Symbolic Dynamic Programming for First-Order MDPs

Craig Boutilier
Dept. of Computer Science
University of Toronto
Toronto, ON, M5S 3H5
cebly@cs.toronto.edu

Abstract

We present a dynamic programming approach for
the solution of first-order Markov decisions pro-
cesses. Thistechniqueuses an MDPwhose dynam-
ics is represented in a variant of the situation cal-
culus allowing for stochastic actions. It produces
alogical description of the optimal value function
and policy by constructing a set of first-order for-
mulae that minimally partition state space accord-
ing to distinctions made by the value function and
policy. Thisis achieved through the use of an op-
eration known as decision-theoretic regression. In
effect, our agorithm performs value iteration with-
out explicit enumeration of either the state or action
spaces of the MDP. This allows problems involv-
ing relational fluentsand quantificationto be solved
without requiring explicit state space enumeration
or conversion to propositional form.

1 Introduction

Markov decision processes (MDPs) have become the de
facto standard model for decision-theoretic planning prob-
lems. However, classic dynamic programming algorithmsfor
M DPs [Puterman, 1994] require explicit state and action enu-
meration. For example, the classical representation of avaue
functionis as atable or vector associating a value with each
system state; these are produced by iterating over the state
space. Since state spaces grow exponentially with the num-
ber of domain features, the direct application of these models
to Al planning problemsis limited. As a consequence, much
MDPresearch in Al hasfocussed on representations and algo-
rithmsthat allow complex planning problems to be specified
concisely and solved effectively. Techniques such asfunction
approximation [Bertsekas and Tsitsiklis, 1996] and state ag-
gregation [Boutilier et al., 1999] have proven reasonably ef-
fective at solving MDPs with very large state spaces.

One such approach with a strong connection to classica
planning is the decision-theoretic regression (DTR) model
[Boutilier et al., 2000a]. The state space of an MDP is char-
acterized by a number of random variables (e.g., proposi-
tions) and the domain is specified using logical representa-
tionsof actions that capture the regul arity in the effects of ac-
tions. For instance, Bayesian networks, decision trees, age-

Ray Reiter
Dept. of Computer Science
University of Toronto
Toronto, ON. M5S 3H5
reiter @cs.toronto.edu

Bob Price
Department of Computer Science

University of British Columbia
Vancouver, BC, V6T 174
bprice@cs.toronto.edu

brai c decision diagrams (ADDSs), and probabilistic extensions
of STRIPS can all beused to concisely represent stochastic ac-
tionsin MDPs. These representationsare exploitedinthecon-
struction of alogical representation of the optimal valuefunc-
tion and policy, thereby obviating the need for explicit state
space enumeration. This process can be viewed as automatic
state space abstraction and has been able to solve fairly sub-
stantial problems. For instance, the SPUDD algorithm [Hoey
et al., 1999] has been used to solve MDPs with hundreds of
millionsof states optimally, producing logical descriptions of
value functionsthat involve only hundreds of distinct values.
This works suggests that very large MDPs, if described in a
logical fashion, can often be solved optimally by exploiting
thelogicd structure of the problem.

Unfortunately, existing DTR algorithms are all designed
to work with propositional representations of MDPs, while
many realistic planning domains are best represented in first-
order terms, exploiting the existence of domain objects, re-
lations over those objects, and the ability to express objec-
tives and action effects using quantification. Existing DTR
algorithms can only be applied to these problems by ground-
ing or “propositionalizing” the domain.! Unfortunately such
an approach isimpractical: the number of propositionsgrows
very quickly with the number of domain objectsand relations,
and even relatively simple domains can generate incredibly
large numbersof propositionswhen grounded. The number of
propositionshas a dramatic impact on the complexity of these
algorithms. Specifying and reasoning with intuitively smple
domain propertiesinvol vingquantification becomes problem-
aticinapropositional setting. For instance, asimpleobjective
such as3z¢(z) (e.g., we want some widget at Factory 1) be-
comestheunwieldy ¢(c1) V...V ¢(c,), wherethec; are(rd-
evant) constants (e.g., widget-1 isat Factory 1, or ...). Thus
grounding our domain description deprives one of the natu-
ralnessand expressive power of relational representationsand
guantificationin specifying dynamics and objectivefunctions.
Finally, existing DTR agorithmsrequire explicit action enu-
meration when performing dynamic programming, which is
also problematic in first-order domains, since the number of
ground actions also grows dramatically with domain size.

In this paper we address these difficulties by proposing

1This assumes a finite domain: if the domain isinfinite, these al-
gorithms cannot generally be made to work.



a decision-theoretic regression agorithm for solving first-
order MDPs (FOMDPs). We adopt the the representation for
FOMDPs presented in [Reiter, 2001; Boutilier et al., 2000b],
in which stochastic actions and objective functions are speci-
fied using the situation calculus. We derive aversion of value
iteration [Bellman, 1957] that constructs first-order represen-
tations of value functions and policies by exploiting the logi-
ca structure of the MDP. The a gorithm constructs aminimal
partitioning of state space, represented by a set of first-order
formulag, and associates val ues (or action choices) with each
element of the partition.

As a consequence, our dynamic programming agorithm
solves first-order MDPs without explicit state space or ac-
tion enumeration, and without propositionalizing the domain.
Furthermore, the technique we propose can be used to reason
purely symbolically about value and optima action choice.
Our model can be viewed as providing atight, seamless in-
tegration of classic knowledge representation techniques and
reasoning methods with sol ution a gorithmsfor MDPs.

