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Abstract

We introduce a new approach to the training of classifiers for performance on multiple tasks.
The proposed hybrid training method leads to improved generalization via a better low-dimensional
representation of the problem space. The quality of the representation is assessed by embedding
it in a 2D space using multidimensional scaling, allowing a direct visualization of the results. The
performance of the approach is demonstrated on a highly nonlinear image classification task.

1 Introduction

The ultimate goal of machine learning is to mimic the human ability to learn a task from a limited set of
examples and to generalize learning to new circumstances in a reasonable way. A fundamental question
here concerns the type of data to be used in training classifiers for best generalization. Asymptotically,
optimal results are obtained when the distribution of the training data is similar to that of the test
(generalization) data, and the capacity of the learning machine is adjusted to the amount of the
training data. In practice however, very often the amount of data is far smaller than what is assumed
for the required generalization task. In such cases, innovative use of training data becomes essential.
Methods for data reuse such as cross-validation (Stone, 1974) and bootstrap (Efron and Tibshirani,
1993) can help in obtaining confidence intervals (Baxt and White, 1995) and improved performance
(Breiman, 1992; Breiman, 1994; LeBlanc and Tibshirani, 1994; Raviv and Intrator, 1995).

Unlike data, class labels are not often reused (see however, (Grossman and Lapedes, 1993)), in
particular, multiple-class labels. Humans make natural and extensive use of the fact that objects may
have several class associations (say, at different category levels). In contrast, in machine learning, it
is not clear how one should proceed given hierarchical class labels, and whether such information can
be used effectively or at all.

We believe that through the use of multiple-class associations learning can be constrained — biased
— towards a better solution, and that innovative use of multiple-class labels may be a practical way
to introduce prior knowledge into a high-capacity learning machine. We present a method for intro-
ducing such prior information during training, while avoiding the need to construct different low-level
representations for different tasks defined on the same data. This approach naturally facilitates gen-
eralization across tasks, also known as transfer of skill — a hallmark of human cognitive prowess (see
section 1.1).

Connectionist approaches to the problem of transfer, or cross-task generalization (Pratt, 1993) tend
to offer as a solution some kind of weight sharing between networks trained on different tasks. Along



these lines, Baxter has proposed recently to use different data sets with the same class association for
constructing a rich internal representation (Baxter, 1995). His argument is that “a representation that
is appropriate for learning a single face should be appropriate for learning all faces.” Our approach
extends this idea by observing that a representation has to be suitable for many different tasks on the
same level of categorization, and for different category levels as well. The problems of catastrophic
interference and hypertransfer (Martin, 1988; Murre, 1995), which are both manifestations of the
learning machine’s finding a suboptimal representation space, are easily addressed by our algorithm,
as discussed in section 4.

It has been observed in the past that training a classifier on multiple tasks (using the same data)
may be an efficient way to introduce desirable bias into the solution (Caruana, 1993). Our motivation
for multiple-task training is, however, fundamentally different from the subsequent development of
that idea by Caruana (1995), who implicitly assumes that the different tasks are on the same level of
categorization. In comparison, our approach calls for internal representation to be constructed using
a combination of various tasks, including tasks at different levels of categorization. For example, if
required to create a classifier to distinguish gender in faces, we would use face identity information
(i.e., more specific labels), along with facial expression information (i.e., different labels at the same
level of specificity), in addition to the gender labels proper, for constructing the internal representation
for the task.! Thus, we would use the same data with many class associations, to learn a common
low-dimensional representation (LDR).

If an LDR is shared between tasks in this manner, a classifier of considerably lower complexity
can be constructed for each of these tasks, compared to the usual approach of learning a separate
representation for each task. In support of this claim, we show that:

e An LDR that is sufficiently general to support several classification tasks can be acquired in a
difficult learning scenario;

e A hybrid approach, according to which a multi-purpose LDR is first found, then used to train a
classifier for a specific task, can outperform straightforward training of a specific-task classifier
from scratch.

We demonstrate our approach on a highly nonlinear image discrimination task, involving parameterized
fractal patterns. This allows us not only to examine the viability of the proposed approach, but also
to compare the performance of the implemented algorithm to that of human subjects in a recent series
of psychophysical experiments that explored related issues in the representation of complex 3D shapes
(Edelman, 1995a; Cutzu and Edelman, 1995).

