
CS 194-10, Fall 2011
Assignment 7

1. (15) Do Ex. 14.7 from Russell & Norvig.

2. Exponential Family (15)
[[Note: for the purposes of this question, the corresponding Wikipedia articles are off limits.]]
A probability distribution in the exponential family takes the following form:

p(x) = h(x)exp{θT T (x)−A(θ)}

where θ is called the natural parameter, h(x) and T (x) are arbitrary functions, and A(θ) provides the
required normalization.

(a) Show that the following distributions are in the exponential family by defining θ and finding
suitable h(x), T (x), and A(θ).
(i) Normal(µ, 1); (ii) Bernoulli(p); (iii) Categorical(p1, . . . , pK).

(b) A nice fact is that, given N i.i.d. observations from a distribution in the exponential family, the
maximum likelihood estimator of θ is consistent, i.e., it converges to the true value in probability
as N → ∞. Show that the ML estimate of θ is a function only of T (x), which is referred as a
sufficient statistic for θ.

(c) The function A(θ) has moment generating properties; in particular: ∂
∂θA(θ) = E[T (x)]. Demon-

strate this property for the Normal(µ, 1) distribution.

3. EM with discrete variables (10)
Consider the three-node Bayesian network X → Y → Z. The following data are and the following
data, where missing entries are marked as ’?’:

x y z
0 0 0
0 0 ?
0 1 0
1 1 1
1 ? 1
1 0 1

(a) Use the data to estimate initial parameters for this network, using maximum likelihood based
only on the observable counts in the data.

(b) Apply the EM algorithm (by hand) until convergence. In each iteration, compute the expected
value for each missing data point given the current parameters and other observed values; then
recompute the parameters from the “completed” data. Show your calculations at each step.

(c) How many iterations does EM take to converge? Will this always be the case? Explain.

4. Learning with continuous variables (15)
Consider a Bayesian network X → Y → Z where X and Z are discrete with values in {−1, 1} and Y is a
continuous vector-valued variable with values in RD. Let P (X) = [0.5, 0.5], P (Yj | X = k) ∼ N(µjk, σ2)
where the µjks and σ are unknown parameters, and P (Z = z | Y=y) = 1/(1 + exp(−zwT y)), where
w is a fixed set of D unknown weights.

(a) Given N i.i.d. observations of (X,Y, Z) write the log-likelihood and its derivative with respect to
each unknown parameter.
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(b) Consider applying EM under three different conditions: (i) X and Y are observed and Z is not;
(ii) Z and Y are observed and X is not; (iii) Y is observed and X and Z are not. Describe
qualitatively what learning task EM is solving in each case.

5. Bayes Net Inference using BayesiaLab (50)
In this exercise you will use a commercial Bayes net package to learn the car insurance network that
was discussed in lecture. The observable variables in the training set are the ones typically available
on a client application form, plus the resulting claim costs incurred by the company in three categories
(PropCost for property losses, MedCost for medical expenses, and, ILiCost for intangible liabilities).
After training, the network can be used to predict those expenses for new applications in the test set.
The same training and test sets can be used with a traditional algorithm such as decision tree learning.

(a) Download and install BayesiaLab following the instructions posted on piazza (and sent to you by
email),

(b) Open the insurance network file by BayesiaLab→Network→Open. To view the network, click on
BayesiaLab→View→Automatic Layout→Force Directed Layout.

(c) Learn conditional probabilities by clicking on BayesiaLab→Data→Associate Data Source→Text
File and select the training.csv file. Then select Structural EM algorithm for missing data.

(d) Now we have a complete generative model of the data. To do inference, click on Validation Mode
button located at the bottom left corner of the network window. Double click on some nodes to
see their probability distributions on the right. Then right click on the probabilities at the right
to assign values to some nodes (evidence), and observe how the conditional probabilities change
in other nodes. You should be able to fairly quickly find the setting of the observable variables
that maximizes the probability of the Million outcome for the cost variables; record this setting
and the corresponding probabilities.

(e) Now predict the probabilities for the cost variables for the test cases. For each of the three cost
nodes, do the following:

• Set the node as the target node by right-clicking on it.
• Supply the test data using BayesiaLab→Inference→Batch Inference and save the predictions

to another file.

(f) The true loss measure for the insurance problem is quite complicated, not only because the
company can vary the premium according to the perceived risk but also because a higher premium
is more likely to cause the applicant to go elsewhere for insurance. We will instead measure the
quality of a probabilistic prediction using the predicted log probability that the model assigns
to the correct answer. Report this value (summed over all cases and the three predictions in
each case) using twofold cross-validation on the training data, both for Bayes net training and
for decision tree learning using the code you wrote in A3. (The code may need to be modified to
return probabilities at the leaves and you may need to smooth the probabilities to avoid zeroes.)

Turn in the results from part (d), the Bayes net prediction file for part (e), and the code for calcu-
lating prediction quality as well as the cross-validation estimates in (f). Supply documentation and
explanations where appropriate. Submit your files collected together as a7.tar.gz using submit a7 as
described here.
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http://www.cs.berkeley.edu/~russell/classes/cs194/f11/assignments/a7/insurance.bif
http://www.cs.berkeley.edu/~russell/classes/cs194/f11/assignments/a7/training.csv
http://www.cs.berkeley.edu/~russell/classes/cs194/f11/assignments/a7/test.csv
http://www.cs.berkeley.edu/~russell/classes/cs194/f11/submit.html