This paper should be viewed as providing the theoretical
foundationsfor first-order decision-theoretic regression. We
are encouraged by the success of DTR methods for propo-
sitionad MDPs, where it has been demonstrated that many
MDPs have value functions and policies that can be repre-
sented very concisely using logical techniques. We have no
doubt that the use of relations and quantification will ulti-
mately enhance these methods tremendoudly.

Wereview MDPsin Section 2, and briefly describe our rep-
resentation of FOMDPsin Section 3. We derive our symbolic
dynamic programming technique in detail in Section 4 and
discuss various implementation issues in Section 5. We con-
clude with a discussion of future directions.

2 Markov Decision Processes

We begin with the standard state-based formulation of MDPs.
We assume that the domain of interest can be modeled as a
fully-observableMDP [BeIman, 1957; Puterman, 1994] with
afiniteset of statesS and actions.4. Actionsinducestochastic
statetransitions, with Pr(s, a, t) denoting the probability with
which state ¢ is reached when action a is executed at state s.
We aso assume aredl-valued reward function R, associating
with each state s itsimmediate utility R(s).?

A dationary policy 7 : & — A describes a particular
course of action to be adopted by an agent, with(s) denoting
the action to be taken in state s. The decision problem faced
by the agent in an MDP is that of forming an optimal policy
that maximizes expected total accumulated reward over anin-
finite horizon (i.e., the agent acts indefinitely). We compare
policies by adopting expected total discounted reward as our
optimality criterion, wherein futurerewards are discounted at
arate0 < v < 1, and the value of a policy 7, denoted V; (s),
isgiven by the expected total discounted reward accrued, that
is, E(Y i o v' R(s")|m, s). Policy m isoptimal if V; > V.,
foral s € S and policies 7. The optimal value function V*
isthe value of any optimal policy.

2\We ignore actions costsfor ease of exposition. Theseimposeno
additional complications on our model.

Value iteration [Bellman, 1957] is a Simple iterative ap-
proximation algorithm for constructing optimal policies. It
proceeds by constructing a series of n-stage-to-go value func-
tionsV". Setting VY = R, we recursively define n-stage-to-
go Q-functions:

Q"(a,s) = R(s) + {'yEPr(s, a,t)- vn—l(t)} (1)

teS
and value functions:

V™i(s) = max Q" (a,s) 2

The Q-function Q" (a, s) denotes the expected value of per-
forming action a at state s with n stages to go and acting op-
timally thereafter. The sequence of value functions V™ pro-
duced by value iteration converges linearly to V' *. For some
finite n, the actions that maximize Eq. (2) form an optimal
policy, and V" approximatesits value. We refer to Puterman
[1994] for a discussion of stopping criteria.

The definition of a Q-function can be based on any vaue
function. We define QY (a, s) exactly as in Eq. (1), but with
arbitrary value function V replacing V! on the right-hand
sde. @Y (a, s) denotes the value of performing a at state s,
then acting in such away as to obtain value V' subsequently.

3 First-Order Representation of MDPs

Most planning domains are specified in terms of a set of ran-
domvariables, which jointly determinethe state of the system.
For example, the system state may be the assignment of truth
values to a set of propositiona variables. In addition, these
variables may themselves be structured, built from various
relations, functions, and domain objects, that naturally lend
themselves to a first-order representation. Representing and
solving MDPs under such circumstances is generally imprac-
tical using classic state-based transition matrices and dynamic
programming agorithms. Thedifficulty liesinthe need to ex-
plicitly enumerate state and action spaces. State spaces grow
exponentially with the number of propositional variables need
to characterize the domain. Furthermore, in a first-order do-
main, the number of induced propositional variables can grow
dramatically with the number of domain objects of interest.
Moreover, we are often interested in solving planning prob-
lems with infinite domains.

Several representations for propositionally-factored MDPs
have been proposed, including probabilistic variants of
STRIPS and dynamic Bayes nets [Boutilier et al., 1999].
First-order representations have also been proposed for
MDPs, including those of Poole [1997], and Geffner and
Bonet [1998]. In this paper we adopt the first-order, situation
calculus MDP representation developed by Reiter [2001],
and by Boutilier et al.  [2000b] for use in the DTGolog
framework. This model has several unique features that
make dynamic programming techniques viable. We first
review this representationa language and methodol ogy, and
then show how stochastic actions can be represented in this
framework. We aso introduce some notation to ease the
specification of MDPs.

3An n-ary relation over adomain of size d inducesd™ atoms.



3.1 The Situation Calculus

The situation calculus [McCarthy, 1963] is a first-order lan-
guagefor axiomatizingdynamicworlds. Inrecent years, it has
been considerably extended beyond the “classical” language
to include processes, concurrency, time, etc., but in all cases,
its basic ingredients consist of actions, situationsand fluents.

Actions

Actions are first-order terms consisting of an action function
symbol and itsarguments. For example, the action of putting
block b on the table might be denoted by the action term
putTbl(b).

