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Abstract

A large portion of real-world data is stored in com-
mercial relational database systems. In contrast,
most statistical learning methods work only with
“flat” data representations. Thus, to apply these
methods, we are forced to convert our data into
a flat form, thereby losing much of the relational
structure present in our database. This paper builds
on the recent work oprobabilistic relational mod-

els (PRMs)and describes how to learn them from
databases. PRMs allow the properties of an object
to depend probabilistically both on other proper-
ties of that object and on propertiesrefated ob-
jects. Although PRMs are significantly more ex-
pressive than standard models, such as Bayesian
networks, we show how to extend well-known sta-
tistical methods for learning Bayesian networks to
learn these models. We describe bptrameter
estimationandstructure learning— the automatic
induction of the dependency structure in a model.
Moreover, we show how the learning procedure can
exploit standard database retrieval techniques for
efficient learning from large datasets. We present
experimental results on both real and synthetic re-
lational databases.
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example, we may be interested in predicting whether a person
is a potential money-launderer based on their bank deposits
international travel, business connections and arrestrdsc
of known associatelslensen, 1997 In another case, we may
be interested in classifying web pages as belonging to a stu-
dent, a faculty member, a project, etc., using attributebef
web page and of related pad&ravenet al., 1999.
Unfortunately, few inductive learning algorithms are capa
ble of handling data in its relational form. Most are resatt
to dealing with a flat set of instances, each with its own sepa-
rate attributes. To use these methods, one typically “fiatte
the relational data, removing its richer structure. This-pr
cess, however, loses information which might be crucial in
understanding the data. Consider, for example, the problem
of predicting the value of an attribute of a certain entitg, e
whether a person is a money-launderer. This attribute will
be correlated with other attributes of this entity, as wsll a
with attributes of related entities, e.g., of financial sac-
tions conducted by this person, of other people involved in
these transactions, of other transactions conducted Isg the
people, etc. In order to “flatten” this problem, we would need
to decide in advance on a fixed set of attributes that thedearn
ing algorithm can use in this task. Thus, we want a learning
algorithm that can deal with multiple entities and theirgpro
erties, and can reach conclusions about an entity’s clearact
istics based on the properties of the entities to which ieis r
lated. Until now,inductive logic programming (ILPLavrat
and DZeroski, 19%4has been the primary learning frame-
work with this capability. ILP algorithms learn logical Hor

Relational models are the most common representation atiles for determining when some first-order predicate holds
structured data. Enterprise business information, miaet While ILP is an excellent solution in many settings, it may be
and sales data, medical records, and scientific dataseddl are inappropriate in others. The main limitation is the determi

stored in relational databases. Indeed, relational datsme

a multi-billion dollar industry. Recently, there has beeovg-
ing interest in making more sophisticated use of these hugghat are far from being deterministic.

amounts of data, in particulaminingthese databases for cer-

istic nature of the rules discovered. In many domains, such
as the examples above, we encounter interesting corneatio

Our goal in this paper is to learn more refined probabilis-

tain patterns and regularities. By explicitly modelingdle tic models, that represent statistical correlations betwben
regularities, we can gain a deeper understanding of our dane properties of an entity and between the properties of re-
main and may discover useful relationships. We can also usgted entities. Such a model can then be used for reasoning
our model to “fill in” unknown but importantinformation. For gphout an entity using the entire rich structure of knowledge
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encoded by the relational representation.
The starting point for our work is the structured representa

works (BNs). A BN allows us to provide a compact rep-



resentation of a complex probability distribution over som of Blood-Testare Serial-Number Date, Contaminatedand
fixed set ofattributesor random variables The representa- Result

tion exploits the locality of influence that is presentin man  An instanceZ of a schema defines a set of entiti@$( X;)
domains. We build on two recent developments in the fieldfor each entity typeX;. For each entityr € 0% (X;), and

of Bayesian networks. The first is the deep understandingach attributed; € A(X;), the instance has an associated at-
of the statistical learning problem in such modgtecker-  tributez.a;; its value inZ is denotedZ,, o,. For each relation
man, 1998; Heckermaet al, 1999 and the role of struc- R(Xy,...,X}) and each(zy,...,z;) € OF(Xy) x --- x

ture in providing an appropriate bias for the learning task.0Z(x,), 7 specifies whetheR(z1, . . ., 2;) holds.
The second is the recent development of representations tha \We are interested in describing a probability model over
extend the attribute-based BN representation to incotporainstances of a relational schema. However, some attributes
a much richer relational structuf&oller and Pfeffer, 1998; such as a name or social security number, are fully deter-
Ngo and Haddawy, 1996; Poole, 1993 mined. We label such attributes fised We assume that

