
CS 194-10, Fall 2011
Assignment 4

1. Linear neural networks
The purpose of this exercise is to reinforce your understanding of neural networks as mathematical
functions that can be analyzed at a level of abstraction above their implementation as a network of
computing elements. It also introduces a somewhat surprising property of multilayer linear networks
with small hidden layers.

For simplicity, we will assume that the activation function is the same linear function at each node:
g(x) = cx + d. (The argument is the same (only messier) if we allow different ci and di for each node.)

(a) The outputs of the hidden layer are

Hj = g

(∑
k

Wk,jIk

)
= c

∑
k

Wk,jIk + d

The final outputs are

Oi = g

∑
j

Wj,iHj

 = c

∑
j

Wj,i

(
c
∑

k

Wk,jIk + d

)+ d

Now we just have to see that this is linear in the inputs:

Oi = c2
∑

k

Ik

∑
j

Wk,jWj,i + d

1 + c
∑

j

Wj,i


Thus we can compute the same function as the two-layer network using just a one-layer perceptron
that has weights Wk,i =

∑
j Wk,jWj,i and an activation function g(x) = c2x + d

(
1 + c

∑
j Wj,i

)
.

(b) The above reduction can be used straightforwardly to reduce an n-layer network to an (n − 1)-
layer network. By induction, the n-layer network can be reduced to a single-layer network. Thus,
linear activation functions restrict neural networks to represent only linear functions.

(c) The original network with n input and output nodes and h hidden nodes has 2hn weights, whereas
the “reduced” network has n2 weights. When h � n, the original network has far fewer weights
and thus represents the i/o mapping more concisely. Such networks are known to learn much
faster than the reduced network; so the idea of using linear activation functions is not without
merit.

2. ML estimation of exponential model

(a) L(X; b) =
N∏

i=1

1
b
e−

xi
b = b−Ne−

1
b

PN
i=1 xi

(b) l(X; b) = log(L(X; b)) = −N log(b)− 1
b

N∑
i=1

xi

∂l

∂b
(X; b) = −N

b
+

1
b2

N∑
i=1

xi

(c)
∂l

∂b
(X; b) = 0⇒ b =

1
N

N∑
i=1

xi = x̄

1