1.1 Psychological motivation

In psychology, the notion of transfer of learning between tasks encompasses behavioral phenomena
ranging from simple (e.g., generalization of conditioned response between familiar and novel stimuli)
to extremely complex (e.g., carrying over a solution to a problem in arithmetics to a novel class of
problems). In the former example, the degree of generalization between stimuli is governed by their
perceptual similarity (Shepard, 1987), while the latter transfer is usually hypothesized to be mediated
by more complex cognitive structures or schemata (Reder and Klatzky, 1994). This ubiquity of transfer
makes a claim that “all demonstrations of learning and memory involve transfer” (Hintzman, 1994)

A complementary approach here is to learn, instead of a variety of labeling schemes for a given data set, the
transformations which leave its members invariant (Lando and Edelman, 1995), or the invariances of the individual data
items (Simard et al., 1992; Thrun and Mitchell, 1995). We do not consider this approach in the present paper.



easily understood. Here, we concentrate on a particular kind of circumstances under which transfer is
known to occur, namely, on tasks that involve perceptual classification of complex visual stimuli.?

1.1.1 Transfer of perceptual classification

A typical case of transfer in which we are interested is one in which the subject’s prior training in the
classification of patterns belonging to some well-defined category facilitates his or her learning of the
classification of a different set of patterns from the same category, or of patterns from a somewhat
different category. A favorite example is the own-race effect in face recognition: people perform much
better in various face perception tasks when the faces that serve as stimuli belong to the same race as
the subjects (Brigham, 1986). This kind of transfer has been reported recently also with random-dot
patterns, generated according to a set of complex statistical criteria (McLaren et al., 1994).

A recent review (Reder and Klatzky, 1994) lists a number of issues regarding transfer on which
experimental evidence can be brought to bear. Of particular interest to us are the first two conclusions
of that study:

1. “There is broad consensus that transfer is typically very specific to the context in which training
has occurred.”

2. “As a general principle, having identical elements between the training and performance context
facilitates transfer.”

Thus, transfer between classification tasks is expected to occur in a situation involving a fixed set of
stimuli (patterns) to be classified; this observation influenced our choice of the experimental testbed,
described in section 2. Qur working hypothesis is that this kind of transfer is supported by learn-
ing a low-dimensional representation (LDR) of the set of patterns that is necessarily common to all
classification tasks defined on those patterns. As usually in theories of classification, one may ask
here whether the postulated LDR encodes the specific patterns in question, or the relevant subspace
of the pattern space (cf. Logan, 1988; Maddox and Ashby, 1993). Although transfer is facilitated by
having identical elements in the two tasks, as noted in (Reder and Klatzky, 1994), there is evidence
that exemplar substitution affects transfer to a much smaller degree than context (rule) substitution
(Kramer et al., 1990). Thus, the LDR of the stimulus space should be defined for all patterns in the
vicinity of the familiar ones, although its performance may be expected to be better for the familiar
patterns proper; cf. the distinction between persistent and ephemeral entities in the representational
scheme proposed in (Edelman, 1995b).

1.1.2 Low-dimensional representation as a substrate for transfer in visual perception

The hypothesis, stated in the preceding section, that transfer across classification tasks is supported
by learning a common LDR for the set of patterns, has been entertained for decades in the context of
perceptual generalization (e.g., in the discrimination of tones or hues, and in the judgment of similarity
of 2D outline shapes). In particular, it has been observed that the human visual system performs as
if it represents the stimuli in a low-dimensional metric psychological space (see (Shepard, 1987), for a
review). Recently Edelman and colleagues have investigated the ability of human subjects to form low-
dimensional representations in the context of complex 3D shape classification (Edelman, 1995a; Cutzu

?T.e., high-resolution patterns or images of objects, as opposed to uniform-color patches or repeating textures. An
example of a nonvisual task of a parallel level of complexity is morphological inflection (Gasser, 1995). We do not consider
here transfer of higher cognitive skills such as arithmetics.