In this paper, we combine these two advances. Indeed, ortaey are known in any instantiation of the schema. The other
of our key contributions is to show that many of the tech-attributes are callegrobabilistic. A skeleton structure: of
niques of Bayesian network learning can be extended to tha relational schema is a partial specification of an instafice
task of learning these more complex models. This contributhe schema. It specifies the set of obje@&(X;) for each
tion generalizefKoller and Pfeffer, 199Js preliminarywork  class, the values of the fixed attributes of these objects, an
on this topic. We start by describing the semanticproba-  the relations that hold between the objects. However,idsa
bilistic relational models We then examine the problems of the values of probabilistic attributes unspecifiedc@mple-
parameter estimatioandstructure selectioffor this class of  tionZ of the skeleton structure extends the skeleton by also
models. We deal with some crucial technical issues that disspecifying the values of the probabilistic attributes.
tinguish the problem of learning relational probabilistiod- One final definition which will turn out to be useful is the
els from that of learning Bayesian networks. We provide anotion of aslot chain If R(X;, ..., X}) is any relation, we
formulation of the likelihood function appropriate to tlsist-  can projectR onto itsi-th andj-th arguments to obtain a
ting, and show how it interacts with the standard assumstionbinary relationp(X;, X;), which we can then view assdot
of BN learning. The search over coherent dependency struaf X;. For anyz in X;, we letz.p denote all the elemenis
tures is significantly more complex than in the case of learnin X; such thaip(z,y) holds. (In relational algebra notation
ing BN structure and we introduce the necessary tools ang.p = IIx;ox,—, R.) Objects in this set are callgdrelatives
concepts to do this effectively. We then describe experimenof . We can concatenate slots to form longést chains
tal results on synthetic and real-world datasets, and yinallr = p;.---.p,,, defined by composition of binary relations.
discuss possible extensions and applications. (Each of thep;'s in the chain must be appropriately typed.)

2.2 Probabilistic Relational Models

2 Underlying framework We now proceed to the definition of probabilistic relational
21 Relational modd models (PRMs). The basic goal here is to model our uncer-
) ) ) _ tainty about the values of the non-fixed, or probabilistte, a
We describe our relational model in generic terms, closely r triputes of the objects in our domain of discourse. In other
lated to the language of entity-relationship models. Tkis-g  words, given a skeleton structure, we want to define a proba-
erality allows our framework to be mapped into a variety of pjlity distribution over all completions of the skeleton.
specific relational systems, including the probabilistigit Our probabilistic model consists of two components: the
programs ofNgo and Haddawy, 1996; Poole, 1998nd the  qualitative dependency structu, and the parameters as-
probabilistic frame systems fioller and Pfeffer, 199B Our  socijated with itds. The dependency structure is defined by

learning results apply to all of these frameworks. associating with each attribufé. A a set ofparentsPa( X. A).
The vocabulary of a relational model consists of a set ofThese correspond formal parents; they will be instantiated
classesX;,..., X, and a set ofelationsR,, ..., R,,. Each in different ways for different objects iX. Intuitively, the

entity type is associated with a setaifributes A(X;). Each  parents are attributes that are “direct influencesXod.

attribute A; € A(X;) takes on values in some fixed domain  We distinguish between two types of formal parents. The

of valuesV (4;). Each relation® is typed. This vocabulary attributeX.A can depend on another probabilistic attribBte

defines aschemdor our relational model. of X. This formal dependence induces a corresponding de-
Consider a simple genetic model of the inheritance of gpendency for individual objects: for any objecin 07 (X),

single gene that determines a person’s blood type. Each pet-a will depend probabilistically o:.b. The attributeX.A

son has two copies of the chromosome containing this genean also depend on attributes of related objétts B, where

one inherited from her mother, and one inherited from her fas is a slot chain. To understand the semantics of this formal

ther. There is also a possibly contaminated test that atempdependence for an individual object recall thatz.7 repre-

to recognize the person’s blood type. Our schema containsents theset of objects that are--relatives ofz. Except in

two classe®ersomandBlood-Testand three relatiorather, cases where the slot chain is guaranteed to be single-valued

Mother, andTest-of Attributes ofPersonareName Gender  we must specify the probabilistic dependence:af on the

P-Chromosométhe chromosome inherited from the father), multiset{y.b : y € z.7}. The notion ofaggregationfrom

M-Chromosoméinherited from the mother). The attributes database theory gives us precisely the right tool to address
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between objects, and thereby the set-oélatives associated
with every object for each relationship chain Also note
that by assuming that the relations between objects are al-
ways specified by, we are disallowing uncertainty over the
relational structure of the model.

