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1 Introduction and Motivation

The impetus behind the development of the models
presented in this work has been of both practical and
philosophical nature. From a practical viewpoint,
the models are motivated by a common theme that
I have noticed across a range of data sets: the stan-
dard assumptions that are used in the linear model
are inappropriate.

A classic example is the modelling of weight as a
function of some covariate, often height in adult pop-
ulations or age for child populations. For data sets
that I have seen collected on college student popu-
lations, the main features appear to be nonlinearity
of the mean for weight given height, right skewness
for the distribution of weight at a given height, het-
eroscedasticity, and a bumpiness in the distribution,
particularly in the upper tail. These departures from
the standard assumptions of a (perhaps linear) trend
for the relationship between height and weight cou-
pled with independent and identically distributed er-
rors or errors that follow a scale family render any
fit based on these assumptions suspect.

The problems with violations of the assumptions
do not appear to be solved through conventional
transformations of explanatory, response or both ex-
planatory and response variables. The fundamental
problem is that the conditional distribution of the
response, given a particular level of the explanatory
variable, neither follows one of the usual parametric
families nor can be represented by a small, paramet-
ric expansion of the usual parametric families.

In studies of children, weight is often used as a
proxy for the health of the child, both because of
difficulties in measuring height (length) and because
an unhealthy environment may well cause a reduc-
tion in both height and weight. The easily obtained
measurement, of weight is often tracked as a function
of age, again an easily measured quantity. Figure 1
displays a kernel density estimate of the weight of
4,276 girls, at birth, from a study of infants born
in hospitals in Ohio. The data come from Amini
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Figure 1: Kernel density estimate of birthweights.

et al. (1996) and are available as part of the Notz,
Pearl and Stasny’s Electronic Encyclopedia of Sta-
tistical Examples and Exercises (EESEE), available
through W.H. Freeman. All of these girls were live,
single births. Figure 2 displays a normal probabil-
ity plot for these data. The figures clearly indicate
the non-normality of the weight data. The kernel
density estimate displays an unusual left hand tail
which is not amenable to fits through introduction of
an extra parameter or two to describe skewness and
kurtosis. Other commonly used parametric families
do not appear to fit the data. Consequently, these
birthweight data cry out for a nonparametric fit.

Table 1 excerpts several values from a table
of ages and weights of girls compiled by Ben-
der and Remancus and available on the web at
www.odc.com/anthro/deskref. The upper and lower
standard deviations measure the size of typical de-
partures from the “mean” in the direction of greater
and lower weights. These values have been used to
create percentiles for growth charts. An examination
of the ratio of the upper to lower standard deviation
shows a move from a left-skewed distribution to a
right-skewed distribution.

Given the continuous nature of the aging and
growth processes, these figures and tables suggest
that (i) a nonparametric technique is needed to
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Figure 2: Normal probability plot for birthweights.

Table 1: Girls, weight for age. Age is in months,
LSD, USD and RSD are the “lower standard devia-
tion”, “upper standard deviation”, and ratio of the
USD to LSD. All weights are in kilograms.

Age LSD Mean USD RSD
0 0.5 3.2 0.4 0.80

1 0.6 4.0 0.5 0.83
20 1.2 11.2 1.2 1.00
40 1.6 14.8 21 131
60 1.9 17.7 2.8 147
100 3.8 26.0 5.8 1.53

model the conditional density of weight given age
and (ii) the error distribution in the model must
evolve as age changes. The evolution should take the
form of a smoothly changing distribution, where the
conditional distribution of weight at nearby ages is
nearly the same. This evolution of a nonparametric
residual distribution is naturally approached from a
nonparametric Bayesian viewpoint.

The philosophical motivation for this problem lies
in the familiar statement often attributed to Box
that while all models are wrong, some models are
useful. The linear model and its many generaliza-
tions have shown great success across a wide variety
of problems. Much of this success is due to the ro-
bustness of the fitting procedure to modest depar-
tures from the presumed residual structure. Though
the model may be inadequate due to omission of
relevant factors, model misspecification and an in-
correct residual structure, the fit may nevertheless
be in the right ballpark. Variations on the central
limit theorem ensure that fitting techniques largely
based on the mean response at a given covariate level

will asymptotically yield good fits for the main trend
in response given covariate. However, when such a
model is used for predictive purposes, attention to
modelling the residual structure is essential-there is
no central limit theorem at work for a prediction
about a single future observation.

