
CS 194-10, Fall 2011
Assignment 4

1. Linear neural networks
The purpose of this exercise is to reinforce your understanding of neural networks as mathematical
functions that can be analyzed at a level of abstraction above their implementation as a network of
computing elements. It also introduces a somewhat surprising property of multilayer linear networks
with small hidden layers.

For simplicity, we will assume that the activation function is the same linear function at each node:
g(x) = cx + d. (The argument is the same (only messier) if we allow different ci and di for each node.)
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Now we just have to see that this is linear in the inputs:
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Thus we can compute the same function as the two-layer network using just a one-layer perceptron
that has weights Wk,i =
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(b) The above reduction can be used straightforwardly to reduce an n-layer network to an (n − 1)-
layer network. By induction, the n-layer network can be reduced to a single-layer network. Thus,
linear activation functions restrict neural networks to represent only linear functions.

(c) The original network with n input and output nodes and h hidden nodes has 2hn weights, whereas
the “reduced” network has n2 weights. When h � n, the original network has far fewer weights
and thus represents the i/o mapping more concisely. Such networks are known to learn much
faster than the reduced network; so the idea of using linear activation functions is not without
merit.

2. ML estimation of exponential model
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