To define a coherent probabilistic model over this skele-
ton, we must ensure that our probabilistic dependencies are
acyclic, so that a random variable does not depend, directly
or indirectly, on its own value. Consider the parents of an
attribute X.A. WhenX.B is a parent ofX. A, we define an
edger.b —, z.a; wheny(X.7.B) is a parent ofX.A and
y € z.1, we define an edgg.b —, z.a. We say that a
dependency structui® is acyclicrelative to a skeletow if
the directed graph defined by, over the variables.a is
Figure 1: The PRM structure for a simple genetics domainacyclic. In this case, we can define a coherent probabilistic
Fixed attributes are shown in regular font and probahilisti model over complete instantiatio@sconsistent withy:
attributes are shown in italic. Dotted lines indicate rielas
between entities and solid arrows indicate probabiliste d P(I|0,8,0s) =

pendencies. H H H P(Tpa | Ipgn.a)) (1)

Xi AcA(X:) z€0(X;)

this issue; i.e.z.a will depend probabilistically on some ag- prqnogition 2.1: If S is acyclic relative tar, then (1) defines
gregate property of this multiset. There are many naturdl an, gistribution over completiori of .

useful notions of aggregation: the mode of the set (most fre-
guently occurring value); mean value of the set (if values ar  We briefly sketch a proof of this proposition, by showing
numerical); median, maximum, or minimum (if values are how to construct a BN over the probabilistic attributes of a
ordered); cardinality of the set; etc. skeleton using S, 6s). This construction is reminiscent of
More formally, our language allows a notion of an aggre-theknowledge-based model constructapproactwellman
gatey; ~ takes a multiset of values of some ground type, ancet al, 1993. Here, however, the construction is merely a
returns a summary of it. The type of the aggregate can be th@ought-experiment; our learning algorithm never corstu
same as that of its arguments. However, we allow other type#is network. In this network there is a node for each vari-
as well, e.g., an aggregate that reports the size of thesatlti ablez.a and for aggregate quantities required by parents. The
We allow X. A to have as a paren{ X.7.B); the semanticsis  parents of these aggregate random variables are all ofthe at
that for anyz € X, z.a will depend on the value of(z.7.b).  tributes that participate in the aggregation, accordintheo
We defineV/ (y(X.7.b)) in the obvious way. relations specified by_. _The CF_‘Ds of randpm variables that
Returning to our genetics example, consider the attribut€0rrespond to probabilistic attributes are simply the CB®s
Blood-TesResult Since the result of a blood test depends onscribed byds, and the CPDs of random variables that corre-
whether it was contaminated, it hBfod-TesiContaminated ~ SPond to aggregate nodes capture the deterministic functio
as a parent. The result also depends on the geRf the particular aggregate operator. It is easy to verigg th
netic material of the person tested. Sin@est-of is if the probabilistic dependencies are acyclic, then so és th
single-valued, we addlood-TesfTest-ofM-Chromosome induced Bayesian network. This construction also suggests
andBlood-TesfTest-otP-Chromosomas parents. Figure 1 ON€ way of answering queries about a relational model. We
shows the structure of a simple PRM for this domain. can “compile” the corresponding Bayesian network and use
Given a set of parents PA.A) for X.A, we can define Standard tools for answering queries about it. .
a local probability model forX.A. We associateX. A with AIthQUQh for each skeleton, we can compile a PRM into a
a conditional probability distribution (CPD}hat specifies Bayesian network, a PRM expresses much more information
P(X.A | PAX.A)). More precisely, lel be the set of par- thanthe resulting BN. A BN defines a probability distributio
ents of X.A. Recall that each of these parefits— whether ~ OVer & fixed set of z_ﬂtrlbutes. A PRM specifies a distribution
a simple attribute in the same relation or an aggregate df a ngerany skeleton; in different skeletons, the set (and num-
of 7 relatives — has a set of valud&U;) in some ground er) of entities in _the domain will vary, as will the relat®n
type. For each tuple of valuese V' (U), the CPD specifies between the entities. In a way, PRMs are to BNs as a set of
a distributionP(X.A | u) overV (X.A). The parameters in rules in first-order logic is to a set of rules in propositibna
all of these CPDs comprigs. logic: A rule such a¥'z,y, z.Paren{z, y) A Paren{y, z) =

