

The passage from kTkHS to kTkHS _ 1 is an artifact introduced by the
strati�cation. We could also require kTkHS � 1. Setting � = 1=2 gives Theorem
1 and Theorem 2.

7 An Example

We conclude with an idealized example of a multi-task system to which our
bounds can be applied.
Fix numbers m; k 2 N and a �radius�� > 0. For each l 2 f1; :::;mg let �l be

a real random variable distributed uniformly on the set�
(l � 1)�
m

;
l�

m

�
[
�
� +

(l � 1)�
m

; � +
l�

m

�
;

such that �l and �r are independent for l 6= r. For l = 1; :::;m let V l be inde-
pendent random variables distributed uniformly on a sphere of radius

p
1� �2
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in Rk. All the �l and all the V l are now mutually independent. We now de�ne
a random variable X l with values in Rk+2 � `2 by

X l =
�
� cos�l; � sin�l; V l1 ; :::; V

l
k

�
and a labeling variable Y l with values in f�1; 1g by

Y l =

8<: 1 if �l 2
h
(l�1)�
m ; l�m

�
�1 if �l 2

h
� + (l�1)�

m ; � + l�
m

� :
We have de�ned a multi-task system with the following properties:

�The data is distributed on the unit-sphere.
�All the relevant data is contained in the �rst two coordinates.
�The remaining k coordinates a �lled up with noise of an amplitude

p
1� �2.

�The optimal unit vector to classify the l-th task is given by
�
cos�l; sin�l; 0; :::; 0

�
where �l = (l � 1=2) =m. It has a margin of �m = � cos (�=m) ! � as
m!1.

To appreciate the di¢ culty of learning imagine the variableX l to be �shu­ ed�
by an unknown unitary transformation U on `2, that is X l  U �X l.
Suppose we have a margin error of zero at margin �m, for unit vectors

v1 ; :::; vm. How certain can we be, that our classi�ers are any good? We will
study the behaviour of our bounds for non-interacting and interacting learning
under the following conditions:

�The dimensionality k of the noise is large.
�The amplitude � of the relevant coordinate values is very small, so that they
become buried in irrelevant information.

�The number of learning tasks m is large.

Since we have a margin error of zero we only need to consider the bounds
on the estimation error. Moreover, because m is large we will neglect the last
term in our bounds, which depends on the con�dence parameter. According to
Theorem 4 we are left with the term

E
h
R̂mn (F) (X)

i
�m

as an error bound, depending on the function class F from which the multi-
classi�er was chosen. For non-interacting learning, which also corresponds to the
single task case in (Bartlett Mendelson) we immediately obtain the bound

2

�m
p
n

(17)
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or a sample complexity (required sample size) M (�; �; k;m), depending on a
maximal allowed error and the other parameters �, k and m, of

M (�; �; k) =
4

�2m�
2
:

To compute the bound for interacting multi-task learning we �rst need to
�nd kCkHS . A lengthy calculation gives

kCk2HS =
�2

2
+
1� �2
k

:

If we substitute this into (16) of Theorem 6 and work with d-dimensional pro-
jections we obtain the bound

2d1=4

�m
p
n

�
�2

2
+
1� �2
k

+
3

m

�1=4
: (18)

This is superior to the non-interacting bound (17) if

d

�
�2

2
+
1� �2
k

+
3

m

�
< 1;

which will be the case for su¢ ciently large m and k if d�2=2 < 1. Since we work
with small values of �, the latter will happen even for unnecessarily large values
of d, but of course the best choice for interacting learning is with 2-dimensional
projections.
With 2-dimensional projections, in the limit of a large number of tasks m

and a large dimension k of the noise distribution, the interacting bound (18)
becomes

2
p
�n
;

which in comparison with the non-interacting bound (17) shows that an e¤ective
margin has been improved from � to

p
�. There is a corresponding reduction in

sample complexity, which for interacting learning now is

M (�; �; k) =
4

��2
:

For � � 10�1 this already amounts to a factor of 10.
We conclude with the remark that previous bounds on multi-task learning as

in [6] and [18] su¤er from linear scaling with the dimension k and behave poorly
on on this example.

Appendix

In this section we give a proof of Theorem 4 for the readers convenience. Most
of this material is combined from [1], [2], [3] and [18], and we make no claim to
originality for any of it. A preliminary result is
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Theorem 8. Let F be a [0; 1]m-valued function class on a space X , and X =�
X l
i

�(m;n)
(l;i)=(1;1)

a vector of X -valued independent random variables where for �xed

l and varying i all the X l
i are identically distributed. Fix � > 0. Then with

probability greater than 1� � we have for all f =
�
f1; :::; fm

�
2 F

1

m

mX
l=1

E
�
f l
�
X l
1

��
� 1

mn

mX
l=1

nX
i=1

f l
�
X l
i

�
+Rmn (F) +

r
ln (1=�)

2mn
:

We also have with probability greater than 1 � � for all f =
�
f1; :::; fm

�
2 F ,

that

1

m

mX
l=1

E
�
f l
�
X l
1

��
� 1

mn

mX
l=1

nX
i=1

f l
�
X l
i

�
+ R̂mn (F) (X) +

r
9 ln (2=�)

2mn
:

Proof. Let 	 be the function on Xmn given by

	 (x) = sup
f2F

1

m

mX
l=1

 
E
�
f l
�
X l
1

��
� 1
n

nX
i=1

f l
�
X l
i

�!