®That is, patterns close enough to the familiar ones in the underlying high-dimensional space.



and Edelman, 1995). The subjects were confronted with several classes of solid shapes, arranged in a
complex pattern in a common underlying high-dimensional parameter space. The experimental task
was delayed match to sample, involving images of computer-rendered 3D animal-like objects, jointly
parameterized by 70 variables controlling various details of the object shape. In each trial, the subjects
(who received no prior training) had to decide whether two images, shown briefly and consecutively,
belonged to the same animal shape. In each experiment, the response time and error rate data were
combined into a measure of view similarity, and the resulting proximity matrix was submitted to
nonmetric multidimensional scaling, or MDS (this technique is discussed below in section 1.3; for
an overview, see Shepard, 1980). Examining the configuration of points corresponding to the various
views in a 2D MDS solution revealed that (1) different views of the same shape were correctly clustered
together, and (2) in each experiment, the relative geometrical arrangement of the view clusters of the
different objects reflected the structure of the parameter-space pattern (respectively, a star, a triangle,
a square, and a line) that defined the relationships between the stimuli classes.

It should be noted that although the subjects in these experiments were required to discriminate
between two objects at a time, the pattern of their performance, as revealed by MDS, indicated an
involvement of a common LDR of all the objects. Specifically, the perceptual distances between the
objects corresponded closely to the distances in the low-dimensional parameter space used to create
the objects, which is a natural low-dimensional representation of the data. This surprising finding
prompted us to ask whether machine classification methods can be applied to a similar problem of
low-dimensional structure discovery from complicated image data.

1.2 Statistical motivation

The stress on the importance of lowering the dimensionality of the classification problem as a first step
towards the development of a versatile representational substrate for classification is a major lesson
from psychological studied: Reder and Klatzky (1994) actually state that “transfer is a problem of high
dimensionality.” Thus, although many current approaches to the training of statistical classifiers lack
the provisions for supporting transfer of classification, we claim that this shortcoming can be amended
by building on the notion of dimensionality reduction, or, in statistical language, the discovery of
structure in the data.

The existence of structure in the data is the key assumption behind statistical data modeling. The
underlying structure must be sufficiently simple to permit its recovery from the usually limited amount
of data. Because of the scarcity of the data, and the lack of information regarding the details of the
model, it is important to use any available knowledge to facilitate the discovery of low-dimensional
structure in the data. In particular, the modeling process can be greatly assisted if it is known that the
data obey a simple geometrical pattern (e.g., reside in a low-dimensional manifold in the measurement
space).

The discovery of structure, sometimes called dimensionality reduction, feature extraction and in
some special cases Projection Pursuit, aims to find a sufficiently low-dimensional model of the data,
so that robust classification becomes possible given the available (usually small) data set. Thus, it is
reasonable to ask whether a given method is capable of finding useful low-dimensional structure, in
addition to being able to generalize on a limited amount of data. In other words, a good LDR of the
data (if such can be found) is highly likely to capture its true underlying model, which can lead to
optimal generalization results (that is, optimal generalization for infinite test data). Thus, as long as
the amount of test data is limited, it seems worthwhile to study the quality of the LDR.

The recovery of low-dimensional structure can be performed in an exploratory (unsupervised)
manner, or using class labels for data points. Unfortunately, the recovery of LDR by training a
classifier with the class labels alone is highly nontrivial, because, in general, the class labels do not
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Figure 1: Left: The parametric representation from which the high dimensional images were created.
Dim 3 is the dimension on which generalization was sought for the simple and the difficult classification
tasks. Right: The dichotomy classification task, used in testing the LDR (see Figure 3 and section 2).

possess enough structure to direct the classifier to the correct solution. This is another manifestation
of the curse of dimensionality (Bellman, 1961), which explains why in general there is not enough
data to recover the true model (the underlying representation) directly from the classification task. In
fact, searching for LDR using a combination of exploratory and class-label approaches together yields
in some cases better results (Intrator, 1993). In this paper, we explore the possibility of learning LDR
using an excessive number of class labels, thus building more structure into the space of the potential
solutions.

1.3 Multidimensional scaling

While finding a good LDR is generally a highly nontrivial problem (Huber, 1985; Intrator and Cooper,
1992), the assessment of the quality of an LDR is a much simpler task. Unfortunately, the LDR often
still resides in a space of more than two or three dimensions, thus making direct visual inspection diffi-
cult. Multidimensional scaling, applied in the analysis of the human performance in the psychophysical
experiments described above, constitutes a useful visualization method in such cases.