Given a skeleton structure for our schema, we want to us?randp‘f"ren@‘"’ #) induces a potentially infinite set of ground
these local probability models to define a probability distr propositional) instantiations.

bution over completions of the skeleton. First, note that th . .

skeleton determines the set of objects in our model. We assc?l Parameter Estimation

ciate a random variable.a with each probabilistic attribute We now move to the task of learning PRMs. We begin with
A of each object. The skeleton also determines the relationslearning the parameters for a PRM where the dependency
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structure is known. In other words, we are given the strgctur discussed above, the learned parameters can then be used for
S that determines the set of parents for each attribute, and oueasoning about other skeletons, which induce a completely
task is to learn the parametdis that define the CPDs for different BN.
this structure. Our learning is based on a particular tngni In many cases, maximum likelihood parameter estimation
set, which we will take to be a complete instariteWhile is not robust, as it overfits the training data. The Bayesmen a
this task is relatively straightforward, it is of interestand  proach uses a prior distribution over the parameters to #moo
of itself. In addition, it is a crucial componentin the stiwre  the irregularities in the training data, and is therefoig si
learning algorithm described in the next section. nificantly more robust. As we will see in Section 4.2, the
The key ingredient in parameter estimation isltkelihood  Bayesian framework also gives us a good metric for evaluat-
function the probability of the data given the model. This ing the quality of different candidate structures. Due tacep
function captures the response of the probability distidou  limitations, we only briefly describe this alternative apgach.
to changes in the parameters. As usual, the likelihood of a Roughly speaking, the Bayesian approach introduces a
parameter set is defined to be the probability of the datangiveprior over the unknown parameters, and performs Bayesian
the model:L(6s | Z,0,S) = P(Z | 0,S,0s). As usual, we  conditioning, using the data as evidence, to compute aposte

typically work with the log of this function: rior distribution over these parameters. To apply this itea
our setting, recall that the PRM paramet@gsare composed
l(6s|Z,0,8) =logP(Z|0,S,6s) of a set of individual probability distributioiy 4/, for each
conditional distribution of the fornP(X.4 | PgX.4) =
= Z Z Z 108 P(Zs.a | Zrgz.a) | £2) u). Following the work on Bayesian approaches for learn-

ing Bayesian networkdHeckerman, 1998 we make two as-
sumptions. First, we assunparameter independencehe

The key insight is that this equation is very similar to Priors over the parametefs 4o for the differentX, A and
the log-likelihood of data given a Bayesian netwfHeck- ¢ are independent. Second, we assume that the prior over
erman, 1998 In fact, it is the likelihood function of the &x.ajv is aDirichlet distribution. Briefly, a Dirichlet prior for
Bayesian network induced by the structure given the skele@ Multinomial distribution of a variab#’ is specified by a set
ton. The main difference from standard Bayesian networtof hyperparametergafw] : w € v(W)}. A distribution on
parameter learning is that parameters for different nodes ithe parameters d?() is Dirichlet if Pr(6w ) o [],, golel,
the network are forced to be identical. Thus, we can use thé~or more details seeGroot, 1971)
well-understood theory of learning from Bayesian networks For a parameter prior satisfying these two assumptions, the
Consider the task of performinmgaximum likelihoogharam-  posterior also has this form. That is, it is a product of inde-
eter estimation. Here, our goal is to find the parameter setpendent Dirichlet distributions over the paramet@xs, v,
ting 85 that maximizes the likelihood(fs | Z,0,S) fora  which can be computed easily.

givenZ, o andS. This estimation is simplified by thée-  proposition 3.2 If Z is a complete assignment, and the prior
compositionof log-likelihood function into a summation of satisfies parameter independence and Dirichlet with hyper-
terms corresponding to the various attributes of the difier arametersax. 4[v, u], then the posterioP(fs | Z,0,S)

classes. Each of the terms in the square brackets in (2) can pea product of Dirichlet distributions with hyperparamete
maximized independently of the rest. Hence, maximal kkeli o'y 4[v, u] = ax._4[v,u] + Cx.a[v, u).

hood estimation reduces to independent maximization prob-
lems, one for each CPD.

For multinomial CPDs, maximum likelihood estimation
can be done viaufficient statisticsvhich in this case are just
the count<Cx_4[v, u] of the different values, u that the at-
tribute X. A and its parents can jointly take.

