Relational Reinforcement Learning

SaSo Dzeroski (saso.dzeroski@ijs.si)
Department of Intelligent Systems, Jozef Stefan Instilule
Jamova 89, SI-1000 Ljubljana, Slovenia

Luc De Raedt (deraedt@informatik.uni-freiburg.de)
Institit fiir Informatik, Albert-Lidwigs- Universildl Freiburg
Universititsgelinde am Flugplatz,D-79085 Freiburg, Germany

Kurt Dricssens (kurt.driessens@cs.kuleuven.ac.be)
Department of Compuler Science, Katholicke Universileil Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstract. Relational reinforcement learning is presented, a learning technique
that combines reinforcement learning with relational learning or inductive logic pro-
gramming. Due to the use of a more expressive representation language to represent
states, actions and Q-functions, relational reinforcement learning can be potentially
applied to a new range of learning tasks. One such task that we investigate is
planning in the blocks world, where it is assumed that the effects of the actions are
unknown to the agent and the agent has to learn a policy. Within this simple domain
we show that relational reinforcement learning solves some existing problems with
reinforcement learning. In particular, relational reinforcement learning allows us to
employ structural representations, to abstract from specific goals pursued and to
exploit the results of previous learning phases when addressing new (more complex)
situations.
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1. Introduction

Within the ficld of machine learning, both reinforcement learning (Kael-
bling ct.al., 1996) and inductive logic programming (or relational learn-
ing) (Muggleton and De Raedt, 1994; Lavra¢ and Dzeroski, 1994) have
received a lot of attention since the carly nineties. It is therefore no
surprise that both Leslie Pack Kaelbling and Richard Sutton (in their
invited talks at IJCAI-97, Nagoya, Japan) suggested to study the com-
bination of these two fields.

From the reinforcement learning point of view, this could signifi-
cantly extend the application perspective. Most representations used
in reinforcement learning are inadequate for describing planning tasks
such as the simple blocks world. Even reinforcement learning work that
involves generalization has largely employed an attribute-value repre-
sentation. Due to the use of variables in relational representations, it is
possible to abstract from specific details of the learning tasks, such as
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the specific goal pursued. Indeed, when learning to plan in the blocks
world, one would expect that the results of learning how to stack block a
onto block b would be similar to stacking ¢ onto d. Current approaches
to reinforcement learning have to retrain from scratch if the goal is
changed in this manner, while for relational reinforcement learning such
retraining is unnecessary. Relational reinforcement learning also allows
us to exploit and apply the results of learning in a simple domain when
learning in a more complex domain (e.g., going from 3 blocks to 4
blocks in the blocks world).

From the inductive logic programming point of view, it is important
to address domains such as reinforcement learning. So far, inductive
logic programming has mainly studied concept-learning, and largely
ignored the rest of machine learning. By demonstrating the potential
of relational representations for reinforcement learning, we hope to
show that the relational learning methodology does not only apply
to concept-learning but to the whole ficld of machine learning.

With this in mind, we present an approach to relational reinforce-
ment learning and apply it to simple planning tasks in the blocks
world. The planning task involves learning a policy to select actions.
Learning is necessary as the planning agent does not know the effects of
its actions. Relational reinforcement learning employs the Q-learning
method (Watkins and Dayan, 1992; Kaelbling ct.al., 1996; Mitchell,
1997) where the Q-function is learned using a relational regression tree
algorithm (see (De Raedt and Blockeel, 1997; Kramer, 1996)). A state is
represented relationally as a set of ground facts. A relational regression
tree in this context takes as input a relational description of a state, a
goal and an action, and produces the corresponding Q-value. The Q-
learning method can also be adapted in order to learn the P-function,
an explicit representation of the policy implicitly represented by the Q-
function. The P-function, which is represented as a first order logical
decision tree, takes as input a state, an action, and a goal and predicts
whether the action is optimal or not.

The paper is organized as follows. In Section 2, we view planning
(under uncertainty) as a reinforcement learning task. In Section 3, we
briefly review Q-learning and show how Q-learning can be used to learn
a P-function. Section 4 briefly reviews decision trees while focusing
on logical decision trees. Section 5 introduces relational reinforcement
learning that combines Q-learning and logical regression trees, as well
as P-learning and logical decision trees. Section 6 presents a varicty
of experiments aimed at exploring the potential of relational reinforce-
ment learning. Section 7 concludes, touches upon related work and
discusses avenues for further work.
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2. Problem specification
2.1. REINFORCEMENT LEARNING

The typical reinforcement learning task using discounted rewards can
be formulated as follows:

Given

— a set of possible states S.

a set of possible actions A.
— an unknown transition function §: S x A — S.
— an unknown real-valued reward function r: S x A — R.

Find a policy 7* : S — A that maximizes
s .
V7 (st) = Z’Ylﬁﬂ'
=0

for all s; where 0 <y < 1.

At cach point in time, the reinforcement learning agent can be in
onc of the states s; of S and selects an action a; = 7(s¢) € A to execute
according to its policy 7. Executing an action a; in a state s; will put
the agent in a new state s;y1 = 6(s¢,a¢). The agent also receives a
reward r; = 7(sg, a¢). It will be assumed that the agent does not know
the effects of the actions, i.c. § is unknown to the agent, and that the
agent does not know the reward function r. The task of learning is
then to find an optimal policy, i.c., a policy that will maximize the
discounted sum of the rewards.

This formulation of reinforcement learning is typical (cf. (Mitchell,
1997; Kaelbling et.al., 1996)). The key contribution of relational rein-
forcement learning is that relational representations will be used to rep-
resent states, actions and policies. Also, relational learners (as offered
by inductive logic programming) will be employed as generalizers.

2.2. REINFORCEMENT LEARNING FOR PLANNING

Planning with incomplete knowledge can be be recast as an instance of
the rcinforcement learning task sketched above. The main differences
between typical planning tasks (as e.g. considered in STRIPS (Fikes
and Nilsson, 1971)) and reinforcement learning are that

— in planning, one knows the effects of one’s actions, i.e., the transi-
tion function § is known to the agent,

rrl.tex; 4/07/2000; 17:21; p.3

4 Dzeroski, De Raedt, Driessens

— in planning, a known precondition-condition function pre:Sx A —
{true, false} is given, which specifies in which states it is legal to
apply which actions.

— in planning, one is given a goal function goal : S — {true, false},
which characterizes the target states.

— in planning, the aim is to start from a state s; and to find a
sequence of actions ay, ...,an (a; € A) such that

e goal(6(...0(s,a1))...;an-1),an) = true, and
o pre(6(...0(s,a1))...,a;-1),a;) = true.

This close relation between reinforcement learning and planning can
be exploited in order to define a problem of learning to plan under
incomplete knowledge. The setting is essentially that of reinforcement
learning where

— A policy 7 has to be learned.
— The function ¢ is unknown to the agent.

— The reward at time ¢ is 4 = r(sy,a¢). We will assume here that
ry = 1 if goal((s¢, at)) = true and sy # §(s¢, ar); otherwise ry = 0.
The reward function r is unknown to the learner as it relies on
the unknown 4. The reward function only gives a reward in goal
states.

— The state at time ¢ + 1 is s;11 = 0(sg, a¢) if goal(s;) = false;
otherwise s;11 = s¢. This captures the idea that goal states are
absorbing states, i.c., once the agent reaches a goal state, it stays
there.

The optimal policy 7* allows us to compute the shortest plan to
reach a goal state. So, learning the optimal policy (or approximations
thereof) will allow us to improve planning performance.

2.3. AN EXAMPLE

The type of learning task outlined above has been also considered
by Pat Langley in his book (Langley, 1996). He uses it to illustrate
reinforcement learning and as an example task he employs the blocks
world.

Consider the situation where we have three blocks called a, b and
¢, and the floor. Blocks can be on the floor or can be stacked on each
other. Each state can be described by a set (list) of facts, e.g., 51 =
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Table 1. A Prolog definition of the functions pre and 4.

pre(S,move(X,Y)) :-

holds(S, [clear(X), clear(Y), not X=Y, not on(X,floor)]).
pre(S,move(X,Y)) :-

holds(S, [clear(X), clear(Y), not X=Y, on(X,floor)]).
pre(S,move(X,floor)) :-

holds(S, [clear(X), not on(X,floor)]).

holds (S, [1).
holds(S,[ not X=Y | R 1) :-
not X=Y, !, holds(S,R).
holds(S,[ not A | R 1) :-
not member (A,S), holds(S,R).
holds(S,[A | R]) :-
member (A,R), holds(S,R).

delta(S,move(X,Y), NextS) :-
holds(S, [clear(X), clear(Y), not X=Y, not on(X,floor)]),
delete([clear(Y),on(X,Z)]1,S,S1),
add([clear(Z),on(X,Y)],S1,NextS).

delta(S,move(X,Y), NextS) :-
holds(S, [clear(X), clear(Y), not X=Y, on(X,floor)l),
delete([clear(Y),on(X,floor)],S,S1),
add([on(X,Y)],S1,NextS).

delta(S,move(X,floor), NextS) :-
holds(S, [clear(X), not on(X,floor)]),
delete([on(X,Z)] ,S,S1),
add([clear(Z),on(X,floor)],S1,NextS).

{clear(a),on(a,b),on(b,c),on(c, floor)}. The available actions are then
move(z,y) where z # y and z € {a,b,c}, y € {a,b, ¢, floor}.

It is then possible to define the preconditions and effects of ac-
tions. The Prolog code in Table I defines pre and § respectively. The
predicate pre defines the preconditions for the action move (X,Y) while
the predicate delta defines its effects: delta(S,A,S1) succeeds when
6(S, A) = S1. States are represented as lists of facts and the auxil-
iary predicatc holds(S,Query) succeceds when Query would succeed
in the knowledge base containing the facts in S only. The goal is to
stack a onto b, i.e., goal(S) :- member(on(a,b),S). Note that names
starting with capitals denote variables in Prolog: thus a in on(a,b) is
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a constant denoting a specific block and A in on(A4,b) is a variable
denoting any block.

3. Q-learning and P-learning

Here we summarize Q-learning, one of the most common approaches to
reinforcement learning, which assigns values to state-action pairs and
thus implicitly represents policies. We then introduce the approach of
P-learning which in addition represents policies explicitly.

3.1. Q-LEARNING

In the setting sketched in Section 2.1, Q-learning allows us to approx-
imate the optimal policy. The optimal policy n* will always select the
action that maximizes the sum of the immediate reward and the value
of the immediate successor state, i.c.,

7*(s) = argmaz,(r(s,a) + V™ (8(s,a)))

With this formulation of n* we can acquire the optimal policy by
learning V™, provided perfect knowledge of § and r. In our sctting,
however, the learner does not know ¢ and r. Therefore, cven if we
learned V™, we would not be able to obtain 7* from it.

Table II. The basic Q-learning algorithm.

for each s, a do
initialize the table entry Q(s,a) =0

e:=0

do forever
e:=e+1
i=0

generate a random state so
while not goal(s;) do
select an action a; and execute it
receive an immediate reward r; = r(s;,a;)
observe the new state s;41
i=i+1
endwhile
for j=i-1to 0 do
update Q(Sj,llj) =r; + 'ymuzurQ(s]-H,a’)

The Q-function for policy 7 is defined as follows :

Q" (s,a) = (s;a) + 7V (d(s,0))
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Knowing Q*, the Q-function for the optimal policy, allows us to rewrite
the definition of 7* as follows :

7*(s) = argmaz,Q*(s, a)

This rewrite is important as it shows that if the agent can learn
the function Q* instead of the V™ function, it will still be able to act
optimally. In the following, we will call @Q* simply Q or the Q-function.
For a fixed goal, an approximation to the Q-function, Q, in the form of
a look-up table, is learned by the algorithm in Table II ,cf. (Mitchell,
1997). Note that one can reduce the complexity of Q-learning by using
an action-penalty representation or by setting initial Q-values to be
different from zero (Koenig and Simmons, 1996).