Situations

A dituation is a first-order term denoting a sequence of ac-
tions. These are represented using a binary function symbol
do: do(«, s) denotes the sequence resulting from adding the
action « to the sequence s. The specia constant Sy denotes
theinitial situation, namely the empty action sequence. Thus,
do(«, s) islikeLISP'scons(a, s) and Sy islikeLISP's( ). In
ablocksworld, the situation term

do(stack(A, B), do(putThl(B), do(stack(C, D), Sp)))
denotes the sequence of actions
[stack(C, D), putTbl(B), stack(A, B)].

Foundational axioms for situationsaregivenin [Pirri and Re-
iter, 1999].

Fluents

Relationswhosetruthvaluesvary from stateto state are called
fluents, and are denoted by predicate symbols whose | ast ar-
gument is a situation term. For example, BIn(b, Paris, s) is
arelationa fluent meaning that in that state reached by per-
forming the action sequence s, box b isin Paris.

Axiomatizinga Domain Theory
A domain theory isaxiomatized in the situation cal culus with
four classes of axioms [Pirri and Reiter, 1999]:

1. Action precondition axioms: There is one axiom for
each action function A(Z), with syntactic form

Poss(A(Z), s) = T4 (%, s)
Here, T14(Z, s) is aformula with free variables among
¥, s. These characterize the preconditionsof action A.
2. Successor state axioms. There is one such axiom for
each fluent F'(Z, s), with syntactic form

F(Z,do(a,s)) = ®r(Z, a,s),

where®r (%, a, s) isaformulawithfreevariablesamong
a, s, . These characterize thetruth values of thefluent F
inthenext situation do(a, s) interms of the current situ-
ation s, and they embody asolutionto the frame problem
for deterministic actions [Reiter, 1991].

3. Unique names axiomsfor actions: These state that the
actions of the domain are pairwise unequal .

4. Initial database: Thisis a set of first-order sentences
whose only situation term is .Sy and it specifies the ini-
tial state of thedomain. Theinitia database will play no
rolein this paper.

Regression in the Situation Calculus

The regression of a formula > through an action a is a for-
mula ¢’ that holds prior to @ being performed iff v holds
after a. Successor state axioms support regression in a nat-
ural way. Suppose that fluent F’s successor state axiom is
F(Z,do(a,s)) = ®r(Z,a,s). Weinductively define the re-
gression of aformulawhose situation arguments all have the
formdo(a, s) asfollows:

(a
Regr (F(Z,do(a, s))) = ®r(Z, a, s)
Regr(—)) = —Regr(v)

Regr (11 A 12) = Regr(v1) A Regr(v2)
Regr((3z)y) = (3=)Regr(v))

3.2 Stochastic Actions and the Situation calculus

For the purposes of representing probabilisticuncertainty, the
above ontology and axiomatization for the situation calcu-
lus might appear to be inadequate, because al actions must
be deterministic. One can see this requirement most clearly
in the syntactic form of successor state axioms where a flu-
ent’s truth value in the next situation is uniquely determined
by the current situation; thus, the next state is uniquely de-
termined by the present state and the action performed. How
then can stochasti c actions be represented in the situation cal -
culus? The trick is to decompose stochastic actions into de-
terministic primitivesunder nature’ s control—shechoosesthe
deterministic action that actually gets executed, with some
specified probability, when an agent performs astochastic ac-
tion. We then formulate situation cal culus domain axioms us-
ing these deterministic choices [Bacchus et al., 1995; Reiter,
2001; Boutilier et al., 2000b].

We illustrate this approach with a simple example in alo-
gistics domain consisting of cities, trucks, and boxes: boxes
can be loaded onto and unloaded from trucks, and trucks can
be driven between cities.

Nature's Choicesfor Stochastic Actions. For each stochas-
tic action we must specify the deterministic choices available
to nature. For instance, the stochastic |oad action can succeed
(denoted by loadS) or fail (loadF):

choice(load(d, t), a) = a = loadS(b, t) V a = loadF(b, t)

Similarly, the stochastic unload and drive actionsal so decom-
pose into successful or unsuccessful alternatives chosen by
nature with known probabilities.

choice(unload(b, t),a) = a = unloadS(b, t) vVa = unloadF(b, t)
choice(drive(t, c), a) = a = driveS¢, c) V a = driveF(¢, c)
Probabilities for Nature's Choices: For each of nature’s
choices n(Z) associated with action A(Z), we specify the
probability prob(n(¥), A(Z), s) withwhichitischosen, given
that A(Z) was performed in situation s:
prob(loadS(b, t), load(b, t), s) = 0.99
prob(loadF(b, t), load(b, t), s) = 0.01
(unloadS(b,t), unload(b,t),s) = p =
Rain(s) Ap=0.7V =Rain(s) Ap=0.9
prob(unloadF(b,t), unload(b,t), s) =

prob



1 — prob(unloadS(5, ), unload(b, ), s)
prob(driveS(¢, c), drive(t, ), s) = 0.99
prob(driveF(¢, c), drive(t, ¢), s) = 0.01

H_er_eweseethat unloadingislesslikely to succeed whenit is

raining.

Action Preconditions for Deterministic Actions:
Poss(loadS(b, ), s) = (e).BIn(b, ¢, s) ATIN(t, ¢, s)
Poss(loadF(b,t), s) = (3c).BIn(b, ¢, s) ATIN(t, ¢, s)

Poss(unloadS(b, t), s) =

(

(

On(b,t, s)
Poss(unloadF(b, ), s) = On(b,t, s)
Poss(driveS(t, ¢), s) = true
Poss(driveF(t, ¢), s) = true

Nature's choices n; (£) for action A(Z) need not have com-
mon preconditions, but often they do, as above.