Xi A€A(X;) |z€e07(X;)

Once we have updated the posterior, how do we evaluate
the probability of new data? In the case of BN learning, we
assume that instances are 11D, which implies that they are in
dependent given the value of the parameters. Thus, to evalu-
ate a new instance, we only need the posterior over the param-
eters. The probability of the new instance is then the proba-
Proposition 3.1 Assuming multinomial CPDs, the maximum Pility given every possible parameter value, weighted gy th
likelihood parameter settinés is posterior probability over the_se values. In the case of BNs,
this term can be rewritten simply as the instance probabil-
ity according to theexpected/alue of the parameters (i.e., the
= F 77 = mean of the posterior Dirichlet for each parameter). This su
2y Cx.alv',u] gests that we might use the expected parameters for evaluat-

As a consequence of this proposition, parameter Iearnin@g new data. Indeed, the formu!aforthe expected paraseter
in PRMs is reduced toountingsufficient statistics. We need a”a'99°”5 to the one ff)r BNs: ) . o
to count one vector of sufficient statistics for each CPDHSuc Proposition 3.3:  Assuming multinomial CPDs, prior in-
counting can be done in a straightforward manner using starfiependence, and Dirichlet priors, with hyperparameters
dard databases queries. ax.4[v, u], we have that:

Note that this proposition shows that learning parametersii E[P(X.A=v|PaX.A) =u)|Z] =
PRMs is very similar to learning parameters in Bayesian net- c
works. In fact, we might view this as learning parameters for x.a[v, u] + ax.afv, u]
the BN that the PRM induces given the skeleton. However, as > Cx.alv',u] + ax.alv',u]

P(XA = | Pa(XA) = u) CX,A[’U,II]




Unfortunately, the expected parameters are not the prop&nsure that dependencies among attributes respect soare ord
Bayesian solution for computing probability of new data. (i.e., are stratified). More precisely, we say t&katd directly
There are two possible complications. dependonY.B if either (2) X = Y and X.B is a parent of

The first problem is that, in our setting, the assumption ofX.A4, or (b)y(X.7.B) is a parent ofX. A and ther-relatives
IID data is often violated. Specifically, a new instance niigh of X are of classy”. We then require thak'.A directly de-
not be conditionally independent of old ones given the parampends only on attributes that precede it in the order.
eters. Consider the genetics domain, and assume that our newWhile this simple approach clearly ensures acyclicity,
data involves information about the mothe&rof some per- it is too limited to cover many important cases. Con-
sonz already in the database. In this case, the introductiosider again our genetic model.  Here, the genotype
of the new object:’ also changes our probability about the of a person depends on the genotype of her parents;
attributes ofr’. We therefore cannot simply use our old pos- thus, we havd®ersonP-Chromosomeepending directly on
terior about the parameters to reason about the new instandéersonP-Chromosomewhich clearly violates the require-
This problem does not occur if the new data is not related tanents of our simple approach. In this model, the appar-
the training data, that is, when the new data is essentially ant cyclicity at the attribute level is resolved at the lewél
disjoint database with the same scheme. More interestinglyndividual objects, as a person cannot be his/her own an-
the problem also disappears when attributes of new objectsestor. That is, the resolution of acyclicity relies on some
are not parents of any attribute in the training set. In the geprior knowledge that we have about the domain. To allow
netics example, this means that we can insert new people intaur learning algorithm to deal with dependency models such
our database, as long as they are not ancestors of people ak this we must allow the user to give our algorithm prior
ready in the database. knowledge. We allow the user to assert that certain slots

The second problem involves the formal justification for Rge = {p1,...,px} areguaranteed acyclici.e., we are
using expected parameters values. This argument depends gnaranteed that there is a partial orderigg, such that if
the fact that the probability of a new instance is linear i@ th y is ap-relative for some € R, of z, theny <,, . We
value of each parameter. That is, each parameter is “useday thatr is guaranteed acyclic if each of its componepiss
at most once. This assumption is violated when we consides guaranteed acyclic.
the probability of a complex database involving multiple in ~ We use this prior knowledge determine the legality of cer-
stances from the same class. In this case, our integral of tii@in dependency models. We start by building a graph that
probability of the new data given the parameters can no longedescribes the direct dependencies between the attribuites.
be reduced to computing the probability relative to the ex-this graph, we have gellowedgeX.B -+ X.Aif X.Bisa
pected parameter value. The correct expression is caleed tparent ofX.A. If v(X.7.B) is a parent ofX. A, we have an
marginal likelihoodof the (new) data; we use it in Section 4.2 edgeY.B — X.A which isgreenif 7 is guaranteed acyclic
for scoring structures. For now, we note that if the postesio andred otherwise. (Note that there might be several edges,
sharply peaked (i.e., we have seen many training instanceg)f different colors, between two attributes). The intuitis
we can approximate this term by using the expected paraméhat dependency along green edges relates objects that are o
ters of Proposition 3.3, as we could for a single instance. Irdered by an acyclic order. Thus these edges by themselves or
practice, we will often use these expected parameters as oapmbined with intra-object dependencies (yellow edges) ca
learned model. not cause a cyclic dependency. We must take care with other