It is common in Q-learning to select action a in state s probabilisti-
cally so that Pr(als) is proportional to Q(s,a), c.g.,

Pr(a|s) = T~ ZT—Q(MJ) (1)
J

Lower values of the parameter T' (temperature) give stronger preference
to actions with high values of () causing the agent to exploit what it
has learned, while higher values of 7' reduce this preference allowing
the agent to explore actions that currently do not have high values
of Q. Selecting actions according to this scheme will be called the @
ezploration strategy.

3.2. P-LEARNING

The Q-function encodes the optimal policy in a complex manner as it
assigns a Q-value to all the possible state-action pairs. It will turn out
uscful to represent the optimal policy in a simpler way. This is realized
by the P-function, which we define as follows :

if a € w*(s) then P(s,a) =1 else P(s,a) =0

Instead of assigning different real values to the state-action pairs, the
P-function only decides whether the state-action pair is optimal (1) or
not (0). In general, P-functions can be represented more compactly
than Q-functions. Indeed, the Q-function implicitly encodes knowledge
about the distance (number of steps) from the current state to the goal
states, whereas the P-function does not. Examples of this, in the context
of planning will be given later in this paper. This point is important as
both functions will be represented by logic programs within relational
reinforcement learning.

As the P-function is defined in terms of the optimal policy 7*, which
in turn can be defined as a function of the @-function, we can also
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express the P-function in terms of the Q-function in a straightforward
manner :

if a € argmaz,Q(s,a) then P(s,a) =1 else P(s,a) =0

This also means that any approximation Q of @ has a corresponding
approximation P of P. As a consequence, the above algorithm for Q-
learning can be extended into an algorithm for P-learning by adding
an cxtra step that defines P in terms of @ at the end of the algorithm.

Instead of the Q exploration strategy it is now also feasible to use
the function P to select the actions to execute in given states. This is
then done using the following probabilities :

Pr(a|s) = T—f’(s,ai)/ Z 7=P(s,a5) (2)
J
The corresponding strategy is called the P exploration strategy.

4. Top-down induction of logical decision trees

4.1. DECISION TREES

Decision trees are among the most popular representations for learn-
ing and data mining, see e.g. (Mitchell, 1997; Quinlan, 1986; Quinlan,
1993; Breiman et.al., 1984). The term decision trees refers to classifica-
tion trees and regression trees, although it is often used as a synonym
for classification trees. The leaves of decision trees contain a prediction,
which is a discrete class value in the case of classification (decision) trees
or a continuous (real) class value (or a function yielding real values)
in the case of regression trees. Each internal node of a decision tree
contains a test. Furthermore there will be one subtree for cach possible
outcome of a test in the tree. In this way, decision trees partition the
whole example space and assign class values to each example. To make
predictions with a decision tree one starts in the root of the tree and
applies the root’s test to the example. Then one takes the branch that
corresponds to the outcome of the test in the example and propagates
the example to the corresponding subtree. If the resulting subtree hap-
pens to be a leaf, one reads off the prediction, otherwise one applies the
procedure recursively on the example and the subtree. For instance, the
decision tree shown in Figure 1 can be used to classify states with three
blocks named a, b and ¢ into the classes stacked and unstacked. As an
illustration, consider a state in which clear(a) = true, clear(b) =
false, and clear(c) = true. This example would be classified in the
third leaf (class stacked).

rrl.tex; 4/07/2000; 17:21; p.8



Relational Reinforcement Learning 9

clear(a) ?
+--yes: clear(b) ?
+--yes: clear(c) ?
+--yes: unstacked
+--no: stacked
+--no: stacked
+--no: stacked

Figure 1. A decision tree to predict whether there is a stack in the 3 blocks world.

Classification and regression trees are typically induced using a di-
vide and conquer algorithm, called top-down induction of decision trees
(TDIDT). To induce trees, one starts from a set of examples and con-
siders all possible tests in the root of the tree and selects the test that
performs best according to a certain heuristic (e.g. information gain
in the case of classification and variance reduction for regression). One
then splits the data set according to the outcome of the test in the ex-
amples and one propagates the examples to the resulting subtrees. For
cach subtree, one then decides whether to turn the subtree into a leaf
or to recursively call the induction procedure. This process continues
until the tree is completed.

Fully grown trees are sometimes pruned to increase the reliability
of their predictions on unseen cases. Various implementations of tree
induction exist, cf. e.g. (Quinlan, 1986; Quinlan, 1993; Breiman ct.al.,
1984), using different heuristics and extensions of the basic TDIDT
approach.

4.2. LOGICAL DECISION TREES

Classical decision trees employ propositional or attribute value rep-
resentations. Recently, however, these representations have been up-
graded towards first order logic, resulting in the frameworks of logi-
cal classification and regression trees (Kramer, 1996; Blockeel and De
Raedt, 1998). As the work on logical decision trees has been extensively
published elsewhere, we introduce only the key differences with classical
decision trees. For full details of these logical decision tree methods we
refer to (Blockeel and De Raedt, 1998; Blockeel et.al., 1998; Kramer,
1996).

Onec key difference between logical and classical decision trees is that
classical decision trees work with examples in attribute value form.
This means that each example is described by a single feature vector
(or single tuple in a table). In logical decision trees, an example is
essentially a relational database (or a Prolog knowledge base) described
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by a set of facts. As an illustration consider Table IV, where cach
example corresponds to a state description in the block’s world. States
are assumed to be fully described, i.e. the closed-world assumption
applies.

The other main difference is that logical decision trees employ
(Prolog)-queries as tests in the internal nodes of the decision trees,
e.g. on(A,c) (is there any block A on block ¢?). Since the outcome
of a query in an example is either true or false, the resulting trees
arc always binary. Furthermore, the queries can contain variables, and
these variables may be shared among several nodes of the trees. When
variables are shared among several nodes of the tree they refer to the
same object. Consider the tree shown in Figure 2. This tree contains
two queries : on(A,B) and on(B,C). In order to classify an example with
this tree, one will first test whether on(A,B) succeeds in the example
for some A and B. If so, one will then test whether the query on(A,B),
on(B,C) succeeds in the example. This shows that variables shared
among multiple nodes in logical trees are supposed to bind to the same
objects. Due to this property it is only meaningful to propagate the
variables of a node to the succeeding branches of the subtree (labeled
yes). Consider the failing branch of on(A,B) in Figure 2. Given that
there is no A and B such that on(A,B) it does not make sense to refer
to A or B in the failing subtree of on(A,B). The semantics of the
tree is completely characterized by the corresponding Prolog program
shown in Figure 2. Due to the complications that arise one nceds to
employ cuts (the !) in the Prolog program. Because of the cuts, different
rules in the program behave as in an if-then-else program. To classify
an example one tries whether the condition part of the first rule is
satisfied. If it is, one uses the corresponding prediction, otherwise one
tries the second rule. This process continues until a rule is found whose
condition is satisfied. The use of cuts in the Prolog program closely
corresponds to so-called first order decision lists introduced by Mooney
and Califf (Mooney and Califf, 1995). These and other aspects of the
representation of logical decision trees are explored in detail in (Blockeel
and De Racdt, 1998).

We will use logical decision trees as implemented in the programs
TILDE (Blockeel and De Raedt, 1998) (for classification) and TILDE-
RT (Blockeel ct.al., 1998) (for regression). From a practical point of
view, TILDE can be viewed as an extension of the C4.5 (Quinlan,
1993) system for induction of decision trees. It uses the same heuristics
to select tests in internal nodes, as well as the same mechanisms for tree
pruning. For our purposes, TILDE-RT should be regarded as an exten-
sion of propositional regression tree learners, such as CART (Breiman
ct.al., 1984). Nevertheless, TILDE-RT employs different heuristics (see
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on(A,B) ?
+--yes : on(B,C) ?
+--yes : stacked
+--no : unstacked
+--no : unstacked

stacked :- on(A,B), on(B,C), !
unstacked :- on(A,B), !
unstacked.

Figure 2. A logical decision tree that predicts whether there is a stack in the blocks
world.

(Blockeel ct.al., 1998) for details). The basic TILDE and TILDE-RT
algorithms are outlined in Appendix A. TILDE and TILDE-RT employ
the typical well-known top-down induction of decision trees (TDIDT)
algorithm. The only difference lies in the generation of candidate tests
to be put in the nodes. This will be explained in the next subsection.

4.3. DECLARATIVE BIAS

Because first order representations are more expressive than attribute
value representations the search space explored by inductive logic pro-
gramming systems is much larger (and often infinite). To focus the
scarch on the most relevant hypotheses and to climinate uscless hy-
potheses from the search space, nearly all inductive logic programming
systems employ some kind of declarative bias mechanism, see (Nedellec
et.al., 1996) for an overview. Declarative bias is often implemented by
means of so-called mode and type declarations.

Type declarations specify the types of the arguments of the predi-
cates involved and restrict the types of queries and clauses to be type
conform. Consider the predicates on/2 and numberofblocks/1. The
type of arguments 1 and 2 of the predicate on/2 is object (block) and
the type of the only argument of numberofblocks/1 is integer. Under
these declarations the query ?-on(X,Y), numberofblocks(X) is not
type conform as it requires that X is of both type object and integer.

Modes specify properties about the calling patterns of predicates
in clauses, queries or conditions to be induced. For example, the mode
on(+,-) specifies that at the time of calling the predicate on/2, the first
argument should be bound (or instantiated, it is of type +) whereas
the second argument should be free (not instantiated, it is of type -).
One can also combine these modes and write for instance on(+-,+-)
stating that all calling patterns are permitted.
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Modes are useful because they can focus the hypothesis language on
interesting clauses or queries by excluding uscless ones. For example,
it can be used to exclude clauses/queries such as ?- height (X,XH),
XH < YH. by using the mode + < +. This mode specifies that the two
arguments of predicate ‘less than’ (</2) should be instantiated and
guarantees in this context that the numbers would be bound before
testing whether one is smaller than the other. Another type of mode is
# which specifies that the resulting argument should be bound in the
clause/query to a constant, c.g. on(-,#) would require that the last
argument is instantiated. The rmode formalism employed by TILDE
and TILDE-RT implements and slightly extends the above notions of
type and mode declarations, cf. (Blockeel and De Raedt, 1998).

The main point where TILDE and TILDE-RT differ from proposi-
tional decision tree algorithms is the generation of tests to put in the
internal nodes. The tests that are considered in a node depend on 1)
the declarative bias, and 2) the tests in nodes higher in the tree (on
succeeding branches). Roughly speaking, TILDE collects all literals in
succeeding ancestors (including the root) of the node and then applies
a so-called refinement operator to generate the tests. The refinement
operator employs the declarative bias specifications. As an illustration
of this, consider first the root node in the tree of Figure 2 and its
succeeding branch. The test in the root is on(A,B). Given only the
mode declaration on(+,-), two refinements would be generated, i.c.,
on(A,B), on(A,C) and on(A,B), on(B,C). This results in two candi-
date tests for the succeeding branch: on(A,C) and on(B,C). Suppose
the heuristic chooses as best the latter one (as in the actual tree in
Figure 2) and also that the resulting node should be further split. Then
the tests considered in the succeeding branch of the node on(B,C) in
Figure 2 would be on(A,D), on(B,D) and on(C,D). On the other hand,
in the failing branch of the node on(B,C), one would consider only
on(A,D) and on(B,D) because it does not make sense to refer to the
variable C there.

