1. Linear neural networks

The purpose of this exercise is to reinforce your understanding of neural networks as mathematical functions that can be analyzed at a level of abstraction above their implementation as a network of computing elements. It also introduces a somewhat surprising property of multilayer linear networks with small hidden layers.

For simplicity, we will assume that the activation function is the same linear function at each node: \(g(x) = cx + d \). (The argument is the same (only messier) if we allow different \(c_i \) and \(d_i \) for each node.)

(a) The outputs of the hidden layer are
\[
H_j = g\left(\sum_k W_{k,j} I_k\right) = c \sum_k W_{k,j} I_k + d
\]
The final outputs are
\[
O_i = g\left(\sum_j W_{j,i} H_j\right) = c \left(\sum_j W_{j,i} \left(c \sum_k W_{k,j} I_k + d\right)\right) + d
\]
Now we just have to see that this is linear in the inputs:
\[
O_i = c^2 \sum_k I_k \sum_j W_{k,j} W_{j,i} + d \left(1 + c \sum_j W_{j,i}\right)
\]
Thus we can compute the same function as the two-layer network using just a one-layer perceptron that has weights \(W_{k,i} = \sum_j W_{k,j} W_{j,i} \) and an activation function \(g(x) = c^2 x + d \left(1 + c \sum_j W_{j,i}\right) \).

(b) The above reduction can be used straightforwardly to reduce an \(n \)-layer network to an \((n-1) \)-layer network. By induction, the \(n \)-layer network can be reduced to a single-layer network. Thus, linear activation functions restrict neural networks to represent only linear functions.

(c) The original network with \(n \) input and output nodes and \(h \) hidden nodes has \(2hn \) weights, whereas the “reduced” network has \(n^2 \) weights. When \(h \ll n \), the original network has far fewer weights and thus represents the i/o mapping more concisely. Such networks are known to learn much faster than the reduced network; so the idea of using linear activation functions is not without merit.

2. ML estimation of exponential model

(a) \[
L(X; b) = \prod_{i=1}^{N} \frac{1}{b} e^{-\frac{x_i}{b}} = b^{-N} e^{-\frac{1}{b} \sum_{i=1}^{N} x_i}
\]

(b) \[
l(X; b) = \log(L(X; b)) = -N \log(b) - \frac{1}{b} \sum_{i=1}^{N} x_i
\]
\[
\frac{\partial l}{\partial b}(X; b) = - \frac{N}{b} + \frac{1}{b^2} \sum_{i=1}^{N} x_i
\]
\[
\frac{\partial l}{\partial b}(X; b) = 0 \Rightarrow b = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x}
\]