Successor State Axioms:

BIn(b, ¢, do(a, s)) =
(Ft)[TIn(t, ¢, s) A a = unloadSb, )] v
BIn(b, ¢, s) A =(3t)a = loadSb, t)

TINn(t, ¢, do(a, s)) = a = driveS(t, ¢) V
TIn(t,¢) A —(3¢')a = driveS(t, ¢')

On(b,t,do(a, s)) = a = loadS(b, t) v
On(b,t,s) A a # unloadS(b, t)

Rain(do(a, s)) = Rain(s)
There are two important pointsto note about this example:

1. By virtue of decomposing stochastic actions into deter-
ministic primitives under nature's control, we get per-
fectly conventional situation calculus action precondi-
tion and successor state axioms that do not refer to
stochastic actions. Stochastic actions have a status dif-
ferent from deterministic actions, and cannot participate
in situation terms.#

2. Nowhere do these axioms restrict the domain of dis-
course to some prespecified set of trucks, boxes, or cities.
There are even models of these axioms with infinitely
many—even uncountably many—individuals. If one
were to solve an MDP for which this axiomatization is
valid, onewould obtain, in fact, asolutionthat appliesto
an entireclass of MDPswith arbitrary domainsof trucks,
boxes and cities.

3.3 Some Additional Notation

Inwhat followswe use the notion of astateformula, (&, s),
whose only free variables are non-situation variables # and a
Situation variable s. Intuitively, a state formularefers only to
propertiesof thesituations. A set of stateformulae {v; (%, s) }
partitions state space iff |= (Y, s).4:(%, 5) D =, (Z, s), for
ali, j#i,andE (VE,s). V, vi(Z,s).

“Note that when nature’s choicesfor aspecific action do not have
identical preconditions, care must be taken in the axiomatization to
ensure the probabilities sum to onein every situation.

The Case Notation
To simplify the presentation, we introduce the notation

t = case[¢g1,t1; 3 bn,tn)

as an abbreviation for the formula

Vicaldi At =1}

wherethe¢; are stateformulae andthet; areterms. We some-
timeswritethiscase[¢;, ¢;]. Oftenthet; will be constantsand
the ¢; will partition state space. We introduce the following
operators on case statements (whose use will beimportant in
the next section):

casefg;,t; 11 < n]@casefy;,v; 1 j <m]=
CaSE[¢iA1/)j, Z-~vj'i<nj<m]

casefg;,t; 11 < njUcase[y;,v; 1 j <m]=
case[di,t1;- - bn,tn; Y1, V15 - U, V)

Representing Probabilitieswith Case Notation
Let A(Z) be a stochastic action type with possible out-
comes ni(%),---,ng(Z). We assume the probabilities of
these outcomes are specified using case notation. Specif-
icaly, the choice probabilities for n;(Z) are given as:
prob(n; (#), A(F), s) = case¢](#, s),p1; -5 n(F, 3), phl,
wherethe ¢/ partition state space, and p! isthe probability of
choice n;(Z) being realized under condition ¢7(Z, s) when
the agent executes stochastic action A(Z).
Our unload stochastic action above is represented in case
notation as:

prob(unloadS(4,¢), unload(b,?), 5) =
casefRain(s), 0.7; ~Rain(s), 0.9]
prob(unloadF(b,t),load(b,t), s) =

case[Rain(s), 0.3; —=Rain(s), 0.1].

Notice that when the probability of nature's choice is
situation-independent, (e.g., as in loadS), then only a single
“case” ispresent (e.g., case[true, 0.99]).

Specifying Rewards and Values with Case Notation

An MDP optimization theory contai ns axioms specifying the
reward function. In their simplest form, reward axioms use
thefunction R(s) to assert costs and rewards as a function of
the action taken, properties of the current situation, or both
(notethat the action taken can be recovered from the situation
term). Inwhat follows, we assume a ssimple*“ state-based” re-
ward model inwhich only relational fluentsdeterminereward,
and we assumethat thisreward functionisspecified using case
notation:

R(S) = m[£1(8)7 7"1; t 7£m(8)7 rm]7
wherethe¢; () partition state space. For example, rewarding
the presence of some box in Paris can be specified using
R(s) = case[(3b)BIn(b, Paris, s), 10;
—(3b)BIn(b, Paris, s), 0]



The restriction to state-based reward is simply to keep theex-
position simple. Action costs are easily modeled and are used
in our prototype implementation.

We also use the case notation to represent value functions
inasimilar fashion, concisely writing V' in the form

V(s) = caself(s), v1; - fn (). va].
This use of case statements can be viewed as embodying a
form of state space abstraction: rather than assigning val-
ues on a state-by-state basis, we distinguish states accord-
ing to the conditions 3;. Those states satisfying 3; can be
treated as an abstract state. Inthisway, we can often represent
valuefunctions (and policiesand Q-functionssimilarly) with-
out state enumeration, exploiting the logica structure of the
function. Thisis similar to the abstraction models discussed
in[Boutilier et al., 1999], but with the ability to partition tate
space using first-order formul ae.