4.4. BACKGROUND KNOWLEDGE

Another key issuc when using inductive logic programming is back-
ground knowledge. Background knowledge consists of the definitions of
general predicates that can be used in the induced hypotheses. It thus
influences the concepts that can be represented.

Unlike the predicates that are used to describe training examples
(state/action/qvalue or state/action/optimality triples in our case),
such as on(A,B), background knowledge predicates specify knowledge
that is gencrally valid across the whole domain, i.c., for all training ex-
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amples. The predicate above (A,B) (cf. Appendix B) defines when block
A is above block B in terms of the predicate on(A,B). This knowledge
holds over all states in the blocks world.

It is well-known that the representation language is a crucial pa-
rameter in machine learning. Given an adequate language, learning
will be effective, and given an inadequate one learning will be difficult
if not impossible. Applied to inductive logic programming this means
that it is important to specify the right predicates in the background
knowledge.

One advantage of inductive logic programming in this context is that
the combination of background knowledge and declarative bias allows
the user to influence the learning process and results. For instance, as
we will see in the experiments, it is sometimes necessary to employ
the predicate numberofblockson(A,N) to learn effective policies. This
predicate specifies that there are exactly N blocks above block A.

Another issue related to our experiments is that of block identities:
if one knows that the absolute identities of blocks are not important as
opposed to their relative ones, then one can specify this using the modes
(only allowing for a combination of + and - and not for #). While learn-
ing will not necessarily be unsuccessful without this knowledge, it can
be much slower. To illustrate this, we have performed some relational
reinforcement learning experiments for the stack and unstack goals (see
Section 6.2). Without the assumption that policies are independent of
block identities, TILDE uses block identities in the policies learned in
carly episodes, but does not reference block identities in the policies
learned after a larger number of episodes. However, the time needed
for learning the policies was three times longer as compared to the case
when block identities were not used at all.

This illustrates the flexibility of inductive logic programming. If
the user has partial knowledge, intuitions or expectations about the
hypotheses to be induced, they can be elegantly encoded using a com-
bination of background theory and declarative bias. If one does not
possess such knowledge, one may have to search a larger space, may
require more examples and time to identify the target concept, and in
the worst case, learning might be unsuccesfull.

5. Relational Reinforcement Learning
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5.1. THE NEED FOR RELATIONAL REPRESENTATIONS

Given the framework for Q- and P-learning presented in Section 3, we
could now learn to plan in the blocks world sketched carlicr. Using
the approach as it stands we could store all the state-action pairs
encountered and memorize/update the corresponding @ values, having
in effect an explicit look-up table for state-action pairs. This is how
Pat Langley initially addresses the relational reinforcement learning
task in his book (Langley, 1996), cf. also Section 7.2. The P values
could then be derived from this. This approach has however a number
of disadvantages:

— It is impractical for all but the smallest state-spaces. Furthermore,
using look-up tables does not work for infinite state spaces which
could arise when first order representations are used (e.g., if the
number of blocks in the world is unknown or infinite the above
method does not work).

— Despite the use of a relational representation for states and actions,
the above method is unable to capture the structural aspects of
the planning task.

— Whenever the goal is changed from say on(a,b) to on(b,c) the
above method would require retraining the whole @ function.

— Ideally, one would expect that the results of learning in a world
with 3 blocks could be (partly) recycled when learning in a 4 blocks
world later on. It is unclear how to achieve this with the lookup
table.

The first problem can be solved by using an inductive learning al-
gorithm (e.g., a neural network as in (Langley, 1996)) to approximate
@ and P. The three other problems can only be solved by using a
relational learning algorithm that can abstraction from the specific
blocks and goals using variables. We now present such a relational
learning algorithm called RRL. The main contribution of this paper
is to address the generalization problem for reinforcement learning in
a relational setting.

5.2. THE TASK OF RELATIONAL REINFORCEMENT LEARNING

We have already considered reinforcement learning (Section 2.1), its
application to planning (Section 2.2), and relational learning (Section
4). We give a more precise definition of the relational reinforcement
learning (RRL) task below. The RRL task is a reinforcement learning
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task (items 1 to 4), where states, actions and policies are represented
relationally, and consequently, background knowledge and declarative
bias are employed during learning (items 5 and 6). We illustrate the
task formulation within the blocks world that will be used in our exper-
iments. We want to emphasize though that RRL is a general approach
and is applicable to domains other than planning in the blocks world.

The RRL task is specified as follows:

Given are:

1. A set of possible states S, described in a relational language. States
arc represented as sets of basic facts that hold in a state. The closed-
world assumption is applied to state descriptions. In the blocks
world, the basic facts concern the predicates on(A4, B) and clear(A).
The RRL algorithm encounters states one by one and does not see
the entire set a priori.

2. A set of possible actions A, also represented in a relational lan-
guage. In the blocks world, one can move one block onto another
move(A, B) or to the floor move(A, floor). Not all actions are
applicable in all states. The RRL algorithm sees only the actions
applicable in a given state, as specified by the function pre:Sx A —
{true, false}. It is defined in Table 1 for the blocks world.

3. A transition function §: S x A — S. For the deterministic block
world, this function is defined in Table 1. The RRL algorithm,
however, does not rely on knowledge about this function. It only
uses it to execute actions and move to new states. This function can
in principle be nondeterministic (e.g., a move action might actually
fail and not change the current state).

4. A real-valued reward function 7: S x A — R. At present we use
the goal function goal:S — {true, false} to define r: r(S,a) =1 if
goal(8(S,a)) = true, 7(S,a) = 0 otherwise.

5. Background knowledge generally valid about the domain (states in
S). This includes predicates that can derive new facts about a given
state. In the blocks world, a predicate above(A, B) may define that
a block A is above another block B.

6. Declarative bias for learning relational representations of policies.
Together with the background knowledge, this specifies the lan-
guage in which policies are represented. In the blocks world, e.g.,
we do not allow policies to refer to the exact identity of blocks.

The task is to find a policy for sclecting actions = : S — A that
maximizes the expected discounted reward. Policies can be either rep-
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Table III. The Q-RRL algorithm for relational reinforcement learning.

Initialize Qg to assign 0 to all (s,a) pairs
Initialize Examples to the empty set.

e:=0

do forever
e=e+1
i:=0

generate a random state so
while not goal(s;) do
select an action a; stochastically
using the Q-exploration strategy from Equation (1)
using the current hypothesis for Q.
perform action a;
receive an immediate reward r; = r(si,a;)
observe the new state s;41
ii=i+1
endwhile
for j=i-1to 0 do
generate example & = (s;,a;,4;),
where §; := rj + ymaz, Qe (sj41,a")
if an example (sj,a;,{oiq) exists in Examples, replace it with z,
else add z to Examples
update Q. using TILDE-RT to produce Qi1 using Examples

resented as real-valued Q-functions or as binary (optimal/non-optimal)
classifier policies (P-functions).

5.3. THE Q-RRL ALGORITHM

The relational reinforcement learning (Q-RRL) algorithm is obtained
by combining the classical Q-learning algorithm with stochastic sclec-
tion of actions and a relational regression algorithm. Instead of having
an cxplicit lookup table for the Q-function, an implicit representation
of this function is learned in the form of a logical regression tree, called
a Q-tree.

The Q-RRL algorithm is given in Table III. The main point where
RRL differs from the algorithm in Section 3.2 is in the for-loop where
the Q-function is modified.

The initial tree Qg assigns zero value to all state-action pairs. From
each goal state g encountered, an example (g,a,0) is generated for each
action a whose preconditions are satisfied in g. The rationale for this is
that no reward can be expected from applying an action in an absorbing
goal state.
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move(c,floor) move(b,c) move(a,b)
=0 r=0 r=1
Q=0.81 Q=09 Q=1 move(a,floor)

=l
Q=0

— |
1 e

Figure 3. A blocks-world example for relational Q-learning.

A possible initial episode (e = 1) in the blocks world with three
blocks a, b, and ¢, where the goal is to stack a on b (i.c., goal(on(a,b)))
is depicted in Figure 3. The discount factor v is 0.9 and the reward
given is one on achieving a goal state, zero otherwise.

The examples generated by RRL use the actions and the Q-values
listed above the arrows representing the actions. The actual format of
these examples is listed in Table IV. It is exactly this input that is used
by TILDE-RT to generate the Q-tree (:. TILDE-RT (De Raedt and
Blockeel, 1997; Blockeel et.al., 1998) is an algorithm for learning logical
regression trees (as described in Section 4).

TILDE-RT is not incremental, so we currently simulate the up-
date of Q by keeping all (s,a) pairs encountered ! (not just those
encountered in episode e) and the most recent ¢ value for each pair.
In non-deterministic domains, it would probably be a good idea to
average the g values instead of keeping only the most recent value. A
relational regression tree Q. is induced from the (s,a,q) examples after
each episode e. The tree @, is then used to select actions in episode
e+ 1.

In order to apply TILDE-RT to induce a Q-tree, the input for
TILDE-RT is a set of state-action pairs together with the corresponding
Q-values, represented as sets of facts. From these, TILDE-RT induces
(using the techniques sketched in Section 4) a relational regression tree
in which the predictions correspond to the real numbered Q-values.

! To some extent this is similar to what happens in L.-J. Jin’s experience replay
technique (Lin, 1992). The idea of experience replay is to memorize all experi-
ences gathered so far and to repeatedly present them to the learning engines. The
memorization of past experiences is similar to our work. However, the reasons for
memorizing are different. We memorize because TILDE is non-incremental and thus
has to start from scratch again each time. Experience replay is aimed at neural
networks which will converge more rapidly when processing the evidence more than
once.
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root : goal-on(A,B) , numberofblocks(C) , actionmove(D,E)
on(A,B) ?

+--yes: [0]

+--no: clear(A) 7
+--yes: [1]
+--no: clear(E) ?

+--yes: [0.9]
+--no: [0.81]

qvalue(0) :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , on(A,B), !.

qvalue(1l) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , clear(A), !.

qvalue(0.9) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , clear(E), !.

qvalue(0.81) .

Figure 4. A relational regression tree and its equivalent Prolog program generated
by TILDE-RT from the examples in Table IV.

To illustrate the above notions, consider the episode shown in Fig-
ure 3. The examples for TILDE-RT generated by the RRL algorithm
are given in Table IV. The corresponding relational regression tree
induced by TILDE-RT from these examples, using the background
knowledge listed in Appendix B, is shown in Figure 4. This tree is
a logical regression tree as described in Section 4. There is one slight
difference with the trees introduced in Section 4 and this is the use of

Table IV. Examples for TILDE-RT generated from the blocks-world
Q-learning episode in Figure 3.

Example 1 Example 2 Example 3 Example 4
qvalue(0.81). qvalue(0.9). qvalue(1.0). qvalue(0.0).
move(c,floor). move(b,c) . move(a,b). move(a,floor).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).
clear(c). clear(b). clear(a). clear(a).
on(c,b). clear(c). clear(b) . on(a,b).
on(b,a). on(b,a). on(b,c). on(b,c).
on(a,floor). on(a,floor). on(a,floor) . on(c,floor) .
on(c,floor). on(c,floor).
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qvalue(0) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , on(A,B), !.

qvalue(1l) :- goal_on(A,B) , numberofblocks(C) ,
actionmove(D,E) , actionmove(A,B), !.

qvalue(0.729) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , height(D,F) , height(E,G) , F < G, !.

qvalue(0.81) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , eq(E,A), !.

qvalue(0.81) :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , eq(E,B), !.

qvalue(0.81) :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , above(A,B), !.

qvalue(0.9) :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , height(D,F) , F = 3 , on(D,A), !.

qvalue(0.81) :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , height(D,F), F = 3, !.

qvalue(0.9) :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , clear(B), !.

qvalue(0.9).