dependencies, for which we do not have prior knowledge, as
4 Structure selection these might form a cycle. This intuition suggests the follow
ing definition: A (colored) dependency graphsisatified if
We now move to the more challenging problem of learning aevery cycle in the graph contains at least one green edge and
dependency structure automatically, as opposed to hating ho red edges.
given by the user. There are three important issues that need .
to be addressed. We must determine which dependency strugtOPosition 4.1: If the colored dependency graph &fand
tures are legal; we need to evaluate the “goodness” of differ/tga is stratified, then for any skeletanfor which the slots
ent candidate structures; and we need to define an effectiV Rqa are jointly acyclic,S defines a coherent probability

search procedure that finds a good structure. distribution over assignments to
41 Leaal sruct This notion of stratification generalizes the two special
: €gal structures cases we considered above. When we do not have any guaran-

When we consider different dependency structures, it is imteed acyclic relations, all the edges in the dependencyhgrap
portant to be sure that the dependency strucfnee choose are colored either yellow or red. Thus, the graph is strati-
results in coherent probability models. To guarantee thidied if and only if it is acyclic. In the genetics example, all
property, we see from Proposition 2.1 that the skeletarust  the relations would be iR ,,. Thus, it suffices to check that
be acyclic relative t&S. Of course, we can easily verify for dependencies within objects (yellow edges) are acyclic.

a given candidate structugthat it is acyclic relative to the
skeletone of our training database. However, we also want
to guarantee that it will be acyclic relative to other datssa
that we may encounter in our domain. How do we guarante&/e omit the details of the algorithm for lack of space, but it
acyclicity for an arbitrary database? A simple approachb is t relies on standard graph algorithms. Finally, we note that i

Proposition 4.2 Stratification of a colored graph can be de-
termined in time linear in the number of edges in the graph.



is easy to expand this definition of stratification for sitaas  structure with its fit to the data. This balance can be made
where our prior knowledge involves several sets of guaranexplicitly via the asymptotic relation of the marginal like
teed acyclic relations, each set with its own order (e.g-, obhood to explicit penalization, such as the MDL score (see,
jects on a grid with a north-south ordering and an east-west.g.,[Heckerman, 199%.

ordering). We simply color the graph with several colorgl an  Finally, we note that the Bayesian score requires that we
check that each cycle contains edges with exactly one colassign a prior over parameter values for each possible-struc

other than yellow, except for red. ture. Since there are many (perhaps infinitely many) alter-
i i native structures, this is a formidable task. In the case of
4.2 Evaluating different structures Bayesian networks, there is a class of priors that can be de-

Now that we know which structures are legal, we need to described by a single netwoflideckermaret al,, 1999. These
cide how to evaluate different structures in order to pick on priors have the additional property of beisigucture equiva-
that fits the data well. We adapt Bayesiaodel selection lent, thatis, they guarantee that the marginal likelihood is the
methods to our framework. Formally, we want to computesame for structures that are, in some strong sense, equtivale
the posterior probability of a structu® given an instantia- These notions have not yet been defined for our richer struc-
tion Z. Using Bayes rule we have th&(S | Z,0) x P(Z | tures, so we defer the issue to future work. Instead, we gimpl
S,0)P(S | o). This score is composed of two main parts: assume that some simple Dirichlet prior (e.g., a uniformone
the prior probability of the structure, and the probabilify has been defined for each attribute and parent set.
the data assuming that structure.