and let X0 be an iid copy of the Xmn-valued random variable X. Then

E [	 (X)] = EX

"
sup
f2F

1

mn
EX0

"
mX
l=1

nX
i=1

�
f l
��
X l
i

�0�� f l �X l
i

��##

� EXX0

"
sup
f2F

1

mn

mX
l=1

nX
i=1

�
f l
��
X l
i

�0�� f l �X l
i

��#

= EXX0

"
sup
f2F

1

mn

mX
l=1

nX
i=1

�li

�
f l
��
X l
i

�0�� f l �X l
i

��#
;

for any realization � =
�
�li
�
of the Rademacher variables, because the expecta-

tion EXX0 is symmetric under the exchange
�
X l
i

�0  ! X l
i . Hence

E [	 (X)] � EXE�

"
sup
f2F

2

mn

mX
l=1

nX
i=1

�lif
l
�
X l
i

�#
= Rmn (F) :

Now �x x 2 Xmn and let x0 2 Xmn be as x, except for one modi�ed coordinate�
xli
�0
. Since each f l has values in [0; 1] we have j	 (x)� 	 (x0)j � 1= (mn). So by

the one-sided version of the bounded di¤erence inequality (see McDiarmid [12])

Pr

(
	 (X) > EX0 [	 (X0)] +

r
ln (1=�)

2mn

)
� �:

Together with the above bound on E [	 (X)] and the de�nition of 	 this gives
the �rst conclusion.
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With x and x0 as above we have
���R̂mn (F) (x)� R̂mn (F) (x0)��� � 2= (mn) , so

by the other tail of the bounded di¤erence inequality

Pr

(
Rmn (F) < R̂mn (F) (X) +

r
4 ln (1=�)

2mn

)
� �;

which, combined with the �rst conclusion in a union bound, gives the second
conclusion �

We quote the following folklore theorem (see for example [3]) bounding the
Rademacher complexity of a function class composed with a �xed Lipschitz
function.

Theorem 9. Let F be an Rm-valued function class on a space X and suppose
that � : R! R has Lipschitz constant L. Let

� � F =
��
� � f1; :::; � � fm

�
:
�
f1; :::; fm

�
2 F

	
:

Then
R̂mn (� � F) � L R̂mn (F) .

Suppose now that F is an Rm-valued function class on X . For f =
�
f1; :::; fm

�
de�ne functions f 0 =

�
f 01; :::; f 0m

�
and f 00 =

�
f 001; :::; f 00m

�
, from X�f�1; 1g to

Rm or [0; 1]m respectively, by

f 0l (x; y) = yf l (x) and f 00l (x; y) = �
 � f 0l (x; y) = �
 (yf (x))

and function classes F 0 = ff 0 : f 2 Fg and F 00 = ff 00 : f 2 Fg. It follows from the
de�nition of R̂ that R̂mn (F 0) (x;y) = R̂mn (F) (x) for all (x;y) 2 (X�f�1; 1g)

nm.
Since �
 is Lipschitz with constant 


�1, the previous theorem implies that

R̂mn (F 00) (X;Y) � 
�1R̂mn (F) (X) and Rmn (F 00) � 
�1Rmn (F) : (19)

On the other hand, for every f =
�
f1; :::; fm

�
2 F we have

er (hf ) =
1

m

X
E
�
1(�1;0]

�
Y l1f

l
�
X l
1

���
� 1

m

X
E
h
�
 � (f 0)

l �
X l
1; Y

l
1

�i
=
1

m

X
E
h
(f 00)

l �
X l
1; Y

l
1

�i
(20)

and

1

mn

mX
l=1

nX
i=1

f 00l
�
X l
i ; Y

l
i

�
=

1

mn

mX
l=1

nX
i=1

�

�
Y li f

l
�
X l
i

��
= e�r
 (f) : (21)

Applying Theorem to the class F 00 and substitution of (20), (21) and (19) yield
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Theorem 10. Let F be a Rm-valued function class on a space X , 
 2 (0; 1)
and (X;Y) =

�
X l
i ; Y

l
i

�(m;n)
(l;i)=(1;1)

a vector of X�f�1; 1g-valued independent ran-
dom variables where for �xed l and varying i all the

�
X l
i ; Y

l
i

�
are identically

distributed. Fix � > 0. Then with probability greater than 1 � � we have for all
f 2 F

er (hf ) � e�r
 (f) + 
�1Rmn (F) +
r
ln (1=�)

2mn
:

We also have with probability greater than 1� � for all f 2 F , that

er (hf ) � e�r
 (f) + 
�1R̂mn (F) (X) +
r
9 ln (2=�)

2mn
:

To arrive at Theorem 4 we still need to convert this into a statement valid
with high probability for all margins 
 2 (0; 1). This is done following the tech-
niques described in [1], using the following lemma (a copy of Lemma 15.5 from
[1]):

Lemma 5. Suppose

fF (�1; �2; �) : 0 < �1; �2; � � 1g

is a set of events such that:
(i) For all 0 < � � 1 and 0 < � � 1;

Pr fF (�; �; �)g � �:

(ii) For all 0 < �1 � � � �2 � 1 and 0 < �1 � � � 1;

F (�1; �2; �1) � F (�; �; �) :

Then for 0 < a; � < 1;

Pr

0@ [
�2(0;1]

F (�a; �; �� (1� a))

1A � �:
Applications of this lemma follow a standard pattern. We give only one ex-

ample, where we apply it to the event

F (�1; �2; �) =

(
9f 2 F s.t. er (hf ) > e�r�2 (f) + ��11 Rmn (F) +

r
ln (1=�)

2mn

)
:

Conditions (i) follows from the previous theorem, condition (ii) from the fact that
the right side in the inequality increases if we decrease � and �1 and increase �2.
If we replace a by 1� � and � by 
, then the conclusion of the lemma becomes
the �rst conclusion of Theorem 4. The second conclusion of Theorem 4 and the
application in Theorem 7 are handled similarly.
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