Figure 5. An optimal Q-tree generated by Q-RRL in the three blocks world.

the root of the tree. The root of the tree in all decision trees shown below
contains a query that succeeds in all examples. The reason for having
a root is that this allows to bind the relevant variables (in this case the
goal, possibly the numberofblocks, and the action under consideration).
Because the root query succeeds for all examples it is propagated to all
nodes in the decision trees. Furthermore it appears in all Prolog clauses
derived from the decision trees.

To find the Q-value corresponding to a state-action pair, one has
to construct a Prolog knowledge base containing the Prolog program
(corresponding to the tree), all facts in the state, the action, and the
goal. Running the query 7-qvalue(Q) will then return the desired re-
sult. E.g., the Q-tree above will return a Q-value of zero for all actions
if the goal is on(A4,B) and on(A,B) holds in the state (goal states are
absorbing). On the other hand, if the goal on(A4,B) does not yet hold
and A is clear, all actions get a value of one.

Figure 5 lists the Prolog rewrite of a Q-tree that is optimal for the
three blocks world and has been induced by Q-RRL after 10 episodes.
The tree was induced using the background knowledge listed in Ap-
pendix B. The scttings used for TILDE-RT can be found in Appendix
C. It is important to note that the individual blocks are not referred to
in the tree itself directly, but only through the variables of the goal. This

rrl.tex; 4/07/2000; 17:21; p.19

20 Dzeroski, De Raedt, Driessens

Table V. Learning P-trees from Q-trees within the P-RRL algorithm.

for j=i-1to 0 do
for all actions aj possible in state s; do
if state action pair (s;,ax) is optimal according to Q1
then generate example (s;,ax,c) where ¢ =1
else generate example (s;, ax,c) where ¢ =0
update P. using TILDE to produce P-41 using these examples (s;,a, c)

means that the tree represents the optimal policy not only for achieving
the goal on(a, b), but also on(b, ¢) and on(c, a). This is one of the major
advantages of using a relational representation for Q-learning.

5.4. THE P-RRL ALGORITHM

In the previous sections, we showed how the Q-function could be ap-
proximated by Q-trees. In this section, we show how an approximation
of the P-function, called the P-tree, can be obtained.

One approach to approximating the P-function would be to directly
apply the definition of the P-function in terms of the Q-function, where
the Q-function in the definition is replaced by the induced Q-tree as
sketched in Section 3.3. However, as the Q-function is typically more
complex than the P-function, this would lead to an unnecessarily com-
plex and indirect definition of the P-function. As the definitions of both
P and Q will be learned it may well turn out casier and more cffective
to learn P than to learn Q. This will only be the case when the induced
P-function does not refer to the Q-function. The P-function can be
represented as a logical decision tree, a P-tree, that predicts whether
the state action pair is optimal (P-value is 1) or non-optimal (P-value
is 0). The P-RRL algorithm learns P-trees in addition to Q-trees. It is
identical to the Q-RRL algorithm with the following two exceptions: 1)
to learn the P-tree, the code in Table V is added at the end of the do
forever loop in Table IIT and 2) the P-exploration strategy as defined
by Equation (2) is used to select actions.

All state-action pairs for which the state was encountered in the
last episode are classified as optimal or non-optimal according to the
induced Q-tree. The resulting examples are then fed into the TILDE
system that will induce a logical decision tree. The only difference
between a logical decision tree and a logical regression tree is the
information in the leaves. The leaves of regression trees contain real
numbers, whereas those of decision trees contain classes.
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Table VI. Examples for learning a P-tree by TILDE generated from the
blocks-world Q-learning episode in Figure 3.

Example 1 Example 2-1 Example 2-2 Example 2-3
optimal. optimal. optimal. nonoptimal.

move (c,floor). move(b,c). move(b,floor). move (c,b) .
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).
clear(c). clear(b). clear(b). clear(b).
on(c,b). clear(c). clear(c). clear(c).
on(b,a) . on(b,a). on(b,a). on(b,a).
on(a,floor). on(a,floor). on(a,floor). on(a,floor).
on(c,floor). on(c,floor) . on(c,floor).

Example 3-1 Example 3-2 Example 3-3 Example 4
optimal. nonoptimal. optimal. nonoptimal.
move(a,b) . move(b,a). move(b,floor). move(a,floor).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).
clear(a). clear(a). clear(a). clear(a).
clear(b) . clear(b) . clear(b). on(a,b).
on(b,c) . on(b,c). on(b,c). on(b,c).
on(a,floor). on(a,floor). on(a,floor) . on(c,floor).

The initial tree Py assigns value one to all state-action pairs. From
each goal state g encountered, an example (g,a,0) is generated for each
action a whose preconditions are satisfied in g. The rationale for this is
that no reward can be expected from applying an action in an absorbing
goal state, hence no action in a goal state is optimal.

If we look back at the examples of Figure 3, and apply the P-RRL
part of the algorithm, the examples in Table VI would be gencrated.
These could then be fed into the TILDE system that could then induce
a logical decision tree.

A P-tree in Prolog format generated by P-RRL from the examples
in Table VI is shown in Figure 6. The same background knowledge is
used as for inducing Q-trees. Although induced from one episode only,
this tree comes close to the correct optimality tree for this domain. If
the goal is on(4,B) and there is a block above A (above(D,A)) it is
optimal to move D away (actionmove(D,E)). The only exception to
this is when we move D to B: this exception is provided for by the first
clause of the tree in Figure 7, which was induced by TILDE during
the experiments described in Section 5 and is equivalent to the correct
tree.
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Note that while we have chosen to use the logical decision and regres-
sion tree inducers TILDE and TILDE-RT, other relational regression
(Karalic and Bratko, 1997; Kramer, 1996) and classification (Quin-
lan, 1990; Kramer, 1996) approaches can be used to induce relational
representations of Q-functions and policies in the Q-RRL and P-RRL
algorithms.

6. Experiments

6.1. QUESTIONS ADDRESSED

The experiments described in this section will attempt to answer several
questions about relational reinforcement learning. We will focus on the
following ones :

1. Is relational reinforcement learning effective for different goals?

2. Can P-RRL and Q-RRL learn optimal policies for state spaces with
a fixed number of blocks?

3. Can P-RRL and Q-RRL learn optimal policies for state spaces with
different numbers of blocks?

4. Can P-RRL and Q-RRL learn from experience in which the number
of blocks is varied?

5. Is P-RRL to be preferred over Q-RRL?

6. Under which conditions does relational reinforcement learning
work?

root : goal_on(A,B) , numberofblocks(C) , actionmove(D,E)
above(D,A) ?
+--yes: optimal
+--no: actionmove(A,B) ?
+--yes: optimal
+--no: nonoptimal

Figure 6. A P-tree for the three blocks world generated from the examples in
Table VI.
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nonoptimal :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , above(D,A) , eq(E,B), !.

optimal :- goalon(A,B) , numberofblocks(C) ,
actionmove(D,E) , above(D,A), !.

optimal :- goal_on(A,B) , numberofblocks(C) ,
actionmove(D,E) , actionmove(A,B), !.

nonoptimal :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , on(B,E) , clear(B), !.

nonoptimal :- goal on(A,B) , numberofblocks(C) ,
actionmove(D,E) , on(B,E) , on(A,B), !.

optimal :- goal-on(A,B) , numberofblocks(C) ,
actionmove(D,E) , on(B,E), !.

nonoptimal.

Figure 7. An optimal P-tree generated by P-RRL in the three blocks world.

6.2. EXPERIMENTAL SETUP

We performed two different sets of experiments. In the first set of
experiments, the policies were learned from state spaces in which the
number of blocks was held constant, cf. Section 6.3. In the second set of
experiments, discussed in Section 6.4, we varied the number of blocks
while learning.

In both sets of experiments we tried out different goals such as
stacking, unstacking and on(a,b) (cf. Section 6.2.1 for a discussion on
the goals pursued) and used the background knowledge and parameter
settings discussed in Section 6.2.2, except for the experiments described
in Section 6.6.

6.2.1. Setup : The tasks
The following goals in the block’s world were pursued :

— stack : goal reached if all blocks are on one stack
(?- not (on(A,floor), on(B,floor), not A=B) in Prolog)

— on(a,b) : goal reached if block a is on block b

— unstack : goal reached if all blocks are on the floor
(?- not (on(4,B), not B=floor))

Prolog code specifying the optimal policies for achicving these goals
is given in Table VII. The optimal policy for unstacking is the simplest:
moving any block (that is not alrecady on the floor) to the floor is
optimal. The policy for stacking is a bit more complex: moving a block
to the highest stack is optimal. The policy for achieving on(a, b) is the
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Table VII. Optimal policies for three goals in the blocks world.

optimal (unstack,move (A,floor)) :—
on(A,B),
B\=floor.

optimal (stack,move(A,B)) :-
height (B,HB),
not (height(C,HC), HC > HB).

optimal (onab,move(A,B)) :-
goal (on(A,B)).
optimal (onab,move(X,Y)) :-
goal(on(A,B)),
above(X,A), not above(Y,B).
optimal (onab,move(X,Y)) :-
goal(on(A,B)),
above(X,B), not above(Y,A).

Table VIII. Number of states and number of reachable goal states for three
goals and different numbers of blocks.

No. of blocks  No. of states RGS stack RGS on(a,b) RGS unstack

3 13 6 2 1
4 73 24 7 1
5 501 120 34 1
6 4051 720 209 1
7 37 633 5 040 1 546 1
8 394 353 40 320 13 327 1
9 4 596 553 362 880 130 922 1
10 58 941 091 3 628 800 1441 729 1

most complex: if possible, a should be moved to b; otherwise, a block
above a or b should be moved away (but not to the stack where b or a
are).

The above ordering of the three goals also corresponds to the number
of reachable goal states, in decreasing order. A reachable goal state is a
goal state (where the goal is satisfied) and which can be reached from
a non-goal state in a single step (by applying one action). For the goal
on(a,b),c.g., the state s; = {clear(a), on(a,b),on(b, c),on(c, floor)} is
a rcachable goal state, while s; = {clear(c),on(c,a),on(a,b)
on(b, floor)} is not a recachable goal state.
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For the unstack goal and a fixed number of blocks there is only a sin-
gle state that satisfies the goal. For the stack goal, given n blocks there
are n! goal states. The number of possible states increases exponentially
with the number of blocks. This is summarized in Table VIIL.

One point that should be clear from this table is that for some of
the goals (e.g., unstacking with 10 blocks) the reinforcement learning
algorithm described in Section 3.2 is inapplicable: the probability of
reaching the goal state by random exploration is extremely low (given
only 1 goal state in 58 941 091). Another point that this table demon-
strates is the difficulty of learning policies in the blocks world. Despite
the fact that the blocks world is an artificial toy domain, policy learning
can become very complex due to the large number of possible states.

Note also that for unstack, the number of possible actions increases
as one gets closer to the goal states: one step away from the goal state
there are (n — 1)(n — 2) + 1 possible actions. For stack, on the other
hand, there are only two possible actions if we are one step away from
a goal state.