MDS has been originally developed in psychometrics, as a method for the recovery of the coor-
dinates of a set of points from measurements of the pairwise distances between those points (Young
and Householder, 1938). In a typical application, the experimenter would attempt to characterize a
subject’s performance by placing a point corresponding to each stimulus perceived by the subject in a
coordinate space, derived from subjective similarity ratings of pairs of stimuli. The power of MDS as a
tool for the study of internal representations was revealed when Shepard discovered in 1962 that fixing
the relative distances of a set of points effectively determines their coordinates (Shepard, 1966). This
discovery led to the development of the nonmetric MDS algorithm (Kruskal, 1964), which employs gra-
dient descent to seek a monotonic transformation between measured distances and distances computed
from the hypothesized point configuration, which would minimize stress (defined as the discrepancy
between the ranks of the measured and the computed distances). Recent improvements of the MDS
procedure include an implementation using deterministic annealing (Hofmann and Buhmann, 1994),
which may prove to be better in avoiding local minima in the search for an optimal configuration. In
the present work, we used a modern implementation of nonmetric MDS, available in version 6 of the
SAS statistical analysis software (Sas, 1989).



Figure 2: Top: the 18 images, each of size 256 x 256 pixels, corresponding to the 18 points in parameter
space defined in Figure 1. The value of the Dim 3 parameter here is held constant. Bottom: the 7
images corresponding to the possible values of the Dim 3 parameter; the values of Dim 1 and Dim 2
correspond to the leftmost image in the bottom row.

2 Methodology

Our aim is to test the ability of a neural network to discover simple structure embedded in high-
dimensional data, in a situation where the discovery requires a highly nonlinear transformation from
the input to the low-dimensional space. We set out to create a difficult LDR discovery task by
generating a dataset of fractal images through a nonlinear transformation of a three-dimensional
parametric space. The three dimensions of the parametric representation, and the generalization task,
are illustrated in Figure 1.

In the experimental design, all the classification tasks were defined in two parametric dimensions;
the performance of the classifiers designed to discover and to test the LDR was assessed by computing
their generalization ability along the third dimension, orthogonal to the first two. Starting with this
parametric representation, we created a high-dimensional collection of image data. Fach image (see
Figure 2) corresponded to a transformation from the 3-parameter space to a 256 x 256 pixel space.
Before being fed to the classification modules, the images were preprocessed by histogram equalization,
then convolved with a bank of 28 x 28 receptive fields (MatlabTM Image Processing toolbox; Laplacian
of Gaussian, kernel size 9, o0 = 0.6), reducing the dimension from 65536 to 784. This preprocessing
served as a crude approximation of the transformations that a stimulus undergoes on its way to the
primary visual area in the cortex.
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Figure 3: The low-dimensional representation (LDR) extraction scheme (see section 2). The LDR
extraction network appears on the left, under the label Train. First, preprocessing is performed on
the raw 256 x 256 fractal pixel images. The preprocessing stage takes the pixel image through 784
receptive fields convolving the inputs with a two dimensional difference of Gaussians filters (center
surround cells), to produce a vector of 784 dimensions. Second, a learning module, which can be either
multilayer perceptron (MLP), or a radial basis function interpolator (RBI"), is trained to produce a
unary (1 out of 18) encoding of the input class label. The LDR is extracted from the hidden layer in
case of MLP, or from the output layer in case of RBF, and is fed to an RBF network (shown on the
right, under Test) for testing. The testing procedure consists of teaching the network a complicated
dichotomy on the input space (see Figure 1), and testing its generalization performance. Finally, this
performance is compared against the generalization obtained by a classifier trained directly on the
dichotomy task using the output of the 784-dimensional RF filters.

2.1 Data generation

The fractal patterns were generated using publicly available software (Xfractint 2.03) (Pickover, 1990,
chapter 10), and were imported into Matlab for processing and classification. We chose the quaternion
Julia set (entry quatjul in the Xfractint pattern menu), which is parameterized by six variables and is
therefore well-suited for generating complicated patterns that depend on up to six parameters. The
quatjul iteration formula is

q(0) = (apizel, ypizel, z;, z1,)
gin+1) = qg(n)xq(n)+c,

where both ¢ and ¢ = (¢4, ¢, ¢, ¢;) are quaternions (for further details, see (Pickover, 1990), chap-
ter 10). The three dimensions shown in Figure 1 correspond to the variation of parameters ¢y, ¢;, and
¢, respectively.