4 Dynamic Programming with FOM DPs

Logica representations for MDPs provide natural and com-
pact specifications of planning domains, obviating the need
for explicit state space enumeration. Logical descriptionsex-
ploiting regularitiesin valuefunctionsand policiescan also be
very compact. Solving an FOMDP can be made much more
efficient if thelogica structure of value functions can be dis-
covered through inference using the the logical MDP specifi-
cation, with expected val ue computations performed once per
abstract state instead of once per state. Thus a dynamic pro-
gramming algorithm that works directly with symbolic rep-
resentations of value functions offers great potentia com-
putational benefit. In this section, we generalize the notion
of decision-theoretic regression from propositional MDPs to
FOMDPs, and construct a first-order value iteration algo-
rithm.

41 First-Order Decision-Theoretic Regression

Suppose we are given avalue function V. Thefirst-order de-
cisiontheoretic regression (FODTR) of I through actiontype
A(F) isalogical description of the Q-function QY (A(Z), s).
In other words, given a set of abstract states corresponding to
regionsof state space where V' isconstant, wewish to produce
a corresponding abstraction for QY (A(%), s). Thisis ana-
ogous to classical goa regression, the key differences being
that action A(Z) is stochastic.

Let A(¥) beastochastic actionwith corresponding nature’s
choices n;(Z),j < k. Ignoring preconditions momentarily,
QY (A(F), s) isdefined classicaly as

QV(A(®),5) = R(s) + 7 { Lies Pris, A(@),1) - V(1) }
Since different successor states arise only through different
nature's choices, the situation calculus analog of thisis:

QV(A(%),s) = R(s)+
7+ 3 prob(n; (2), A(&).5) - V(do(m;(#),5))
As described earlier, we assume that the functions R(s),

prob(n, A, s) and V(s) are dl described with case state-
ments. Respectively denote these by rCase(s), pCase(n, s)

and vCase(s). Then after substituting these case expressions
into Eq. (3) and appesaling to the case addition and multiplica
tion operators of Section 3.3, we obtain

QY (A(¥), 5) = rCase(s) @

7 - [®; {pCase(n; (%), s) ® vCase(do(n; (%), 5)) }]
The only problem with this expression is that the formula
vCase(do(n;(¥), s)) refers not to the current situation s, but
to the future situation do(n;(Z), s)), but thisis easily reme-
died with regression:

QY (A(#), 5) = rCase(s) @

v - [®; pCase(n; (&), s) ® Regr(vCase(do(n; (Z), 5)))]
We emphasize the critical nature of this step. The represen-
tationa methodology we adopt—treating stochastic actions
using deterministic nature's choices—allows us to apply re-
gression directly to derive properties of the pre-action state
that determinethevalue-rel evant properties of the post-action
state. Specifically, classica regression can be applied directly
to the case statement vCase(do(n ;(Z), s)) because the n; ()
are deterministic.

Because sums and products of case statements are also
case statements, the above expression for QY (A(%), s) isa
case statement, say case[w;(Z, s), ¢;], that characterizes the
Q-function for action A(Z) with respect to V. Thus from a
logical description of V' we can derive onefor (). Conceptu-
ally, thiscan be viewed astransforming the abstraction of state
space suitablefor 1 into one suitable for @. Itisnot hard to
show that if the state formulaein V' s case statement partition
the state space, then so do the a; defining @. Thisiskey to
avoiding state and action enumeration in dynamic program-
ming.

The above derivation ignores action preconditions.
To handle preconditions, QY (A(Z),s) can no longer be
treated as a function, but must be represented by a relation
QY (A(F),q,s), meaning that A’s Q-value in s is ¢. This
relation holds only if Poss(n;(%), s) holdsfor at least one of
A’schoices n;; otherwise the Q-vaueis undefined:

QV(A(#),4.5) = _ )
[V, Poss(n; (%), s)] A q = casela;(Z, s), ¢;]
Since \/, Poss(n;(Z),s) can be distributed into the case
statement (by conjoining it with the «;), theresult isagain a
case statement for the Q-relation.
As an example consider value function vV %:
V(s) = case[3b.BIn(b, Rome, s), 10 ; —3¢.BIn(b, Rome, s), 0]

That is, if some box & is in Rome, value is 10; otherwise
valueis 0. Suppose that reward R isidentical to V° and our
discount reteis0.9. We usethe unload(b, t) action, described
above, to illustrate FODTR. The regression of V° through
unload(b, ¢) resultsin a case statement (after simplification),
denoting @' (unload(b, t), ¢, s) with four elements:

ay(b,t,s) = 3¥'BIn(b’, Rome, s)

as(b,t,s) = Rain(s) A TIn(¢, Rome, s) A
On(b,t,s) A =3b'BIn(b’, Rome, s)

as(b,t,s) = —Rain(s) A TIn(¢, Rome, s) A



on(b,t, 5) A —3b'BIn(b’, Rome, 5)

aq(b,t,s) = (-TIn(¢, Rome, s) vV =0n(b, ¢, s)) A
30’BIn(b’, Rome, s)

and the associated Q-values: ¢; = 19; ¢» = 6.3; q3 = 8.1;
q4 = 0. Before simplification, the case statement consisted
of 8 formulag, two of which were inconsistent and two pairs
of which had identical Q-values.

An important property of FODTR is that it not
only produces an abstraction of state space to describe
QY (A(Z),q,s), it dso abstracts the action space as well.
With a small number of logical formulae, it captures the
Q-vaues Q(a,q,s) for each situation s and each instan-
tiation @ of A(Z). While state space abstraction has been
explored in the context of decision-theoretic regression
for propositional representations of MDPs, little work has
focused on abstracting the action space in thisway.