6.2.2. Background knowledge and parameters

The background knowledge and the settings used by TILDE-RT and
TILDE are listed in Appendix B and C. It includes the predicates
above (4,B) (block A is above block B, transitive closure of the relation
on(A,B)), eq(A,B) (equality, A=B), height (A,H) (the height of block
A is H), numberofblocks (N), numberofstacks(M) and diff(X,Y,Z)
(subtraction, Z=X-Y). The same background knowledge is used for both
TILDE and TILDE-RT. There is a slight difference in the settings:
when learning policies, TILDE is not allowed to use constants for the
heights of stacks and the number of stacks. E.g., it can compare the
heights of two stacks (needed for the stacking policy), but cannot
check directly if there is a stack of height 4. The same background
knowledge and settings are used for the three problems, with the only
difference of placing the corresponding goal literal in the root of the
tree (goal-on(A,B) for on(a,b), goal_stack for stack, goal unstack
for unstack).

In the following sections, we describe experiments with the P-RRL
algorithm, which subsumes the Q-RRL algorithm. The P-exploration
policy was used throughout. The starting temperature was set to 5 in
Equation (2).

6.3. FIXED NUMBER OF BLOCKS WHILE LEARNING

Our first set of experiments investigates whether relational reinforce-
ment learning can find optimal policies for the three goals mentioned
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Table IX. Accuracy of the random policy.

3 Blocks 4 Blocks 5 Blocks

Stacking 42.9 37.6 32.2
Unstacking 66.7 55.1 49.0
On(a,b) 61.7 55.6 50.9

above when keeping the number of blocks fixed during learning. The
learned policies can then be evaluated in two ways depending on
whether the number of blocks is fixed during evaluation or not.

6.3.1. Ewvaluating learned policies on fired number of blocks

Three learning experiments were conducted for each goal, one with 3,
onc with 4 and one with 5 blocks. Within ecach scenario, 5 runs of 30
episodes each of the P-RRL algorithm were performed. The quality
criteria described below were recorded after each episode and averaged
over the five runs, e.g., over the first episode of each run, over the
second episode, cte. It is these averages that are depicted in the graphs
on the figures below.

For cach of the three tasks and each number of blocks, the learned
policies were evaluated on the same number of blocks (same state space)
they were learned on. Two different quality criteria were applied, which
are feasible to calculate for small numbers of blocks.

The first is the Root Mean Square (RMS) of the error between the
value function defined by the learned Q-function and the optimal value
function. The second is the accuracy of the policy represented by the
learned Q-function. The accuracy is defined as the percentage of state
action pairs that are correctly classified as optimal or non-optimal by
using the learned Q-function. For reference, the accuracy of the random
policy (that selects an applicable action at random) is given in Table IX.

The learning curves for the RMS error and the policy accuracy are
depicted in Figure 8. For the latter, standard deviations are also given.
These results clearly show 1) that optimal or close to optimal policies
are rapidly learned in the case of stacking and unstacking; and 2) that
the difficulty of the learning task increases and the performance of
the learner decreases with the number of blocks (e.g., for stack and
especially on(a,b) with 5 blocks).

One important point about relational reinforcement learning is that
for the goal on(a,b) the results remain exactly the same when the goal
is varied to say on(c,d). This is because the P- and Q-trees abstract
away the name of the blocks by using variables.
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Figure 8. Learning curves for three different goals in the blocks world. The RMS of
the error between the optimal and learned value function and the accuracy of the
learned policy are measured. For the latter, standard deviations are also given.

6.3.2. Ewvaluating learned policies on varying number of blocks

As the number of blocks increases, the number of states in the blocks
world increases very fast (cf. Table VIII) and it becomes impractical
to calculate the RMS of the value function and the policy accuracy
over the entire state space. We thus take a random sample of states.
Exploiting the learned policy, we start in each of the selected states and
generate a plan for achieving the selected goal by choosing an optimal
action proposed by the policy. A plan generated in this fashion is op-
timal if it has the same number of actions as a plan generated for the
same starting state and goal by using the optimal policy (see TableVII).
The quality measure that we consider here is optimality, defined as

rrl.tex; 4/07/2000; 17:21; p.27

28 Dzeroski, De Raedt, Driessens

the percentage of states in the sample for which an optimal plan is
generated.

To estimate the optimality, we randomly generated 3 samples of 156
states, one for each goal, where states could have 3 to 10 blocks. We
took 3*n states with n blocks where the goal pursued was not satisfied.
We thus took 3 %3 = 9 states with 3 blocks, 12 states with 4 blocks, ...,
and 30 states with 10 blocks, a total of 156 states.

We exploited the policies represented by the Q- and P-functions (re-
ferred to as Q-policies and P-policies) learned by the P-RRL algorithm
in the previous subsection. The policies were tested on the set of 156
states appropriate for the selected goal and the accuracy was recorded
as the percentage of states in which the goal was reached in the optimal
number of steps. As in the subsection above, the results were averaged
over the 5 runs. The learning curves for the Q-policies and P-policies
are given in Figure 9.

From this figure, we can conclude that:

1. Note first that both the Q-policies and the P-policies tested here
perform well on the state spaces where they were learned (with fixed
number of blocks - 3, 4, or 5, cf. Figure 8). Here we are testing them
on a new, much larger state space than the one they were trained
on and it is natural that they will perform worse.

2. When learning from 3 blocks, the Q-policies rapidly converge to
those optimal for 3-block states and reach a platcau (between 20%
and 40%) of optimality. The reason for this low performance is that
the Q-values basically encode the number of steps from the goal
when executing the specified action in the given state. These num-
bers depend - of course - on the number of blocks. When learning
from 4 and 5 blocks, optimality improves as the number of episodes
increases, albeit slowly, and reaches around 60%. The notable ex-
ception is learning stacking with 4 blocks, where optimality of over
90% is reached.

3. The P-policies seem to converge to optimal or close to optimal
strategies when learning with a sufficiently large number of blocks
(4 or 5), with convergence being fastest for unstacking and slowest
for on(a,b). A look at the optimal policies for each goal (listed in
Table VII) makes this casier to understand: the unstacking policy
is simplest and the on(a,b) policy the most complicated of the
threc. When learning with 3 blocks, policies that arc optimal for
three-block states are learned, which however do not generalize to
states with higher numbers of blocks (except for unstacking). When
learning with higher number of blocks convergence to the optimal or
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Figure 9. Learning curves for three different goals in the blocks world. The same
policies as in Figure 8 are evaluated. The percentage of optimal plans generated for
a sample of 156 starting states with different numbers (3 to 10) of blocks is depicted.

close to optimal strategies slows down. Furthermore, the P-function
does not get stuck on plateaus. The P-function for on(a,b) does not
reach optimality in the 30 episodes, but makes constant progress.
We take a closer look at the on(a,b) problem in Section 6.6.

4. The P-policies perform much better than the Q-policies on the
new state space. This is not surprising, as they do not make direct
reference to the number of steps to a goal state and thus depend
less on the number of blocks.

For illustration, Appendix D lists the P- and Q-policies learned after
the 30 episodes of the last (fifth) run of each experiment. We can see
immediately that the P-policies have a much shorter representation.
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The P-policies for unstack and stack are recognizably optimal. The P-
policy for unstack states that an action is nonoptimal if it moves a
block onto another block (only blocks can be clear!), otherwise (action
moves a block to the floor) the action is optimal. The P-policy for stack
states that an action move(B,C) is nonoptimal if the stack with C on
top is not the highest stack around (there is a stack with E on top that
is higher).

6.4. VARYING THE NUMBER OF BLOCKS WHILE LEARNING

In a second set of experiments we varied the number of blocks while
learning. Three experiments were performed, one for each goal.

The results were averaged over 10 runs and cach run consisted of
45 episodes. Each run started with 5 episodes involving states with 3
blocks, followed by 15 episodes involving states with 4 blocks, followed
by 25 episodes involving states with 5 blocks. The temperature was
decreased by a factor 0.95 after every episode to stimulate the use of
learned knowledge when the learning problem becomes harder. The
learned policies were evaluated for a varying number of blocks, as
described in Section 6.3.2. The results are shown in Figure 10.

Let us first look again at the results of stacking and unstacking. The
graphs clearly show that the learned P-trees are close to optimal even
though the Q-trees are not optimal. Furthermore, when increasing the
number of blocks (after episodes 5 and 20) there is a temporary decrease
in performance of the learned policies (a small one for the P-trees and
a more significant one for Q-trees). This is due to the changes in the
Q-function that occur when the state-space changes. The Q-function
depends on the number of steps to the goal state. When the number
of blocks is increased the possible distance to the goal also increases
and the Q-function has to be adapted. This is somewhat related to the
notion of concept drift (Widmer and Kubat, 1998).

After 30 cpisodes, the optimal P-function for stacking is learned,
which was not the case for learning from states with 3 or 5 blocks
only. This seems to indicate that relational reinforcement learning can
bootstrap itself. The result of learning on easier tasks can - indeed - be
used to attack harder tasks. As indicated in Table VIII, the probability
of finding the goal state in the world with 10 blocks can be close to zero.
However, using the sketched procedure, starting from simple states and
gradually increasing the difficulty of the problem, the optimal policies
can be learned.

There is a notable decrease of performance of the P-policy for on(a, b)
after switching from 4 to 5 blocks (after episode 20). The fall in per-
formance is not reversed in the remaining 25 episodes, although the
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Figure 10. Learning curves for three different goals in the blocks world, where
the number of blocks is varied during learning. The percentage of optimal plans
generated for a sample of 156 starting states with different numbers (3 to 10) of
blocks is depicted. Error bars of one standard deviation are given.
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Q-policy improves slowly but steadily. In fact, the performance of the
P-policies is worse than with learning from 4 or 5 blocks alone. We
examine this issue in more detail in Section 6.6. First, however, we try
to explain the differences between the P- and Q-trees.

6.5. Q-LEARNING VERSUS P-LEARNING

The previous experiments clearly indicate that the P-trees almost con-
sistently outperform the Q-trees for stacking and unstacking. The ex-
planation for this relies on two observations. First, as alrcady mentioned
above, the Q-trees encode the number of steps from the goals, whereas
the P-trees only encode whether a certain step is optimal or not. The
optimal action in a given state typically does not rely on the number of
blocks or the number of steps from the goal, but rather on the properties
of the state and action. This is evident from the optimal policies listed
in Table VII. Therefore, P-trees learned for states with a sufficiently
large number of blocks are likely to behave nicely on problems with
a different number of blocks. This is not the case for Q-trees. This is
somewhat related to the work on generalizing numbers in explanation
based learning (Mitchell et.al., 1986).

Secondly, the P-trees are always simpler than the Q-trees because
they only need to distinguish two classes: optimal and not optimal,
wherecas Q-trees distinguish among many values. Finally, the reader
may wonder why the P-trees perform better than the Q-trees even
though the P-trees are derived from the Q-trees? To explain this, ob-
serve that the Q-trees are close to optimal for states with the same
fixed number of blocks as used in the episodes (with the exception of
on(a,b)). The P-trees then abstract away from this number of blocks
and the number of steps from the goal. This ability is entirely due to
the use of inductive logic programming and gives an indication where
reinforcement learning may benefit from using relational learning.

6.6. WHEN DOES RELATIONAL REINFORCEMENT LEARNING WORK?

The previous experiments clearly showed that relational reinforcement
learning works well for stacking and unstacking but less so for achieving
on(a,b).