Figure 2 shows a 2D slice through the 3D parametric space; in the making of all these images,
the third (generalization) parameter has been kept fixed. As evident from the picture, the mapping



from the images back to the parametric representation is far from trivial. Our purpose was to make
a neural network classifier learn a mapping from the high dimensional space to various classification
tasks, and subsequently to examine the LDR produced by the classifier.

This procedure allowed us to generate data sets of varying degree of difficulty, by controlling the
parameters that determine the distances within and between the designated classes of patterns. Three
such data sets were produced and used in the experiments we describe below: E (easy), M (moderate),
and D (difficult). The M data set is implied in the descriptions of the experimental results, unless
otherwise noted.
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Figure 4: 2D structure derived by MDS from a representation found by an MLP with 5 hidden units,
using the M (moderate difficulty) task. Left: MLP trained on 18 classes; Right: MLP trained on a
dichotomy. The dichotomy classification error is 0.056 with both methods.

2.2 Hybrid dimensionality reduction / classification

The two-part hybrid classification method we use is illustrated in Figure 3. The 256 x 256-pixel
images, mapped into a 28 x 28 = 784-dimensional RF space, are used to train an LDR-extraction
network. This can be a multi-layer perceptron (MLP) or an RBF network; in either case, a 1-out-of-18
unary representation of the class labels (see Iigure 1) is enforced at the output. The recovered LDR
is used to train an RBF classifier on a two-class problem. The generalization performance of this
classifier is compared with that of an identical classifier trained on the raw 784-dimensional RF-space
representation of the image set, on the same two-class problem.

3 Results

3.1 A characterization of the resulting LDR

The two-class task is presented in Figure 1 (right). As can be easily seen, this is a nonlinear task even
in the low dimensional parametric space, and is thus, highly nontrivial. The results of the non-metric
MDS are depicted in Figure 4. While it is easy to believe that structure is not easily apparent in the
original 784-dimensional space, it is less trivial to find that MDS is unable to find any structure there
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Figure 5: The pattern recovered by MDS from the raw 784-dimensional data. No separation of the 18
classes or the 3 super-classes (each marked by a different symbol) is apparent; most of the points are
concentrated in the middle of the plot. Compare with Figure 4.

as well (see Figure 5). This is probably due to bad scaling up of the algorithm with the dimensionality
and to the high nonlinearity of the fractal transformation which takes the 3D parametric space to the
high dimensional pixel space.

3.2 RBF vs. MLP as an LDR extractor
3.2.1 Advantages in training

The structure derived by MDS from the output units of the RBF network is summarized in Figure 6.
These results are not directly comparable to those obtained with the MLP network, because in the
present case the useful representation emerged at the output and not at the hidden layer. This is due
to the high non-linearity of the task, because of which good performance was only possible with a large
number of hidden units. In fact, a basis function has been placed on each of the training patterns,
leading to no dimensionality reduction at the hidden layer. We therefore looked at the output as
the new LDR; there, the representation was 18-dimensional in the 18-way classification task, and
2-dimensional one in the dichotomy task.

In Figure 6, the top row presents results obtained with a relatively easy data set; the RBF network
captures well the structure inherent in the data, which corresponds nicely to the original parameter-
space representation of the images. The top right pane shows a two-cluster structure corresponding to
the two classes imposed during training; the six points in between the clusters correspond to images
which the network found more difficult to classify. The bottom row presents results from the D
(difficult) data set. Here, the performance of the hybrid RBF-based LDR extractor was lower. In
this case, the performance of the MLP-based LDR extractor deteriorated nearly to chance. The low-
dimensional structure of the data is not very prominent here, but still much more structure appears on
the left than on the right; correspondingly, the classification performance on the dichotomy problem is
slightly better for the hybrid-extracted LDR than on the raw representation. Thus, the RBF network
found better structure and obtained better results with the more difficult data we explored, compared
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Figure 6: Top Left: LDR found by a 72-center RBF (MDS on output units); error is 0.056; Top Right:
control; LDR found by a 72-center RBF' trained on a dichotomy; error is 0.056 (M data set). Bottom
Left: RBF, on a more difficult data set (D); error is 0.27. Bottom Right: control; error is 0.35 (same
as on raw data).

to the MLP network.