The first component i(S | o), which defines a prior 4.3 Structuresearch
over structures. We assume that the choice of structure is ilNow that we have a test for determining whether a structure is
dependent of the skeleton, and the&S | o) = P(S). Inthe  “legal”, and a scoring function that allows us to evaluafe di
context of Bayesian networks, we often use a simple unifornferent structures, we need only provide a procedure for find-
prior over possible dependency structures. Unfortunatély  ing legal high-scoring structures. For Bayesian networks,
assumption does not work in our setting. The problem is thaknow that this task is NP-HarfChickering, 1996 As PRM
there may be infinitely many possible structures. In our getearning is at least as hard as BN learning (a BN is simply a
netics example, a person’s genotype can depend on the gernPRM with one class and no relations), we cannot hope to find
type of his parents, or of his grandparents, or of his greatan efficient procedure that always finds the highest scoring
grandparents, etc. A simple and natural solution penalizestructure. Thus, we must resort to heuristic search. The sim
long indirect slot chains, by havirigg P(S) proportionalto  plest such algorithm is greedy hill-climbing search, using

the sum of the lengths of the chainsppearing irS. score as a metric. We maintain our current candidate steictu
The second component is thearginal likelihood and iteratively improve it. At each iteration, we consideea
of simple local transformations to that structure, scotefal
P(Z|S,0) = /P(I | S,0s,0)P(0s | S) dis them, and pick the one with highest score. We deal with local
maxima using random restarts.

If we use a parameter independent Dirichlet prior (as above, AS in Bayesian networks, the decomposability property
this integral decomposes into a product of integrals each off the score has significant impact on the computational ef-
which has a simple closed form solution. (This is a sim-ficiency of the search algorithm. First, we decompose the
ple generalization of the ideas used in the Bayesian score f$COre into a sum abcal scorescorresponding to individual

Bayesian networks.) attributes and their parents. Now, if our search algoritom-c
o . ] siders a modification to our current structure where thergare
Proposition 4.3: If Z is a complete assignment, aftifis | set of a single attribut&. A is different, only the component

§) satisfies parameter independence and is Dirichlet with hyof the score associated wifti. A will change. Thus, we need
perparametersyx.a[v, u], then, P(Z | S,0), the marginal  only reevaluate this particular component, leaving thersth

likelihood ofZ givens, is equal to unchanged:; this results in major computational savings.
There are two problems with this simple approach. First,
H H H DM({Cx;.a[v,ul}, {ax;.av,u]}) as discussed in the previous section, we have infinitely many
i A€A(X:) ueV(()PAX;.A)) possible structures. Second, even the atomic steps of the
where search are expensive; the process of computing sufficient

r(Y all) I(a[o]+Cle]) statistics requires expensive database operations. Ewen i
DM({C[v]}, {a[v]}) = Y (bR I, =Fpp—:  restrict the set of candidate structures at each step of the
00 o1 —t g4 iy . search, we cannot afford to do all the database operatiaas ne
andl(z) = [, t*~ e 'dt is theGammafunction. essary to evaluate all of them,

Hence, the marginal likelihood is a product of simple We propose a heuristic search algorithm that addresses

terms, each of which corresponds to a distributfiX. A | both these issues. At a high level, the algorithm proceeds
u) whereu € V(P X.A)). Moreover, the term foP(X. A | in phases. At each phakewe have a set of potential parents
u) depends only on the hyperparametess 4[v, u] and the  Pot,(X.A) for each attributeX.A. We then do a standard
sufficient statisticC x_4[v, u] forv € V(X.A). structure search restricted to the space of structuresichwh

The marginal likelihood term is the dominant term in the the parents of eacK.A are inPot,(X.A). The advantage of
probability of a structure. It balances the complexity of th this approach is that we can precompute the view correspond-