The first question that arises is how good (or bad) the results on
on(a, b) really are. The analysis so far has only looked at optimal plans,
a very stringent criterion. If a policy takes one action longer than
necessary, this has been considered a complete failure in the accuracy
figures presented so far. However, a non-optimal plan might still be of
good quality. To investigate the quality of the generated policies, we
evaluated them along two further criteria: 1) the proportion of states
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Figure 12. The ratio of the number of steps taken by the learned policy for on(a,b)
and the optimal number of steps. Error bars of one standard deviation are given.

where the policy loops, and 2) the ratio of the numbers of actions taken
by the policy and the optimal plan, respectively.

The evaluation of the policies for on(a,b) learned as described in
Section 6.4. along these two criteria is depicted in Figures 11 and 12.
Figure 11 shows the percentage of cases where more than 10 times
the optimal number ofnumber of steps were needed: the policy was
considered to loop in this case and its execution was stopped. After
a few episodes, the P-policies do not loop at all, while Q-policies still
loop even after 45 episodes.

rrl.tex; 4/07/2000; 17:21; p.33

34 Dzeroski, De Raedt, Driessens
Clear(a)
1
u L2 i
0a Fiai i PO S '
0s 1 \/
P BT
07 o
06 ——PPerc
z ﬁ/ —=—a-Perc
E 05
= f —s—PoPerc+
S04 u a-Perc+
I
03 4
02
ol
0
02 4 B 81012141618 20 22 24 26 28 30 32 34 36 38 40 42 44
Number of Epachs

Figure 13. Learning curves for the goal clear(a) for the blocks world with a varying
number of blocks during learning. The curves denoted with + are obtained using an
additional background knowledge predicate.

Figure 12 depicts ratio of the number of actions taken by the policy
and the number of actions in the optimal plan. So 100% is the best one
can score on this criterion. If the policy looped, it was stopped after
10 times the optimal number of steps. Even though the P-policies are
not optimal, they come very close to optimality. Once they stop looping
(after a few episodes), they take less than 1.5 times the optimal number
of steps (on the average). The Q-trees perform consistently worse than
the P-trees, but not really bad. The number of steps needed to reach
the goal is about twice the optimal one in the late episodes.

Despite the fact that the problem with on(a,b) is not as bad as
it appeared at first sight, the question remains as to why relational
reinforcement learning has problems learning the optimal policy. One
already mentioned reason for this is that the optimal policy to achieve
on(a,b) is more complex (cf. Table VII). Indeed, in order to achieve
on(a, b) one first has to clear a and b and then to move a onto b, which is
more complex than the other strategies. Though this fact might explain
why learning for on(a,b) is slower than for stacking or unstacking, it
does not explain some other facts. In Figure 10, the Q- and P-trees for
on(a,b) scem to perform equally well on states with a varying number
of blocks. From the experiments for stacking and unstacking one would
expect the P-trees to perform significantly better.

To investigate these anomalies, we performed some experiments
where the goal of RRL was a subgoal of on(a,b) namely clear(a). The
results of this test are shown in the first two curves in Figure 13 (P-perc
and Q-perc).
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Figure 14. Learning curves for the goal clear(a) in the 4 blocks world. The curves
denoted with + are obtained using an additional background knowledge predicate.

Although the P-tree performs a little better than the Q-tree, no
optimal policy is learned. We then investigated the resulting Q- and
P-trees. The learned Q-tree was very complicated and was clearly incor-
rect. The explanation for this is that - using the representation language
and background knowledge available - TILDE-RT cannot represent the
correct Q-tree. The reason is that the Q-tree actually implicitly encodes
the number of steps from the goal state. For clear(a) this means that
onc has to know the number of blocks that are above a. This was
partly confirmed in another experiment and is illustrated in Figure 14.
We tried to learn the correct Q-function using a fixed number of blocks
(4) and compared the generated values with the real ones. Although
RRL was able to predict the correct actions as optimal or not (left of
Figure 14), it was not able to represent the correct Q-values for the
entire state-space (right of Figure 14, RMS greater than zero).

To test this hypothesis, we ran the relational reinforcement learn-
ing algorithm P-RRL again, but this time we added the predicate
numberofblockson(X,N) (there are N blocks on top of block X) to
the background theory and modified the mode and type declarations
accordingly. The results are shown in Figure 13 under the Q+ and P+
curves. What is surprising is that although the Q tree performs equally
well as the Q+ tree, the P+ tree is optimal.

A further experiment was carried out in which a Q+ tree was learned
and tested on states with a fixed number of blocks (4) (cf. Figure 14).
It turns out that the resulting Q+ trees outperform the Q-trees. More
specifically, the Q+ trees for clear(a) were correct for all states with
four blocks (RMS equal to zero), whereas the Q-trees were not. This
experiment indicates that in order for relational reinforcement learning
to work one must first get the Q-trees correct for states with a fixed
number of blocks, and then the P-trees will abstract away to a variable
number of blocks. This experiment also confirms that one neceds the
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right representations for learning. In the context of relational learning
and relational reinforcement learning this translates to the requirement
that the ensemble of background theory and bias must allow to encode
the Q- and P-trees.

Finally, let us take a look at the learning curves for the goal on(a, b)
in the blocks world, shown in Figure 15 where the number of blocks is
varied during learning and the additional background knowledge pred-
icate is used. With the new predicate in the background knowledge,
steady improvement of performance can be observed for the P-function
after the 20-th episode, which was not the case previously.
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Figure 15. Learning curves for the goal on(a,b) in the blocks world, where the
number of blocks is varied during learning. The curves denoted with + are obtained
using an additional background knowledge predicate.

6.7. EFFICIENCY

Concerning the efficiency of the relational reinforcement learning algo-
rithm, one has to distinguish between the different goals. The number of
training examples for TILDE/TILDE-RT are different for the different
goals. Figure 16 shows how the total number of learning examples
increases per episode for the different goals. For the P-trees, more
learning examples are generated than for the Q-trees. This is because
the examples for the P-tree are generated looking at every possible
action at every visited state, instead of just the actions executed at
that state in the case of the Q-tree.

There is also a large difference between the number of learning exam-
ples for the different goals. The reason for this is the large difference in
the number of possible actions when one approaches the goal-state. As
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Figure 16. Number of learning examples after each episode for each of the three
goals.

stated in Section 6.2.1, one step away from the goal in a state space with
n blocks there are (n — 1)(n — 2) + 1 possible actions when unstacking,
while there are only three actions when stacking. This difference is the
reason for the large difference in the number of learning examples for
the different goals.

This difference also influences execution time. Where 30 episodes
with three blocks only take 6.25 minutes (total time required for learn-
ing) if the goal is stacking, the same experiment with the unstacking
goal takes 8.75 minutes. The same experiment again but with on(a, b) as
a goal requires 20 minutes. The larger time for the on(a,b) experiment
is due to the need for larger trees for both the Q-function and the
policy.

When increasing the state-space from 3 to 4 blocks, the learning
time grows to 62.4 minutes for stacking. The same test with 5 blocks
already takes 306 minutes. When compared to the learning time for the
experiment with a variable number of blocks (231 minutes, cf. Table X)
the gain from bootstrapping on easier problems is obvious.

The other timing results can be found in Table X. Actually, testing
the learned policies required more cputime than learning in the exper-
iments we carried out. This justifies some of the choices we made in
the experimental setup (e.g. the use of ‘only’ 156 states). Testing the
generated trees takes a lot of time due to the same problem as discussed
before. Testing the P-trees is faster because the first optimal action (out
of randomly generated possible actions) is chosen, so not all actions
have to be examined. The time needed for inducing the trees depends
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Table X. Execution time of the RRL Algorithm on Sun Ultra 5/270 machines.
The second column states the total accumulated time required for learning during
the 45 episodes, the third and fourth column state the time required to test one
Q- or P-tree, the last two columns list the time needed to induce the final P and
Q-trees.

45 Episodes Testing Induction of Final
3—5 Blocks Q-tree P-tree Q-tree P-tree
Stacking 3.85 hrs 16.1 min 10.2 min 4.85 min 3.85 min
Unstacking 10.1 hrs 45.1 min 16.7 min 18.8 min 6.61 min
On(a,b) 12.4 hrs 24.5 min  13.3 min 21.5 min 15.6 min

largely on the number of State/Action pairs used for TILDE, so the
last tree induced uses the most cputime. RRL could be sped-up by
making TILDE/TILDE-RT incremental. Various incremental decision
tree algorithm exist and could be adopted within TILDE/TILDE-RT
(e.g. (Utgoff ct.al., 1995)).

It should also be pointed out that special techniques have been
developed within the data mining community to handle large data
sets. These techniques have recently been incorporated in TILDE and
TILDE-RT, cf. (Blockeel ct.al., 1999) and could improve the efficiency
of RRL.

6.8. SUMMARY OF EXPERIMENTAL RESULTS

To illustrate the advantages and limitations of RRL, we try to give
brief answers to the questions posed in Section 6.1.

1. Is RRL effective for different goals? RRL was successfully used for
stacking and unstacking, and after some representational engineer-
ing also for on(a,b). Policies learned for on(a,b) can be used for
solving on(A, B) for any A and B.

2. Can P-RRL and Q-RRL learn optimal policies for state spaces with
a fized number of blocks? Yes, though this becomes more difficult
when the number of blocks increases.

3. Can P-RRL and Q-RRL learn optimal policies for state spaces with
a varying number of blocks? Q-functions optimal for state spaces
with a fixed number of blocks are not optimal for state spaces with
a varying number of blocks. But we can learn optimal P-functions
from the Q-functions. These P-functions often are optimal for state
spaces with a varying number of blocks as well.

rrl.tex; 4/07/2000; 17:21; p.38



Relational Reinforcement Learning 39

4. Can P-RRL and Q-RRL learn from experience in which the num-
ber of blocks is varied? Learning with a fixed number of blocks
is increasingly difficult when we increase the number of blocks.
Starting with a small number of blocks and gradually increasing this
number allows for a bootstrapping process, where optimal policies
are learned faster.

5. Is P-RRL to be preferred over Q-RRL? If Q-RRL doesn’t work,
then P-RRL won’t work cither. But once Q-RRL learns a Q-function
that does the job right (even for states with a fixed number of
blocks), one is better off using the P-function learned from the Q-
function. The latter usually generalizes nicely to larger numbers of
blocks than seen during training.

6. Under which conditions does relational reinforcement learning
work? As general reinforcement learning, RRL works less well for
goals that require more complex policies. However more appropriate
background knowledge and more training might help in such cases.

7. Discussion

We have presented an approach to planning with incomplete knowl-
edge that combines reinforcement learning and relational learning into
a technique called relational reinforcement learning. The advantages
of this approach include the ability to use structured representations,
which enables us to also describe infinite worlds, and the ability to use
variables, which allows us to abstract away from specific details of the
situations (such as, e.g., the goal, the number of blocks). The ability to
carry over the policies learned in simple situations (with few blocks) to
more complex situations was demonstrated. It is hard to see how this
could be realized without the use of relational representations.

We continue the discussion by discussing scalability, related work
and further work.

7.1. SCALABILITY

Even for standard reinforcement learning, scaling-up as the dimen-
sionality of the problem increases can be a problem. Using a richer
description language may scem to make things even worse. However,
there are reasons to expect that using a richer representation actu-
ally enables relational Q-learning to scale-up better than standard
Q-learning. Let us illustrate these on the blocks world.
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First, in the representation employed, the relational theories learned
abstract away the block names, causing the number of states that
are essentially different to decrease. For instance, with goal(on(a,b))
the states {on(a,c),on(c,b),on(b, floor),on(d, floor)} and {on(a,d),
on(d,b),on(b, floor),on(c, floor)} arc essentially the same as ¢ and d
are interchangeable. In standard Q-learning, they would be considered
different. In our 4-blocks example, the number of states that essentially
differ from one another is 73 for a standard Q-learner, but only 38 for a
relational one. This ratio increases combinatorially (since all blocks
that do not occur in the goal have no special status and are thus
interchangeable, the ratio increases roughly with (n — 2)!, where n is
the total number of blocks).