An additional motivation for these models is found
in a Bayesian treatment of random effects. As ar-
gued in Bush and MacEachern (1996), an adequate
Bayesian model for random effects must place a prior
distribution on the distribution from which effects
are drawn. This distribution must have large sup-
port, suggesting a nonparametric prior distribution.
In contrast, the prior distribution for fixed effects
will typically focus on the effects themselves, result-
ing in a parametric form. For models with both sorts
of effects (the so-called mixed model), prior distri-
butions will naturally incorporate both parametric
and nonparametric components. In many instances,
one wishes to work with several random effects dis-
tributions, as in the setting of a multi-center clinical
trial. In this setting, the distribution of patient spe-
cific parameters at each center is modelled as a col-
lection of random effects. Current models restrict
one to a collection of distributions that are either
independent realizations of nonparametric distribu-
tions (perhaps given a few hyperparameters) or a
single realization of the nonparametric distribution
(perhaps adjusted by a parameter or two to account
for location and scale differences). The trick is to
write a model for the general random effects distri-
bution that allows one to capture the notion of a
collection of similar but not identical nonparamet-
ric distributions. The key modelling concept is that
the realizations of the random distributions should
be dependent. It should be noted that Muller et
al.(1999) provide a recent alternative approach to
this problem.

This work lays out the basic Bayesian approach
to evolving, nonparametric distributions and, as a
byproduct, provides a class of models for collec-
tions of nonparametric random effects distributions.
These evolving distributions represent a generaliza-
tion of Bayesian methods which place a prior distri-
bution over the space of distribution functions. They
enable us to write sensible models that capture the
phenomenon described above: conditional distribu-
tions that can only be described in a nonparametric
fashion, that are not amenable to description as a
nonparametric location scale family and that change
smoothly as the covariate changes. The class of mod-
els developed here contains a number of parameters
that allow one to describe a great variety of behav-
iors. The new models are also designed to fit in



as a component of a hierarchical Bayesian model,
and so provide a replacement for a parametric resid-
ual structure in essentially any parametric Bayesian
model. The models play off of standard nonparamet-
ric Bayesian models, and so the Markov chain Monte
Carlo techniques developed for fitting the standard
models extend to the new models. These methods
prove useful in a wide variety of modelling contexts,
some of which are described in the concluding sec-
tion.

2 Dependent Dirichlet Processes

The brief technical development to follow outlines a
particular type of dependent nonparametric process,
namely dependent Dirichlet process, or for short,
the DDP. I have chosen to focus the development
on this process because of the central role played
by the Dirichlet process in nonparametric Bayesian
modelling, because of the connections between mod-
els based on the Dirichlet process and finite mixture
models—incidentally, many of the same goals that
can be accomplished with the DDP can also be ac-
complished by working with finite mixture models—
because the computational tractability of the Dirich-
let process extends directly to simple DDP models
and with slight additional work to more complex
DDP models, and also because the DDP models
comprise a rich enough class of models to allow us
to capture the desired behavior.

The starting point for describing the DDP is a
single Dirichlet process, described through Sethura-
man’s representation. The Dirichlet process places
a distribution on the space of distribution functions
by creating a distribution on the set of countable
mixture distributions. In a single dimension, the
random distribution function, F', can be described
by the expression F(y) = Y2, piI(8f < y), where
the p; sum to 1. The Dirichlet process provides the
distribution for F' by placing a distribution on the
07 and the p;. These distributions are governed by
the parameter of the Dirichlet process, a non-null,
finite measure, called a. For distributions on the
real line, « is typically taken to be a measure that
is absolutely continuous with respect to Lebesgue
measure. The measure « is often described by its
mass, M, and its shape, a probability measure or
the corresponding distribution function, Fy. The
vector 8* and the vector p are mutually indepen-
dent. The distribution on the 8 is that of an inde-
pendent and identically distributed sample from Fp.
The distribution on the p; follows from a distribu-
tion on an implicit set of parameters, the v;. The
v; are an independent and identically distributed

set of Beta(l, M) random variates. The prescrip-

tion for moving from the v; to the p; is to define
i—1

pi =i [[;=1 (1 —v)).

The transition from a Dirichlet process to the
“single-p DDP model,” a special case of the DDP
model, is most easily seen for a set of distributions
that evolve over a single dimension. Referring to
the dimension over which the distributions evolve as
the covariate, we write X for the covariate space,
and consider the set of distributions F},, zeX. These
F, are the random distributions. For the single-p
models, the collection of random distributions will
be specified by Fy(y) = Yoo, pil (0%, < y), for each
zeX, where the p; sum to 1. In this model, one
merely replaces 87 with 0}, zeX.