Finally, although our example workswith specific numeri-
cal valuesinthe case statements, purely symbolic descriptions
of value can aso be reasoned with in thisway. For example,
if the Q-value of action drive(t, ¢) depends on the weight of
truck ¢ in the current situation, the value term in a case state-
ment can be made to depend on this property of the situation
(i.e, weight(t, s)). This can prove especialy useful for rea-
soning with continuous (or hybrid) state and action spaces.

4.2 Symbolic Dynamic Programming

Va ueiteration consists of setting V° = R and repeatedly ap-
plying Eg. (1) and Eq. (2) until a suitable termination condi-
tionismet. Since R is described symbolically and FODTR
can be used to implement Eq. (1) logically, we need only de-
rive a“logical implementation” of Eq. (2) in order to have a
form of dynamic programming that can compute optimal poli-
ciesfor FOMDPswithout explicit state or action enumeration
(together with amethod for termination testing and policy ex-
traction).

In what follows, we assume that al values occurring in the
case statementsfor Q (A, v, s) are numerical constants, which
means that the case statements for prob(n, A, s), V(s) and
R(s) dl have thisproperty.

Suppose we have computed n-stage-to-go Q-relations
Q(A(Z),v,s), one for each action type A, of the form
casefa (7, s), ¢'], where the ¢/* are numerical constants.
Letting V' (s) denote the n-stage-to-go value function, Eq. (2)
can be written

V(s) =v = (3a).Qa,v,s) A (V0)Q(b,w,s) Dw < v (4)

We assume that some stochastic action (e.g., a deterministic
no-op) is executablein every situation, so that V' (s) will bea
function. (If not, we can easily defineit asareation.) We now
deriveaseries of expressionsfor ther.h.s. of thisequival ence.
Assuming domain closure for action types (i.e, al actions a
are instances of some A; (Z;), we have

V(is)=v = [Vi(ﬂfi)QEAi(fi), v, s)l/\
N; (g5, v') . Q(A;(g5), 0", 8) Dv < v
To minimize notational clutter, represent thisgenerically by

V(s) = v = [V4(3)Q(A(F), v, 5)] A
Ap(V§,v").Q(B(7),v",s) Dv' <w

We are supposing that we have aready determined the Q-
valuesfor each action type A, inthe form of a case statement:

Q(A(Z), q,5) = q = casela (&, 5), q{'] (5
Substitute Eq. (5) into the previous expression to get
Vis)=v= {\/A (3F)v = case[a (3, s), qu]} A
NAs(VF,v").Q(B(F),v',s) Dv' <v
Since the ¢ are constants, we can distribute the existential
guantifiersinto the case expression:
Vis)=v= {\/A v = case[(IF)ad (7, s),q?]} A
/\B(VQ',U').Q(B(Q'),U',S) Dv'<vw
Writing (3%)af! (%, s) asv# (s), and recalling the definition of
the case union operator U of Section 3.3, we have
Vis)=v=v= {UA case['yiA(s),in]} A
/\B(VQ',U').Q(B(Q'),U',S) Dv' <w
Suppose | , case[v*(s), ¢'] has the form case[y;(s), V; :
i < k]. Therefore,
V(s)=v =

['\i/l 'Yz’(S) ANv = VZ] A /\B(ng 1’/)~Q(B(37),v’,3) o <

Thissimplifiesto
V(is)=v=

,\Z % (5)A NG (VE, ) Q(B(), v/, 5) D v < ViAv = Vi

Recalling the definition of the case notation, we get

Vis)=v=v=

case[vi(s) A \g(VF,v").Q(B(¥),v',s) Dv' < Vi, Vi 11 < k]
The only remaining task is to characterize the expressions
Q(B(H),v',s) D v < V; interms of the case statement for
Q(B(¥),v', s). Suppose this case statement is:

Q(B(H),v,s) =4 = case[[)’fg (¥, s), qf]
Thenit iseasy to show that

Q(B(i),v',s) D v <V = \;[BP(#,5) D ¢F < Vi]
Substituting thislast expressionfor Q(B(¥),v’,s) D v/ < V;
in the above expression for V (s) givesus

Vis)=v=v=

case[yi(s) A Ny (V). A, [85(5.5) D ¢F < Vi, Vi:i < k)

Next, because the qf and V; are numerica constants, we can

distribute the universal quantifier as an existential quantifier
in the antecedent of the implications, to get

Vis)=v=v=
case[vi(s) A N\ \,[(39)8 (7, 5) D af < Vil,Viti <H]
Next, recalling how the +; were introduced by unioning the
case expressions for al the @Q-values, we get
V(s)=v=
v = case[yi(s) A\l (s) D Vj < Vil Vi < K]
Finally, we can again exploit the fact that the V/'s are numer-
ical constants (as opposed to symbolic terms), and therefore



can be compared. Thisallowsustowriteour final expression
for V:

71(s) A —i(s) W1
{i|Vi>V1}

~i(s) Vi
{ilVi>Vie}
If we modify the definition of the U operator so that it sorts
the rows according to their V' values, and merges rows with
identical V' values, we get the pleasing expression

71(s) Vi
v2(8) A= (s) V2 (6)