Second, the use of background knowledge makes it possible to ab-
stract even further from specific situations that do not essentially differ.
For instance, when a has to be cleared in order to be able to move it,
it is not essential whether there are 1, 5 or 17 blocks above a: the top
of the stack on a should be moved. Using background definitions such
as above(X,Y), it is possible to state a rule such as ”if there are blocks
on a, move the topmost of those blocks to the floor” which captures a
very large set of specific cases.

However, the exact scale-up behavior of relational reinforcement
learning has still to be determined experimentally. The experimental
cvaluation of our approach done so far is mainly intended to high-
light the principal advantages of using a relational representation for
reinforcement learning. We hope that this paper will inspire further
research into the combination of relational and reinforcement learning,
as much work remains to be done. This includes considering more
complex and demanding planning problems.

7.2. RELATED WORK

The main contribution of our work is to address the generalization prob-
lem in reinforcement learning within a relational setting. The task of
finding optimal plans within the blocks world was already considered by
Langley in his book (Langley, 1996), to illustrate reinforcement learn-
ing. However, instead of using a relational learner for generalization he
employs a neural net using a fixed set of propositional features. Indeed,
typical generalizers in reinforcement learning are based on neural nets,
cf. e.g. (Tesauro, 1991), whereas we employ decision trees.

The use of decision trees in a reinforcement context is not new.
It was first proposed by Chapman’s and Kaelbling’s (Chapman and
Kaelbling, 1991), who developed an incremental decision tree learning
algorithm with special heuristics to cope with concept-drift (Widmer
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and Kubat, 1998) in the reinforcement learning context. Our approach
is distinguished from the one by Chapman and Kaelbling by the use of
a relational representation. However, it would be extremely useful to
integrate algorithm by Chapman and Kaelbling (i.e. the heuristics and
the incremental aspect) with the representations provided by TILDE
and TILDE-RT.

Another piece of work that is very much related to our presentation
of RRL is that of Baum (Baum, 1996). He uses a kind of genetic
approach to learning rules in the blocks world for goals such as stack-
ing and unstacking. To this aim he employs a special rule language
(at a level between propositional and first order logic) for expressing
policies and uses genetic ingredients to learn and modify the set of
rules. Whereas this approach is clegant, it does not employ the basic
principles of temporal difference learning as we do.

The combination of learning and planning has received a lot of at-
tention in the artificial intelligence literature (see (Langley, 1996) for
an excellent overview). Also, most approaches to learning in a planning
context do employ relational representations. It can be no surprise that
various types of learning tasks have been considered in this context.

— A first line of research attempts to improve the domain knowledge
of the planner. This corresponds to learning more accurate defi-
nitions of the operators, i.c. the effects, pre- and post-conditions.
This approach has been integrated in Prodigy, cf. (Carbonell and
Gill, 1990). The planner then exploits the learned knowledge in
order to construct better plans. The difference with relational rein-
forcement learning is that our approach does not rely on a planner.
This is important as one might consider relational reinforcement
learning outside a planning context.

— A sccond line of research concerns the learning of control knowl-
edge. E.g. the work on LEX (Mitchell et.al., 1983) and SAGE
(Langley, 1985) learned when to apply certain operators. The goal
of this work is thus similar to that of relational reinforcement
learning. However, the approach is quite different. E.g. to solve
symbolic integration problems, LEX would construct a search tree
(a trace) in which all legal operators were applied to a given in-
tegration problem until a solution was found at a certain depth.
Once the solution was found, LEX would label all applications of
operators on the path leading to the (optimal) solution as positive
cxamples, and all applications diverging from this path as negative
cxamples. The examples were then fed into a kind of relational
learning algorithm and used to refine the control knowledge. So,
the mechanism for learning is quite different. The LEX and SAGE
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method does not apply in the context of autonomous agents, be-
cause it assumes that one can backtrack to carlier states (which
may not be possible - and which is certainly problematic without
adequate domain knowledge). On the other hand, our method to
construct examples for learning the P-tree is certainly similar in
spirit to LEX.

— A third line of research analytically learns control knowledge often
using a form of explanation based learning. The difference with
relational reinforcement learning is that explanation based learning
relies on complete knowledge about the domain.

The work by Stone and Veloso (Stone and Veloso, 1999) is closely
related to ours in two ways. First, they use decision-trees to learn a Q-
function, thereby generalizing. Second, they use a mapping on states
to transform large state-spaces into learnable ones. This mapping is
hand-coded. Our approach uses a mapping which generalizes across
state-action pairs; this mapping is implicitly defined by the relational
representation and the background knowledge.

Somewhat related to our approach is work on hierarchical reinforce-
ment learning, such as options (Sutton et.al., 2000). Options are macro
actions defined by a region of the state space where execution can
begin, a policy and a termination condition. Options can be viewed as
background knowledge, albeit different in nature from the one currently
used by RRL.

7.3. FURTHER WORK

The reinforcement learning part of the work presented in this paper is
admittedly simple. We have taken a standard textbook description of
reinforcement learning (Mitchell, 1997) and incorporated an implemen-
tation of it within our approach. We have considered a deterministic
setting and a goal-oriented formulation of the learning problem. How-
ever, both restrictions can be easily lifted to extend to non-zero rewards
on non-terminal states (the RRL algorithm actually makes no assump-
tion on the reinforcement received) and nondeterministic actions. To
handle nondeterministic actions an appropriate update rule (see page
382 of (Mitchell, 1997)) has to be used to gencrate examples for the
TILDE-RT algorithm. Other points where the reinforcement learning
part can be improved include the initialization of Q-values and the
cxploration strategy.

The current implementation of TILDE-RT is - according to rein-
forcement learning standards - not optimal. One of the rcasons is that
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it is not incremental. However, incrementality is not sufficient, as the
(estimated) values of Q are changing with time. These problems are
taken care of by Chapman and Kaclbling’s decision tree algorithm
that was specifically designed for reinforcement learning (Chapman and
Kaelbling, 1991). A natural direction for further work is thus to develop
a first order regression tree algorithm combining the representations
of TILDE-RT with the algorithm and performance measures of the
approach by Chapman and Kaelbling. Such an integrated approach
would not suffer from the abovementioned problems.

An interesting direction for further work would be the integration
of relational reinforcement learning with some approaches to hierar-
chical reinforcement learning, such as options (Sutton ct.al., 2000). As
mentioned above, options are macro actions defined by a region of
the state space where execution can begin, a policy and a termination
condition. Parametrized options, such as clearblock(A) would make
sense in the RRL setting: the termination condition for this option
would be clear(A). Such an option could also be learned. The use of
such options could alleviate some of the problems encountered during
our experiments with on(a, b).
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Appendix

A. TILDE and TILDE-RT algorithms

The pscudo-code for the TILDE and TILDE-RT algorithms is given
below.

Table X.

proc inducetree(E: examples)
create a root node n for the tree ¢
split(n,B,t )
return {
endproc

proc split(n: node; E: examples, {: tree)

best := false

for all possible tests ¢ in node n do
compute quality(q)
if qualily(q) is better than quality(best)
then best := ¢
endif

if best yields improvements

then
test(n) := best
create two subnodes n1, nz of nin ¢
E, := {e € E | e satisfies best in t}
E; := {e € E | e does not satisfy best in ¢ }
call split(n1, E1, )
call split(nz, Ez, t)

else turn n into a leaf

endif

endproc

The TILDE and TILDE-RT algorithms are similar to classical de-
cision trees except that only binary trees are induced and also that
the computation of the possible tests in a node may depend on the
variables in nodes higher in the tree. Also, when determining whether
an cxample satisfics a test one must also take into account the tests
higher in the tree. Finally, the heuristics employed by TILDE are the
same as in C4.5, and those in TILDE-RT will minimize the variance of
the target variable within each subnode and will maximize the variance
among the two subnodes.
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B. Background knowledge for TILDE
Besides the predicates clear(A) and on(A, B) used to represent states,
the following predicates can be used in the trees induced by TILDE and
TILDE-RT: above(A, B), eq(A, B), height(A, H), numberofblocks(N),

numberof stacks(M) and dif f(X,Y, Z). The same background knowl-
edge is used for both TILDE and TILDE-RT. It is listed below.

eq(X,X).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

action.move (X,Y) :- action(move(X,Y)).

goal_on(A,B) :- goal(on(A,B)).

goal_stack :- goal(\+ (on(A,floor),on(B,floor), A\=B)).
goal unstack :- goal (\+ (on(A,B), B\=floor)) .

diff(X,Y,2) :- Z is X - Y.

height (floor,0).
height (A,H) :- block(A), height1(4,H).

height1(A,1) :- on(A,floor).
height1(A,H) :- on(A,B), B\=floor, height1(B,HB), H is HB+1.

numberofblocks (N) :- myblocks (X), mylength(X,N).
numberofstacks (N) :-mystacks (X), mylength(X,N).
myblocks (List) :- findall(X, block(X), List).
mystacks (List) :- findall(X, on(X,floor), List).
mylength(X,L) :- mylen(X,0,L).

mylen([],L,L) := ! .

mylen([X | RI,N,L) :- N1 is N + 1, mylen(R,N1,L).

block(X) :- on(X,Y).
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C. Settings for TILDE and TILDE-RT

C.1. TILDE-RT SETTINGS

These are used for learning the Q-functions. Since the number of steps
to the goal essentially defines the Q-function, heights of stacks and
differences between these and the number of blocks, comparisons of
these to constant values are allowed.

heuristic(eucl).
euclid(qvalue(X), X).

tilde mode(regression).
confidence_level(1).
minimal_cases (1).
output_options([c45e,prologl).

talking(0) .

typed_language (yes) .

type (clear (block)).

type (on(block,block)) .

type (eq(block,block)) .

type (above (block,block)) .

type (action move(block,block)) .
type (height (block,number)) .
type (numberofblocks (number)) .
type (numberofstacks (number)) .
type (number < number).

type (number = number).

type (diff (number ,number ,number)) .
type (goal_on(block,block)) .
type (goal_stack) .

type (goal_unstack) .

type (member (number,list)).

rmode (10: clear(+-X)).

rmode (10: on(+-X,+-Y)).

rmode(10: on(+-X, floor)).

rmode(10: eq(+X,+Y)).

rmode(10: eq(+X,floor)).

rmode (10: above(+-X,+-Y)).

rmode (10: action_move(+-X,+-Y)).

rmode (10: action_move(+-X,floor)).

rmode(10: (height(+-X,-H), height(+-X2,-H2), H < H2)).

rmode(10: (height (+-X,-H), height(+-X2,-H2), H2 < H)).

rmode(10: (height (+-X,-H), diff(+N,H,-D), height(+-X2,-H2),
diff(N,H2,-D2), D < D2)).

rmode(10: (height(+-X,-H), diff(+N,H,-D), height(+-X2,-H2),
diff(N,H2,-D2), D2 < D)).
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rmode (10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]1),
(height (+-X,-H), H = C))).
rmode (10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,101),
(height (+-X,-H), H < €))).
rmode(10: #(C: member(cC,[0,1,2,3,4,5,6,7,8,9,10]),
(height (+-X,-H), diff(+N,H,-D), D = C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,101),
(height (+-X,-H), diff(+N,H,-D), D < €))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,101),
(numberofstacks(-S), S = C))).
rmode(10: #(C: member(cC,[0,1,2,3,4,5,6,7,8,9,10]),
(numberofstacks(-S), S < C))).
rmode (10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]), (
numberofstacks(-S), diff(+N,S,-D), D = C))).
rmode(10: #(C: member(cC,[0,1,2,3,4,5,6,7,8,9,10]),
(numberofstacks(-S), diff(+N,S,-D), D < C))).

root ((goal_on(A,B), numberofblocks(N), actionmove(X,Y))).