The DDP model places a distribution on Fy in
the following fashion. The p; are once again ran-
dom variables of a single dimension while the one-
dimensional 8} have been replaced by stochastic pro-
cesses 87 (x), zeX, called 0}, to simplify notation.
To complete the description of the distribution on
Fx, one parallels the development of the Dirichlet
process. The vector v and the countable collection of
stochastic processes, 8*, are mutually independent.
The 67, form a random sample of stochastic pro-
cesses (i.e., the 87, are independent of one another,
and they all follow some given distribution). In the
case that Fy, = Fp, not depending on z, 0, will
often be a stationary stochastic process with contin-
uous paths and index set X'. The distribution on p
is exactly the same as the distribution of p for the
Dirichlet process. The underlying random sample of
v; gives rise to the p; through the same expression
used for the Dirichlet process.

The simplest case of the DDP model occurs when
the shapes of the conditional base measures, Fy,, do
not depend on x. The parameters that govern this
single-p DDP model, then, are a mass parameter,
M, used to generate the v; and from these the p;, a
shape for the base measure (more properly the dis-
tribution function correspoding to that shape), Fo,
and a stationary stochastic process, 6 which has Fy
as the marginal distribution for each §,. When Fj
is normal, a Gaussian process can be used for 0.

The existence of the single-p DDP models is eas-
ily demonstrated when the stochastic process 6y has
continuous paths with probability 1. In this case,
the entire path of the stochastic process is deter-
mined by its value at a dense set of points. Since
the rational numbers form a dense set in R!, pin-
ning down each path at each of the rationals pins
down the entire collection of paths. The additional
variables, either the v; or the p;, are a countable col-
lection of real valued random variables. Together,



the 6;, at the rationals and the v; determine the en-
tire collection of F,zeX. The question of existence
of the distributions thus hinges only on the the exis-
tence of a joint distribution for a countable number
of real-valued random variables. That this entire
countable collection of real valued random variables
has a well-defined distribution follows directly from
the independence of the v; and ;1 and the fact that
the stochastic process, 6.y is itself well-defined. This
proof extends to more complex covariate spaces and
to DDP’s based on many stochastic processes which
do not have continuous sample paths.

The DDP models can be developed in much
greater generality than the stationary single-p DDP
model. Key extensions and how they can be incorpo-
rated are the following: First, the stochastic process
that drives the evolution of the F, need not be sta-
tionary. This can be accomplished either by letting
the correlation structure vary as x varies, and/or by
allowing differing shapes for the base measures, so
that Fy, varies with z. Such a modification will be
useful when using the DDP models for the residual
structure in the generalized linear model.

Second, the p; can be allowed to vary with z. The
model is referred to as a DDP model when the p; do
vary with z, but is no longer a single-p DDP model.
To formally accomplish this, the individual variates
v; are replaced by stochastic processes, v;x, with
the result being that the point masses at = are de-
termined by the expression p;, = vz H;;ll (1 —vjz).
It is worth noting that when the v;y are stochastic
processes, the mass of the base measure is allowed to
vary with z, yielding a parameter M y. This enables
one to model the degree of proximity to a parametric
form as a function of the covariates.

Third, the covariate space is in no way limited
to a single dimension. There are many situations
where the models will be used with a finite or count-
able discrete covariate space. In these settings, the
stochastic processes simplify to random vectors of
finite or countable length. An alternative view of
the single-p model with a finite covariate space is
that the distribution Fly follows a Dirichlet process,
with each of the dimensions producing its own uni-
variate distribution. The novelty of this model is its
use in a hierarchical setting where an observation
in the model would have a distribution depending
only on one coordinate (or a set of coordinates) of
the multivariate F', a use distinctly different than
previous uses of the Dirichlet process. This model
provides a means of generating a finite set of de-
pendent distributions, and it would be appropriate
in such settings as the multi-center clinical trial de-
scribed earlier. When the covariate space is not of

finite dimension, even the single-p DDP model is an
extension of the Dirichlet process.

