CS 194-10, Fall 2011 Assignment 4

1. Linear neural networks

The purpose of this exercise is to reinforce your understanding of neural networks as mathematical functions that can be analyzed at a level of abstraction above their implementation as a network of computing elements. It also introduces a somewhat surprising property of multilayer linear networks with small hidden layers.
For simplicity, we will assume that the activation function is the same linear function at each node: $g(x)=c x+d$. (The argument is the same (only messier) if we allow different c_{i} and d_{i} for each node.)
(a) The outputs of the hidden layer are

$$
H_{j}=g\left(\sum_{k} W_{k, j} I_{k}\right)=c \sum_{k} W_{k, j} I_{k}+d
$$

The final outputs are

$$
O_{i}=g\left(\sum_{j} W_{j, i} H_{j}\right)=c\left(\sum_{j} W_{j, i}\left(c \sum_{k} W_{k, j} I_{k}+d\right)\right)+d
$$

Now we just have to see that this is linear in the inputs:

$$
O_{i}=c^{2} \sum_{k} I_{k} \sum_{j} W_{k, j} W_{j, i}+d\left(1+c \sum_{j} W_{j, i}\right)
$$

Thus we can compute the same function as the two-layer network using just a one-layer perceptron that has weights $W_{k, i}=\sum_{j} W_{k, j} W_{j, i}$ and an activation function $g(x)=c^{2} x+d\left(1+c \sum_{j} W_{j, i}\right)$.
(b) The above reduction can be used straightforwardly to reduce an n-layer network to an $(n-1)$ layer network. By induction, the n-layer network can be reduced to a single-layer network. Thus, linear activation functions restrict neural networks to represent only linear functions.
(c) The original network with n input and output nodes and h hidden nodes has $2 h n$ weights, whereas the "reduced" network has n^{2} weights. When $h \ll n$, the original network has far fewer weights and thus represents the i/o mapping more concisely. Such networks are known to learn much faster than the reduced network; so the idea of using linear activation functions is not without merit.
2. ML estimation of exponential model

$$
\begin{align*}
& L(\mathbf{X} ; b)=\prod_{i=1}^{N} \frac{1}{b} e^{-\frac{x_{i}}{b}}=b^{-N} e^{-\frac{1}{b} \sum_{i=1}^{N} x_{i}} \tag{a}\\
& l(\mathbf{X} ; b)=\log (L(\mathbf{X} ; b))=-N \log (b)-\frac{1}{b} \sum_{i=1}^{N} x_{i} \tag{b}\\
& \frac{\partial l}{\partial b}(\mathbf{X} ; b)=-\frac{N}{b}+\frac{1}{b^{2}} \sum_{i=1}^{N} x_{i} \\
& \frac{\partial l}{\partial b}(\mathbf{X} ; b)=0 \Rightarrow b=\frac{1}{N} \sum_{i=1}^{N} x_{i}=\bar{x} \tag{c}
\end{align*}
$$