C.2. TILDE SETTINGS

These are used for learning the P-functions. Since the optimality of
actions does not depend on the number of steps to the goal, comparisons
of heights and the number of stacks to constants are not allowed.

heuristic(gain).
euclid(qvalue(X), X).

tilde_mode(classify).
classes([optimal,nonoptimal]).
confidence_level(1).

minimal_cases(1).
output_options([c45e,prolog,elaboratel).

talking(0) .

typed_language (yes) .

type (clear (block)).

type (on(block,block)) .

type (eq(block,block)) .

type (above (block,block)) .

type (action move(block,block)) .
type (height (block,number)) .
type (numberofblocks (number)) .

type (numberofstacks (number)) .

type (number < number).
type (number = number) .
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type (diff (number ,number ,number)) .
type (goal_on(block,block)) .

type (goal_stack) .

type (goal_unstack) .

rmode(10: clear(+-X)).

rmode(10: on(+-X,+-Y)).

rmode(10: on(+-X, floor)).

rmode (10: eq(+X,+Y)).

rmode (10: eq(+X,floor)).

rmode (10: above(+-X,+-Y)).

rmode (10: action move(+-X,+-Y)).

rmode (10: action_move(+-X,floor)).

rmode (10: (height (+-X,-H), height(+-X2,-H2), H < H2)).

rmode(10: (height (+-X,-H), height(+-X2,-H2), H2 < H)).

rmode(10: (height (+-X,-H), diff(+N,H,-D), height(+-X2,-H2),
diff (N,H2,-D2), D < D2)).

rmode (10: (height (+-X,-H), diff(+N,H,-D), height(+-X2,-H2),
diff (N,H2,-D2), D2 < D)).

root ((goal_on(A,B), numberofblocks(N), actionmove(X,Y))).

rrl.tex; 4/07/2000; 17:21; p.50



Relational Reinforcement Learning 51 52 Dzeroski, De Raedt, Driessens

D. Q-policies and P-policies induced in the 4-blocks world height(C,D) , D = 3, !.
by the P-RRL algorithm qtree(0.9) :- goal_stack , numberofblocks(A) , actionmove(B,C) ,

height(C,D) , D = 2, !.
qtree(0.81) :- goal_stack , numberofblocks(A) , actionmove(B,C) ,

D.1. P-POLICY FOR UNSTACK height(B,D) , D = 3 , clear(C), !.

. qtree(0.81) :- goal_stack , numberofblocks(A) , action.move(B,C) ,

ptree(nonoptimal) :- goal unstack , numberofblocks (4) , height(B,D) D=3, !.

actionfmove(B,C) » clear(C), !. qtree(0.754716) :- goal_stack , numberofblocks(A) , action_move(B,C) ,

ptree(optimal). clear(C) , on(B,floor) , height(C,D) , height(E,F) , D < F, !.

qtree(0.771525) :- goal_stack , numberofblocks(A) , action_move(B,C) ,
clear(C) , on(B,floor), !.

D.2. Q-POLICY FOR UNSTACK qtree(0.7965) :- goal_stack , numberofblocks(A) , action-move(B,C) ,
clear(C), !.
qtree(0.729) :- goal unstack , numberofblocks(A) , action_move(B,C) , qtree(0.763574) :- goal_stack , numberofblocks(A) , action_move(B,C) ,
height(D,E) , E =2, on(C,D), !. numberofstacks(D) , D = 2, !.
qtree(0.9) :- goal_unstack , numberofblocks(A) , actionmove(B,C) , qtree(0.694373).
height(D,E) , E = 2 , actionmove(D,floor) , numberofstacks(F) ,
F=2,1.
qtree(1) :- goal unstack , numberofblocks(A) , actionmove(B,C) , D.5. P-POLICY FOR ON(A,B)
height(D,E) , E = 2 , actionmove(D,floor), !.
qtree(0.81) :- goal unstack , numberofblocks(A) , action move(B,C) , ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F <G , action move(D,E) , above(D,A) , eq(E,B), !.
height(B,H) , H = 4, !. ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
qtree(0.8286) :- goal_unstack , numberofblocks(A) , action_move(B,C) , action move(D,E) , above(D,A) , on(E,B), !.
height(D,E) , E = 2 , height(C,F) , height(B,G) , F< G , ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(C,H) , diff(G,H,I) , I =2, !. above(D,A) , on(A,floor) , on(D,A) , clear(B), !.
qtree(0.9) :- goal unstack , numberofblocks(A) , action.move(B,C) , ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F< G , action move(D,E) , above(D,A) , on(A,floor) , on(D,A), !.
clear(D), !. ptree(optimal) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
qtree(0.9) :- goal unstack , numberofblocks(A) , action-move(B,C) , above(D,A) , on(A,floor) , on(B,E), !.
height(D,E) , E = 2 , height(C,F) , height(B,G) , F < G, !. ptree(optimal) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
qtree(0.816429) :- goal unstack , numberofblocks(4) , above(D,A) , on(A,floor) , clear(B), !.
actionmove(B,C) , height(D,E) , E = 2 , on(C,floor), !. ptree(optimal) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
qtree(0.81) :- goal unstack , numberofblocks(A) , action move(B,C) , above(D,A) , on(A,floor) , on(B,A) , clear(E), !.
height(D,E) , E = 2, !. ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
qtree(0) . actionmove(D,E) , above(D,A) , on(A,floor) , on(B,A) , on(D,B), !.
ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , on(B,A), !.
ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
D.3. P-POLICY FOR STACK above(D,A) , on(A,floor), !.
ptree(nonoptimal) i- goal.stack , numberofblocks(A) , ptr::((’jzizli)m:;l.) :— goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
X X X ,A), 1.
actlon‘lmove(B,C) » height(C,D) , height(E,F) , D <F, !. ptree(optimal) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
ptree(optimal) . N
actionmove(A,B), !.
ptree(optimal) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
above(D,B) , on(A,E), !.
D.4. Q—POLICY FOR STACK ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,B) , on(A,B), !.
qtree(0) :- goal_stack , numberofblocks(A) , actionmove(B,C) , ptree (nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
height(B,D) , D = 4, !. action move(D,E) , above(D,B) , eq(E,A), !.
qtree(1) :- goal_stack , numberofblocks(A) , actionmove(B,C) , ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
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action_move(D,E) , above(D,B) , clear(A) , action_move(A,floor) ,
on(B,E), !.

ptree(optimal) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
above(D,B) , clear(A) , action_move(A,floor), !.
ptree(optimal) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,

above(D,B) , clear(A), !.
ptree(nonoptimal) :- goal_on(A,B) , numberofblocks(C) ,
actionmove(D,E) , above(D,B), !.
ptree(nonoptimal).

D.6. Q-POLICY FOR ON(A,B)

qtree(0) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(A,B), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(A,F) , F = 4 , on(B,E), !.

qtree(0.430467) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(A,F) , F = 4, !.

qtree(1) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
actionmove(A,B), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height (D,F) , height(B,G) , F < G , eq(E,A), !.

qtree(0.531441) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height (D,F) , height(B,G) , F < G , clear(A) , on(E,floor), !.

qtree(0.430467) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(D,F) , height(B,G) , F < G , clear(4) , clear(B), !.

qtree(0.38742) :- goal_on(A,B) , numberofblocks(C) , action.move(D,E) ,
height(D,F) , height(B,G) , F < G , clear(4), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(D,F) , height(B,G) , F < G , on(E,4), !.

qtree(0.6561) :- goal_on(A,B) , numberofblocks(C) , action_move(D,E) ,
height (D,F) , height(B,G) , F < G, !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action.move(D,E) ,
on(E,A) , numberofstacks(F) , F = 2 , on(B,A), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(E,A) , numberofstacks(F) , F = 2 , on(D,floor), !.

qtree(0.6561) :- goal_on(A,B) , numberofblocks(C) , action_move(D,E) ,
on(E,A) , numberofstacks(F) , F = 2, !.

qtree(0.348678) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(E,A) , eq(D,B), !.

qtree(0.729) :- goal_ on(A,B) , numberofblocks(C) , action move(D,E) ,
on(E,A), !.

qtree(0.6561) :- goal on(A,B) , numberofblocks(C) , action_move(D,E) ,
height (E,F) , F = 3, !.

qtree(0.710775) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(E,B) , clear(A), !.

qtree(0.729) :- goal_ on(A,B) , numberofblocks(C) , action move(D,E) ,
on(E,B), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor) , height(D,F) , height(G,H) ,
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F<H !.

qtree(0.81) :- goal_ on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor) , on(D,floor), !.

qtree(0.7695) :- goal_on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor) , clear(A), !.

qtree(0.78975) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,B) , on(E,floor), !.

qtree(0.430467) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,B), !.

qtree(0.77805) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
actionmove(A,floor) , on(B,E) , height(D,F) , F = 2 , clear(B), !.

qtree(0.7695) :- goal_on(A,B) , numberofblocks(C) , action.move(D,E) ,
actionmove(A,floor) , on(B,E) , height(D,F) , F =2, !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
action_move(A,floor) , on(B,E) , clear(B), !.

qtree(0.7695) :- goal_on(A,B) , numberofblocks(C) , action_move(D,E) ,
action_move(A,floor) , on(B,E), !.

qtree(0.478297) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
action_move(A,floor), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(D,A) , clear(B) , on(B,E), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(D,A) , clear(B) , on(B,floor), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(D,A) , clear(B) , clear(E), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(D,A) , clear(B), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
on(D,A), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , action.move(D,E) ,
height (A,F) , height(E,G) , F < G, !I.

qtree(0.478297) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , on(F,B) , clear(d), !.

qtree(0.81) :- goal_ on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , on(F,B) , clear(F), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(F,B), !I.

qtree(0.81) :- goal_ on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , actionmove(F,floor) , on(B,E), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , actionmove(F,floor) , clear(A), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , actionmove(F,floor), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(A,E), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3 , on(A,floor) , actionmove(B,A), !.

qtree(0.7695) :- goal_on(A,B) , numberofblocks(C) , action_move(D,E) ,
height(F,G) , G = 3 , on(A,floor) , clear(B), !.
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qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(4A,floor), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
height(F,G) , G = 3, !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,A) , clear(B) , on(B,floor) , on(D,floor) , height(E,F) ,
height (G,H) , F < H, !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,A) , clear(B) , on(B,floor) , on(D,floor), !.

qtree(0.81) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,A) , clear(B) , on(B,floor), !.

qtree(0.81) :- goal_ on(A,B) , numberofblocks(C) , actionmove(D,E) ,
eq(E,A) , clear(B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action-move(D,E) ,
eq(E,A) , on(D,B), !.

qtree(0.729) :- goal_on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,A), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
clear(A) , height(D,F) , height(G,H) , F < H , clear(B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , actionmove(D,E) ,
clear(A) , height(D,F) , height(G,H) , F < H, !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
clear(A) , on(D,floor), !.

qtree(0.9) :- goal_on(4,B) , numberofblocks(C) , actionmove(D,E) ,
clear(A) , clear(E), !.

qtree(0.9) :- goal_on(A,B) , numberofblocks(C) , actionmove(D,E) ,
clear(A), !.

qtree(0.81).
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