3.2.2 Controlling the quality of the LDR

A natural question that arises in conjunction with our LDR extraction method is how to control the
quality of the resulting LDR. The rapid learning of the RBF-based LDR extractor made it possible
to explore this issue extensively. We found that one can trade off quality for computational resources,
simply by varying the number of RBF centers (Figure 7). RBF's with fewer than six centers could not
learn the task at all, while those with 72 centers or more (i.e., those which assigned at least one basis
function per training example) produced essentially perfect LDRs. The quality of the LDRs obtained
with an intermediate number of centers (as measured by the error rate achieved with the LDR in the
dichotomy task) varied, as indicated by the data in Figure 7.

A plot of the error rates (in the 18-way, or training, and the dichotomy, or testing, classification
tasks) appears in Figure 8, top pane. Note that the error rates obtained with the different LDRs
are correlated with the visually apparent quality of each LDR, whereas the two measures of the
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Figure 7: The goodness of the low-dimensional representation extracted by an RBF network depends
on its number of hidden units. The six panes in this figure show the configurations derived by MDS
from networks having 6, 18, 24, 30, 36, and 72 units (top left to bottom right, respectively). The table
below each plot shows the training and testing error rates on the 18-class task (F Rypqin and F Reest),
the test error rates on the 2-class task using the raw data and the RBF-extracted LDR (F R, ., and
ERyoc), and the badness of fit (stress) and distance correlation values obtained by MDS (BOF and
DCORR). See also Figure 8.

MDS performance (stress and distance correlation, plotted in the lower pane of that figure) actually
deteriorate while the quality of the LDR improves. This observation illustrates the point made by
Borg and Lingoes, who caution against using the MDS stress as a sole indicator of the goodness of
the configuration (Borg and Lingoes, 1987). When other, independent, measures of the goodness of a
configuration are available, they should be consulted to avoid basing the judgment on the location of
a (possibly local) minimum in the stress optimization landscape. In the present case, the classification
error and the visual quality of the configuration are such independent measures of the goodness of the
configuration recovered by MDS from the LDR found by the hybrid classifier.

We have also found that with a multitask MLP classifier we could obtain a richer internal repre-
sentation by increasing the number of hidden units to a larger extent than what was possible with a
regular single-task classifier. The reason for this was overfitting, which affected the generalization per-
formance of a single-task classier much more than that of a multi-task classifier. We have explored this
phenomenon by training 2-class MLPs and 18-class ML.Ps with the same number of hidden units. The
2-MLP classifiers achieved 0 error rate on the training data very easily; their training-set performance,
however, was a very poor predictor for the test-set (generalization) performance. For example, for the
D data set, a typical value of the correlation between training and testing error rates was near 0 for
the 2-MLPs, compared to about 0.3 for the 18-MLPs (six hidden units, 50-epoch training). A natural
interpretation of this finding is that the constraints imposed by multitask training bias the internal
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Figure 8: Top: error rates in the 18-class and the 2-class tasks, plotted vs. the number of hidden units
in the RBF LDR extraction module. Bottom: MDS badness of fit (stress) and distance correlation
values, plotted vs. the number of hidden units. The data are from the tables that appear in Figure 7.

representation of the MLP to a better solution and thus serve to reduce the variance due to the limit
on the capacity of the learning machine.

3.3 MDS as a tool for representation visualization

Nonmetric MDS, which is relatively widely used in exploratory (Shepard, 1980) as well as confirmatory
(Edelman, 1995a; Cutzu and Edelman, 1995) data analysis in experimental psychology, has been only
rarely applied in the study of representations produced by neural networks. Most studies that did
attempt to visualize the representations by embedding them in a metric space used the Sammon
mapping, which operates on a principle similar to that of metric MDS (Sammon, 1969). It is important
to realize that, as indicated by the plot of Figure 5, direct approaches of this kind, powerful as they
may be, are not applicable to the extraction of complicated nonlinear structure directly from high-
dimensional data. One may assume that the nonmetric version of MDS would be more successful when
applied to the raw data. It turns out, however, that both metric and nonmetric MDS were similar in

12



metric MDS non-metric MDS

151 151
# + 4
F 8 £
® ®
> ¥*
1 © 1 #&
0.5F «
S
0.51 K
O |-
g
O |-
)%é o
-0.5F X © o @
° *X
—05¢ o *
0.5 @ *
_l |
4
* #
-1t x
* -1.5 *
* + 4+
it
-15 . . . - . . . ) 2 . . . . )
-2 -15 -1 -0.5 0 0.5 1 15 2 -3 -2 -1 0 1 2

Figure 9: Metric (left) vs. nonmetric (right) MDS, applied to the same distance data. A discussion of
the reason behind the similarity of the two configurations may be found in Borg and Lingoes, 1987,
ch.1.

their performance in the present data visualization task (see Figure 9). In particular, both versions of
MDS were incapable of extracting the structure directly from the raw data.