The DDP models allow great flexibility in their
implementation. Although at first glance, one seems
faced with the task of specifying stochastic processes
that have Fy, as the perhaps unusual marginal dis-
tribution for each z, there are simple recipes for cre-
ating such stochastic processes. A particularly easy
recipe for obtaining the target Fy, is to begin with
a stochastic process that has continuous marginal
distributions, say Z, with marginal distribution G,.
Then define 6%, = F,'(G4(2,)), where the inverse
cumulative distribution function is defined in the
usual way. Since G(z;) follows the uniform dis-
tribution, 6}, will follow the marginal distribution
Fy,-

The DDP models have been developed with an
eye toward their use as components in hierarchical
Bayesian models. In particular, the models have
been motivated as appropriate for use in the residual
portion of a linear model or one of its many gener-
alizations. In settings where the response variable
is discrete, this approach is promising, although in
settings where the response variable is thought of as
continuous, use of these models in conjunction with
a lower stage of the model to produce a continuous
distribution is a sounder approach.

The DDP models may be fit directly or they may
be used as a component in a hierarchical Bayesian
model with use of Markov chain Monte Carlo sim-
ulation techniques. These techniques are now well
developed for the Dirichlet process, and these tech-
niques carry over in a straightforward fashion to the
DDP models. In the simplest case, where the covari-
ate space is finite, as mentioned above, the single-p
DDP model may be viewed as a Dirichlet process
used in a novel fashion. The computational methods
described in MacEachern (1998) may be used, with
no changes whatsoever, for this model. In more com-
plex settings, where the DDP may be used to model
the residual structure, computations will often be
done conditional on the observed levels of the covari-
ate. Once again, with the single-p DDP model, the
computational strategies developed for the Dirichlet
process carry over without change. As is standard
in predictive problems, forecasts at unobserved lev-
els of the covariate can be produced through simu-
lations that require only the output of the simula-
tion used to fit the model. The distribution of F,
at unobserved z can be handled in the same fash-
ion. When one moves from the single-p DDP model
to more general DDP models, the current computa-
tional strategies need to be extended to allow the p;
to vary with x. This can be accomplished through



use of Metropolis-Hastings steps.

3 Properties of Dependent Dirichlet
Processes

The DDP model has a number of desireable proper-
ties which will be more rigorously established else-
where. These properties extend Ferguson’s (1973)
early motivation of the Dirichlet process to settings
that involve covariates. Four desireable properties of
models for a collection of random distribution func-
tions are (i) that the support of the distribution on
F,,,..., F;, should be large, (ii) that the distribu-
tion, when used as a component in a Bayesian hi-
erarchical model should be amenable to updating,
(iii) that the marginal distribution of F, should fol-
low a familiar distribution at any given level of the
covariate, and (iv) that the realized distributions, Fy,
should converge to the realized F,, as x — x¢. A
brief synopsis of some of these properties and loose
versions of conditions that yield them follows:

1. The prior distribution on Fy,,...,F,, has full
support, provided the stochastic process @y is
rich enough.

2. As mentioned in the preceeding section, the
DDP models are amenable to simulation based
fits.

3. The marginal distribution, F, follows a well-
known distribution. In fact, F, ~ Dir(M,, Fo;)
for each zeX', where the right hand side of the
above expression indicates a Dirichlet process.

4. The distributions F), are continuous in x. This
feature is what produces distributions that
evolve as the covariate changes. It can be
obtained by working with stochastic processes
which produce continuous paths for 6, and for
Dz
F,, and F,, tend toward independent distribu-
tions as z; and x5 become more distant. To ac-
complish this, we need 6, to tend toward inde-
pendence from 6,, and also v,, to tend toward
independence from v;,. This can be accom-
plished by writing stochastic processes which
yield the decay toward independence.

5. In addition, a spectrum of inference can be cap-
tured, ranging from a nearly parametric infer-
ence (take M, nearly oo for all values of z) to
inference that relies on a single nonparametric
distribution (take the stochastic process 6y for
which 6;, = 0; for all x) to inference that shows

a strong dependence between distributions with
nearby x (take slowly varying stochastic pro-
cesses for 8, and/or v;) to inference that en-
courages quick changes in the distributions as z
changes (take 8, that change quickly in z).

One of the beauties of the DDP model is that we
can exploit the wealth of knowledge about nonpara-
metric Bayesian models and stochastic processes to
select parameter values that produce the behavior
we want. We also create a set of models where we
have a clear understanding of the behavior of the
conditional distribution, an essential feature when
we wish to use the models as a component in a large,
hierarchical Bayesian model.