() A=y (8) A=y () Ao  Amye—i(s) Vi
This determines a simpl e case statement that completely de-
fines the vaue function V() given the logica description
of the relations Q" (A(Z), v, s). Together with the FODTR
algorithm for producing Q-relations, this provides the means
to construct the sequence of value functionsthat characterize
value iteration in a purely symbolic fashion, eliminating the
need for state and action enumeration. It isnot hard to show
that the case conditionsdefining V" partition state space.
Finally, notice that we obtained the case expression (6) by

a sequence of equivalence-preserving transformations from
the definition (3) of the Q-function (suitably modified to ac-
commodate action preconditions), and the definition (4) of the
valuefunction. Therefore, we have:

Theorem 1 The case expression (6) is a correct representa-
tion for V (s) relative to the specifications (3) and (4) for the
Q-function and val ue function respectively.

With these pieces in place, we can summarize first-order
value iteration as follows: given as input a first-order repre-
sentation of R(s) (acase statement) and our action mode, we
set VO(s) = R(s), n = 1 and perform the following steps
until termination:

1. For each action type A(Z) compute the case representa
tionof Q™ (A(Z),q,s) (using V"~1(s) asin Eqg. (3)).

2. Compute the case representation of V" (s) (using the
Q"(A(#), 4, 5) asinEq. (6).

3. Increment n.

Termination of first-order value iteration is straightforward.
Given the case statements C™ and C™~! for value functions
V™ and V*~1, weform C™ © C™~! and simplify the result-
ing case statement by removal of any inconsistent elements. If
each case hasavaueterm|essthat specified threshold e, value
iteration terminates. Extraction of an optimal policy is aso
straightforward: one ssimply needs to extract the maximizing
actions from the set of Q-functions derived from the optimal
value function. The optima policy will thus be represented
symbolically with a case statement.

4.3 Anlllustration

To giveaflavor of theform of first-order valuefunctions, con-
sider an example where the reward function is given by three
statements:

(3b).BIn(b, Paris, s) A TypeA(b);r = 10
(3b).BIn(b,Paris, s) A =TypeA(b);r = 5
=(3b)BIn(b, Paris, s);r = 0

That is, we want a box of Type A in Paris, but will accept a
box of another type if a Type A box is unavailable. Actions
include the load, unload, and drive actions described above.
We include action costs: the action unload(b,¢) has cost 4,
load(b,t) has cost 1, and drive(t, ¢) has cost 3. The optimal
one-stage policy chooses only unloading or no-op (since with
only one stageto go, driving and loading have no vaue). Our
agorithmderives the following conditionsfor unload(b, t) to
be executed:

On(b,t, s) A TIN(t, Paris, s) A
[—=(3")BIn(Y, Paris, s) Vv
TypeA(b) A —Rain(s) A
—(3b').BIn(b’, Paris, s) A ~TypeA(d')]

Thus a box 4 is unloaded if there is a box on some truck in
Paris, and there is no box currently in Paris, or b isa Type A
box and it’s not raining, and there’s no Type A box in Paris.
No-opisexecuted if thenegation of the condition above holds
(since for a one-step backup there is no value yet discovered
for driving or loading). It isimportant to note that this parti-
tioning remainsfixed (as doesthe partitioningfor theresultant
value function) regardless of the number of domain objects
and extraneous relationsin the problem description. Thuswe
get stronger abstraction than would be possibleusing apropo-
sitionalized version of the problem. Also note that this de-
scribesthe conditionsunder which one performs any instance
of the unload action. In thisway our agorithm allows for ac-
tion abstraction, alowing one to produce value functionsand
policieswithout explicit enumeration of action instances.

5 A (Very) Prdiminary Implementation

We have implemented (in Prolog) the basic Bellman backup
operator (i.e., singleiterationsof one-step valueiteration) de-
fined by Eq (6). The implementation is based entirely on a
rewrite interpreter that applies programmer specified rewrite
rules to situation calculus formulae until no further rewrites
are possible. The program first computes the case statements
for the Q-values for al the stochastic actions. Next, from
these it computes the (v; (s), Vi) pairs required by the case
statement (6), and finally, the case statement of (6) itself.
Throughout, logical simplification is applied (aso specified
by rewriterules) to all subformulas of the current formula.
From a practical point of view, the key component in effi-
ciently implementing first-order DTR islogical simplification
to ensure managesbl e formul ae describing the partitions. Our
current implementation performs only the most rudimentary
logical simplification and doesnot a ways produce concise de-
scriptions of the cases within partitions. Neither can it eimi-
nate all inconsi stent partitions. The main reason for theselim-
itationsis that the current implementation lacks a first-order
theorem-prover. For the example MDPs we have looked at,



sophisticated theorem-proving appears not to be necessary,
but simple-minded simplification rules that don’t know very
much about quantifiers are simply too weak.