3.4 Incorporation of prior knowledge via multi-level class labels

Incorporating more prior knowledge into the LDR extractor during training further improved the
hidden unit structure and the performance on the two-class (test) problem. To illustrate the ability of
our hybrid method to assimilate prior knowledge in a natural manner, we performed two experiments.
In the first one, three higher-level class labels were added to the set of 18 labels normally used in
the training stage. For each data point, the higher-level label indicated the row to which it belonged
(see Figure 1). In the resulting configuration, the 18 clusters were separated, on a coarser level,
into three groups, corresponding to the three higher-level class labels (see Figure 10, left). In the
second experiment, the LDR extractor was taught three labels corresponding to the rows and six
labels corresponding to the columns of the parameter-space configuration. The resulting configuration
depended to a significant degree on the relative weights given to the row and column labels. Under
nearly equal weights, the points were separated into three clusters by the row label (see Figure 10,
middle); when the column weight predominated, the separation was into six clusters (i.e., by column),
with some additional structure within each cluster (see Figure 10, right).

We note that a natural extrapolation of this strategy would be to teach the network many possible
dichotomies, in the hope that the structure of the underlying LDR can be recovered from the multiple
two-way classifications (Price et al., 1995). The advantage of operating at the level of 18 classes (or of
three classes, with six subclasses each) is in the much shorter training procedure. On the other hand,
training on multiple dichotomies may have the advantage of forcing the LDR extractor to consider
multiple, hopefully disjoint, sets of features relevant to the collection of tasks, and not letting it zero
in on distinctive features specific for each one-vs-all discrimination. Finding an optimal compromise
between these considerations is a subject we leave for future research.
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Figure 10: Incorporation of prior knowledge into the LDR extraction process. Left: MDS-derived
configuration for a 5-HU MLP trained to produce a unary encoding of the 18-way (“identity”) label
set, to which a coarser set of 3-way class labels, corresponding to the row number in Figure 1, has
been appended (also in a unary format). The row variables were given a weight of w. = 0.1 relative to
the identity variables. The 2-class error rate on the resulting LDR was 0.056. Middle: a 5-HU MLP
trained to produce a unary encoding of the 3 row and the 6 column numbers of the stimulus. The
2-class error rate on the resulting LDR was 0.056. the relative weights of the row and the column
variables were w, = 1.0, w. = 0.75. Right: same 3 X 6 class structure as before, but the relative
weights of the row and the column variables were w, = 0.05, w. = 1.0. The 2-class error rate on the
resulting LDR was 0.20. The 2-class error rate on the raw data in all three cases was 0.28.

4 Discussion

4.1 Significance of the present results

The present work touches upon one of the central questions in the study of categorization and learning;:
can a single internal representation developed by a classifier module as result of training be made useful
for multiple tasks? To address this question, we constructed an artificial problem with easily controlled
parameters. This allowed us to develop and test a hybrid method for the extraction of low-dimensional
representations (LDRs), according to which an LDR is found by training a standard neural network
classifier. The versatility of the resulting LDR can then be tested by putting it to use in a substantially
different classification scenario, and by comparing the performance of the test-stage classifier on the
LDR with that on the raw data.

We note that the assessment of the quality of the LDR is a nontrivial task by itself, even in a situ-
ation where the initial data are generated parametrically and are known to reside in a low-dimensional
space (as is the case here). Specifically, even when one starts with, say, a two-dimensional parametric
representation, it is difficult to expect that, by chance, this representation will be immediately appar-
ent in the pattern of responses of the network, due to the high nonlinearity of the transformation from
the underlying parameter space to the high-dimensional stimulus space. FFurthermore, if the network
is forced to operate in a very low-dimensional space, the chances are poor that it will stumble on the
proper parametric representation of the data (typically, each unit in a network has a limited degree
of nonlinearity, and it is difficult to expect that highly nonlinear structure hidden in the data can be
captured by a few units). Thus, the LDR cannot be too low-dimensional if it is to be learnable, and
its very evaluation becomes a nontrivial data exploration task. To overcome this dilemma, we used
nonmetric multidimensional scaling (MDS) to embed the (relatively) low-dimensional representation
in a two-dimensional space, for visualization and evaluation.