4 Other Dependent Nonparametric
Processes

The strategy used to develop the DDP can be used to
develop many other dependent nonparametric pro-
cesses. The general method by which a finite di-
mensional nonparametric distribution is created is to
lay out a structure whereby a countable set of (usu-
ally independent) variates produces a distribution.
Distributions produced in this fashion include finite
mixture distributions (when the number of compo-
nents in the mixture is unbounded, the distributions
qualify as nonparametric), Polya trees and series ex-
pansions.

In order to create a dependent nonparametric pro-
cess that generalizes one of these methods of con-
structing a random distribution, one need only re-
place each of the countable set of variates with a
stochastic process. The marginal distribution of the
dependent nonparametric process at any given level
of the covariate will match the basic nonparamet-
ric distribution. Full support of the models gener-
ally follows from use of stochastic processes with rich
enough support. Local dependence of the distribu-
tions follows from the dependence within realizations
of the stochastic process.

For a finite mixture distribution, the variates de-
terimining the random distribution are one which
indicates the number of components of the mixture,
say k, and k more which describe the components
of the mixture. These latter variates are often of
dimension greater than 1.

For a Polya tree, the variates determining the ran-
dom distribution are a collection of beta variates
with parameters specified at each split of the tree.
Note that dependent Dirichlet processes constructed
by introducing the dependence through the Polya



tree that matches the Dirichlet process has a differ-
ent feel than the DDP model described in this paper.

For a series expansion, the distribution (or den-
sity) is represented as a finite or infinite series. The
variates determine the number of terms in the series
and the coefficients of the terms.

5 Uses of Dependent Dirichlet Pro-
cesses

DDP models are naturally used to model the resid-
ual structure in the linear model. The traditional
linear model takes Y; = x;8 + €;, with the ¢; a ran-
dom sample of normal variates with mean 0 and vari-
ance o2. The DDP models allow us to replace the
assumption of normality for the residuals with the
assumption that the error distributions evolve with
the covariate. The random sample of normal vari-
ates is replaced by a sample of independent variates
where ¢; ~ Fy, for ¢ = 1,...,n. To adjust for the
approximate continuity of the response variable, an
additional stage is added to the hierarchy to smooth
the response distribution, just as is done with mod-
els based on the Dirichlet process.

A second expansion on the linear model pursues a
line of thought motivated by the generalized linear
model. A value, z;03, is computed for each observa-
tion and linked to the response through the identity
transformation. The residual distribution is indexed
by the value x;8 rather than by x; itself, so that
the residuals correspond to a sample of independent
variates where €; ~ Fy,3. The advantages of this ap-
proach are parsimony in the modelling process and
some computational simplification due to the reduc-
tion in dimension of the space that indexes the ran-
dom distributions.

Expansion of parametric models along the lines
outlined above can be done in very general settings.
The generalized linear model is the most natural for
generalization, as it already focuses on relaxing the
assumption of normal errors. The generalized linear
model replaces the normal distribution with a more
general parametric form and replaces the identity
link function with a more general form, though still
“parametric” in basic developments of the model.
The most natural use of the DDP in this setting is
to retain the link function used in the generalized
linear model and to take the base measure Fy, to
be the form that would be used in the parametric
version of the model. Models for a discrete response
such as Poisson or binomial would rely the DDP di-
rectly, thus providing a generalization of the work
by Carota and Parmigiani (1997) to incorporate the
notion of an evolving response distribution. Further

work would allow flexibility in the form of the link
function, thus allowing one to incorporate both a
nonparametric trend in the model as well as a non-
parametric residual structure.

The models have a considerable variety of addi-
tional uses. One such use is in modelling a con-
tinuous, nonparametric distribution. Currently, the
main nonparametric Bayesian approach to directly
modelling a continuous distribution is to use a Polya
tree, with particular choices for the splits that deter-
mine the tree and the number of parameters (num-
ber of balls) in each of the urns. With appropriate
choices of these parameters, one guarantees that the
random distribution is continuous. The drawback
of this method is that the tree structure implicit in
this model induces discontinuities in the density of
the distribution. The DDP models suggest an alter-
native approach. Write a DDP model for a collection
of distributions, Flx, and supplement this with a dis-
tribution, G, on the unobserved covariate, . Define
F(y) = [ F;(y)dG(z). Although each of the condi-
tional distributions, F;, is discrete, marginalization
over a covariate for which G is continuous can result
in a continuous F'.

Work that has already been done makes it clear
that these models have much to contribute in a wide
variety of applications. I, along with a number of
coauthors, intend to work on the uses for DDP mod-
els described above as well as a number of variations
on these themes in the years to come.
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