We ran vaueiteration to termination under our implemen-
tation using the reward function that gives a reward of 10
for having any box in Paris, and zero reward otherwise (for
simplicity, it is treated as aterminal reward, and is received
only once). Because our smplifier did not include atheorem-
prover, some of the intermediate computations were hand-
edited to further simplify the resulting expressions. We aob-
tained the foll owing optimal value function:

FbBIn(Paris, b, s) : 10
—Rain(s) A 3b, £(On(b, ¢, s) A TIn(¢, Paris, s))
A =3bBIn(Paris, b, s) : 5.56
Rain(s) A 3b, t(On(b, t, s) A TIN(¢, Paris, s))
A =3b.BIn(Paris, b, s) : 4.29
—Rain(s) A 3b, tOn(b, ¢, s) A ~3bBIn(Paris, b, s)
A —=3b, £(On(b, ¢, s) ATIN(t, Paris, s)) : 2.53
—Rain(s) A 3b, t, c(BIn(c, s) A TIn(c, s))
A —=3b, tON(b, t, s) A ~3bBIn(Paris b, s) : 1.52
Rain(s) A 3b, tON(b, ¢, s) A —=3b, £(ON(b, ¢, s) ATIN(¢, Paris, s))
A =3bBIn(Paris, b, s) : 1.26
—3bBIn(Paris, b, s) A =3b, tON(b, ¢, s) A
[Rain(s) Vv =3b, t, ¢(BIn(c, s) A TIN(c, s)) : 0.0

We emphasi ze again that thisvalue function applies no matter
how many domain objectsthere are.

Our agorithmisnot competitivewith state of theart propo-
sitional MDP solvers, largely because solverssuch as SPUDD
[Hoey et al., 1999] use very efficient implementations of log-
ical reasoning software. We are currently developing a ver-
sion of the FODTR agorithm that uses afirst-order theorem-
prover to enhance its performance. Of course, a another
level, one can argue that propositional MDP solvers cannot
even get off the ground when (even trivial) planning problems
have alarge number of domain objects.

An important issue we hopeto address in the near futureis
theuse of hybrid representationsof MDPsand vauefunctions
that allow one to adopt efficient data structureslike ADDs or
decision trees, but instantiate these structures with first-order
formulae. Thiswould alow the expressive power of our first-
order model, but restrict the syntactic form of formul ae some-
what so that simplification and consistency checking could
be implemented more effectively for “typical” problem in-
stances.

6 Concluding Remarks

We have described the first approach for solving MDPs spec-
ified in first-order logic by dynamic programming. By the
careful integration of sophisticated KR methods with classic
MDP algorithms, we have developed a framework in which
MDPs can be specified concisaly and naturally and solved
without explicit state and action enumeration. Indeed, noth-
ing in our model preventsits direct application to infinite do-
mains. Furthermore, it permitsthe symbolic representation of
value functionsand policies.

A number of interesting directions remain to be explored.
Asmentioned, the practicality of thisapproach depends onthe
use of sophisticated simplification methods. We are currently

incorporating several of theseinto our implementation. Other
dynamic programming a gorithms(e.g., modified policy itera-
tion) can beimplemented directly withinour framework. Ap-
proximationmethods based on merging partitionswith similar
valuescan also be applied withease. Finaly, theinvestigation
of symbolic dynamic programming to continuous and hybrid
domains offers exciting possibilities.

Acknowledgements:  This research was supported by
NSERC and IRIS Project BAC “Dealing with Actions.”
Thanks to the referees for their helpful suggestions on the
presentation of this paper.

References

[Bacchuset al., 1995] F. Bacchus, J. Y. Halpern, and H. J.
Levesgue.  Reasoning about noisy sensors in the situation
calculus. 1JCAI-95, 1933—-1940, Montreal, 1995.

[Bellman, 1957] R. E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, 1957.

[Bertsekas and Tsitsiklis, 1996] D. P, BertsekasandJ.. N. Tsitsiklis.
Neuro-dynamic Programming. Athena, Belmont, MA, 1996.
[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. De-
cision theoretic planning: Structural assumptions and computa-

tional leverage. J. Art. Intel. Res., 11:1-94, 1999.

[Boutilier et al., 2000a] C. Boutilier, R. Dearden, and M. Gold-
szmidt. Stochastic dynamic programming with factored represen-
tations. Art. Intel., 121:49-107, 2000.

[Boutilier et al., 2000b] C. Boutilier, R. Reiter, M. Soutchanski, and
S. Thrun. Decision-theoretic, high-level agent programming in
the situation calculus. AAAI-2000, 355-362, Austin, TX, 2000.

[Geffner and Bonet, 1998] H. Geffner and B. Bonet. High-
level planning and control with incomplete information using
POMDPs. Fall AAAI Symp. on Cognitive Robotics, Orlando, FL,
1998.

[Hoey et al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: Stochastic planning using decision diagrams. UAI-99,
279-288, Stockholm, 1999.

[McCarthy, 1963] J. McCarthy. Situations, actionsand causal laws.
Tech. report, Stanford Univ., 1963. Repr. Semantic Information
Processing (M. Minsky ed.), MIT Press, Cambridge, 1968, 410-
417.

[Pirri and Reiter, 1999] F. Pirri and R. Reiter. Some contributionsto
the metatheory of the situation calculus. JACM, 46(3):261-325,
1999.

[Poole, 1997] D. Poole. The independent choice logic for mod-
elling multiple agents under uncertainty. Art. Intel., 94(1-2):7—
56, 1997.

[Puterman, 1994] M. L. Puterman. Markov Decision Processes:
Discrete Sochastic Dynamic Programming. Wiley, 1994.

[Reiter, 1991] R. Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a completeness result for
goal regression. In V. Lifschitz, ed., Artificial Intelligence and
Mathematical Theory of Computation (Papersin Honor of John
McCarthy), 359-380. Academic Press, 1991.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Describing and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.