Using the hybrid LDR extraction method in conjunction with the MDS-based approach to visual-
ization, we found that:
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¢ Simultaneous multiple-label classification is an effective way to introduce bias (i.e., prior knowl-
edge) into a flexible classifier, effectively controlling the excess variance that normally plagues
flexible classification methods.

¢ Subordinate-level labels help to construct LDR for a basic-level task. Training a network for
18-way classification resulted in a better LDR for the two-class problem, both in terms of gener-
alization performance, and in terms of similarity between the extracted LDR and the parametric
representation built into the data.

This is surprising, because one expects 18-way classification to be much more difficult than a
dichotomy. In statistical terms, the construction of an LDR suitable for the 18-class task requires
a more detailed model, involving more parameters, whose estimation is not robust under the
usually very limited amount of training data.

¢ Basic-level information helps to construct LDR for a subordinate-level task. The addition of the
basic-class label (row identity in Figure 1) improved the quality of the LDR and its generalization
performance.

This is surprising, because one expects that structure useful for 18-way classification should
be sufficient for the simpler task of determining the row to which the input belongs. Yet,
we show that the inclusion of this prior knowledge in the form of an additional classification
subtask, improves both the LDR similarity to the original parametric space and its generalization
performance.

4.2 Relationship to prior work on the transfer of learning

Within the framework that deals with the transfer of learning between tasks, several sets of training
data are often used sequentially, to refine the network’s performance on a preset task. Because only
one of the datasets is used at each training stage, there is a danger that the network will converge to
a representation which may be good for a particular data set, but may generalize poorly on new data,
or, for that matter, on older data used in previous rounds of training. This leads to the problems of
catastrophic interference and hypertransfer (Martin, 1988; Murre, 1995), which are both manifestations
of the learning machine’s finding a suboptimal representation space. In other words, the learning
machine becomes over-biased to the current training dataset.

Our approach is very different from the sequential-training transfer framework: we use all the
available data for training at all times, resulting in less susceptibility to hypertransfer. In fact, our
training procedure reduces the possibility of over-bias by imposing multiple classification tasks on the
learning machine, effectively forcing a solution that should be equally good for all the tasks. This
approach can be especially effective when a low-dimensional representation common to all the tasks
at hand is actually known to exist, as in the following example. Consider the problem of learning to
navigate a taxicab in downtown New York City. A beginner taxi driver may start by learning a number
of point-to-point routes (say, the three routes from the Port Authority Terminal to the Museum of
Modern Art, to the Empire State Building, and to Washington Square). The usual problems of transfer
of knowledge in sequential learning are expected to arise at this stage. For example, the driver will
probably find it quite difficult to navigate to the Museum from Washington Square (rather than from
the Port Authority). However, problems of this kind can be avoided if the driver attempts to learn
the map of Manhattan, that is, the underlying low-dimensional representation of all possible routes
between any two points in the region of interest. Thus, our LDR-based approach to the transfer of
learning may be called Manhattan Transfer.
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We point out that, in principle, multiple conflicting tasks may actually degrade performance, by
causing interference between internal representations that are good for one task and those that are
good for another. In our case, this problem is partially alleviated during the second stage of training,
when a new classifier is trained on the LDR found by the first-stage multiple-task classifier. Clearly,
if the number of hidden units is large enough, an internal representation that causes little interference
can be found; this LDR is further transformed in the next stage of training into a representation that
is needed for the simpler task at hand. Thus, under conflicting tasks the hybrid training method
proposed here should not have a significant advantage over training a single classifier in the traditional
manner; a simple remedy in that case is to increase the number of hidden units, so as to achieve a
richer internal representation.

4.3 Conclusion

The essence of our approach is that a good LDR can be computed if several tasks are involved in its
construction. As an outcome, one obtains a rich internal representation that can be useful for all these
tasks. The internal representation can be improved if tasks from different categorical levels are used
concurrently. The performance on each of the tasks used in the multi-task training can be improved
subsequently, by training a classifier on a particular single task, using the rich LDR as the underlying
representation.
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