ing to X. A, Pot, (X.A); most of the expensive computations database contains about 11000 movies and 7000 actors.
— the joins and the aggregation required in the definition ofWhile this database has a simple structure, it presents the
the parents — are precomputed in these views. The suffkind of problems one often encounters when dealing with real
cient statistics for any subset of potential parents caityeas data: missing values, large domains for attributes, anahinc
be derived from this view. The above construction, togethesistent use of values. The fact that our algorithm was able
with the decomposability of the score, allows the steps ef th to deal with this kind of real-world problem is quite promis-
search (say, greedy hill-climbing) to done very efficiently  ing. Our algorithm learned the model shown in Figure 2(a).
The success of this approach depends on the choice of tfiéhis model is reasonable, and close to one that we would con-
potential parents. Clearly, a wrong initial choice can hetsu  sider to be “correct”. It learned that th@enre of a movie
poor structures. FollowingFriedmaret al, 1999, whichex-  depended on it®ecadeand its filmProcesg(color, black &
amines a similar approach in the context of learning Bayesiawhite, technicolor etc.) and that tlixecadedepended on its
networks, we propose an iterative approach that starts witfilm Process It also learned an interesting dependency com-
some structure (possibly one where each attribute does nbtning all three relations: thRole-Typelayed by an actor in
have any parents), and select the d&i$,(X.A) based on a movie depends on tl@enderof the actor and th&enreof
this structure. We then apply the search procedure and getthe movie.
new, higher scoring, structure. We choose new potential par The second database, an artificial genetic database similar
ents based on this new structure and reiterate, stopping wheo the example in this paper, presented quite different-chal
no further improvement is made. lenges. For one thing, the recursive nature of this domain
It remains only to discuss the choicedt, (X.A) at the  allows arbitrarily complex joins to be defined. In addition,
different phases. Perhaps the simplest approach is to bggin the probabilistic model in this domain is fairly subtle. Bac
settingPot; (X.A) to be the set of attributes ilf. In succes- person has three relevant attributes P~ChromosomeM-
sive phasesot, 1 (X.A) would consist of all of Pa(X.A), = Chromosomgand BloodType— all with the same domain
as well as all attributes that are relatedXovia slot chains  and all related somehow to the same attributes of the person’
of length< k. Of course, these new attributes would requiremother and father. The gold standard is the model used to
aggregation; we sidestep the issue by predefining posgible agenerate the data; the structure of that model was shown ear-
gregates for each attribute. lier in Figure 1. We trained our algorithm on datasets of var-
This scheme expands the set of potential parents at ea¢bus sizes ranging up to 800. A data set of sizeonsisted
iteration. However, it usually results in large set of peten of a family tree containing people, with an average of 0.6
tial parents. Thus, we actually use a more refined algorithnblood tests per person. We evaluated our algorithm on a test
that only adds parents ®ot, (X.A) if they seem to “add  set of size 10,000. Figure 2(b) shows the log-likelihoodef t
value” beyond P(X.A). There are several reasonable waystest set for the learned models. In most cases, our algorithm
of evaluating the additional value provided by new parentslearned a model with the correct structure, and scored well.
Some of these are discussedfmiedmaret al, 1999 inthe  However, in a small minority of cases, the algorithm gotktuc
context of learning Bayesian networks. Their results sagge in local maxima, learning a model with incorrect structure
that we should evaluate a new potential parent by measuthat scored quite poorly. This can be seen in the scattes plot
ing the change of score for the family &f. A if we add the  of Figure 2(b) which show that the median log-likelihood of
~(X.7.B) to its current parents. We then choose the highesthe learned models is quite reasonable, but there are a few
scoring of these, as well as the current parents, to be the nesutliers. Standard techniques such as random restartsecan b
set of potential parents. This approach allows us to signifiused to deal with local maxima.
cantly reduce the size of the potential parent set, andllgere
of the resulting view, while being unlikely to cause sigrafit ; ; ;
degradation in the quality of the learned model. 6 Discussion and conclusions
In this paper, we defined a new statistical learning tasknlea
5 Implementation and experimental results ing probabilistic relational models from data. We have show
We implemented our learning algorithm on top of the Post-that many of the ideas from Bayesian network learning carry

gres object-relational database management system. -All ré);/er to this new task. I;|10\|/|vever, we have also shown that it
quired counts were obtained simply through database selefS0 "a1S€S many hew chatienges.

tion queries, and cached to avoid performing the same query S¢@ling these ideas to large databases is an important issue
twice. During the search process, we created temporary mé%/e believe that this can be achieved by a closer integration

terialized views corresponding to joins between diffement with the techn_olpgy. of database systems, including indices
; gnd query optimization. Furthermore, there has been a lot of

lations, and these views were then used for computing th T . .
counts. recent work on extracting information from massive data,set
including work on finding frequently occurring combinatfon

We tested our proposed learning algorithm on two do- . - X
mains. one real aﬁd gne synthetic.g Th% two domains hav@f values for attributes. We believe that these ideas wilh he

very different characteristics. The first is a movie databas Significantly in the computation of sufficient statistics.
that contains three relationsMovie, Actor and Appears There are also several important possible extensionsgo thi

which relates actors to movies in which they played. Thework. Perhaps the most obvious one is the treatment of miss-
ing data and hidden variables. We can extend standard tech-

' Obtained frormt t p: /7w db. st anf or d. edu/ pub/ movi es/ doc. ht i niques (such as Expectation Maximization for missing data)
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Figure 2: (a) The PRM learned for the movie domain, a realdvdatabase containing about 11000 movies and 7000 actors.
(b) Learning curve showing the generalization performasicBRMs learned in the genetic domain. Theaxis shows the
databases size; theaxis shows log-likelihood of a test set of size 10,000. Fawhesample size, we show 10 independent
learning experiments. The curve shows median log-likelihof the models as a function of the sample size.
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