VISION

Chapter 24

Outline

- \diamond Perception generally
- \Diamond Image formation
- \diamondsuit Early vision
- $\diamondsuit \ 2D \to 3D$
- \diamondsuit Object recognition

Stimulus (percept) S, World W

S = g(W)

E.g., g = "graphics." Can we do vision as inverse graphics?

 $W = g^{-1}(S)$

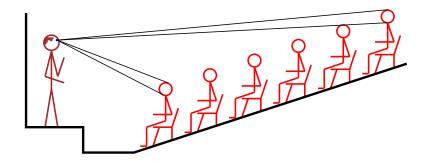
Stimulus (percept) S, World W

S = g(W)

E.g., g = "graphics." Can we do vision as inverse graphics?

 $W = g^{-1}(S)$

Problem: massive ambiguity!



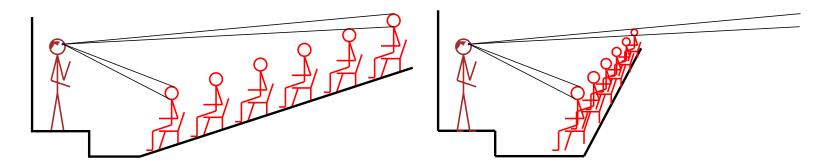
Stimulus (percept) S, World W

S = g(W)

E.g., g = "graphics." Can we do vision as inverse graphics?

 $W = g^{-1}(S)$

Problem: massive ambiguity!



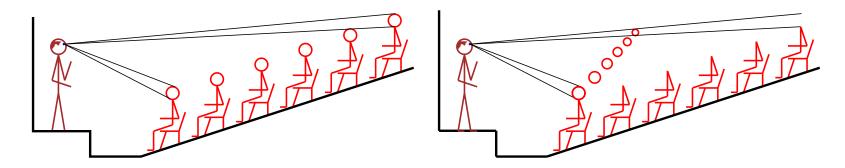
Stimulus (percept) S, World W

S = g(W)

E.g., g = "graphics." Can we do vision as inverse graphics?

 $W = g^{-1}(S)$

Problem: massive ambiguity!



Better approaches

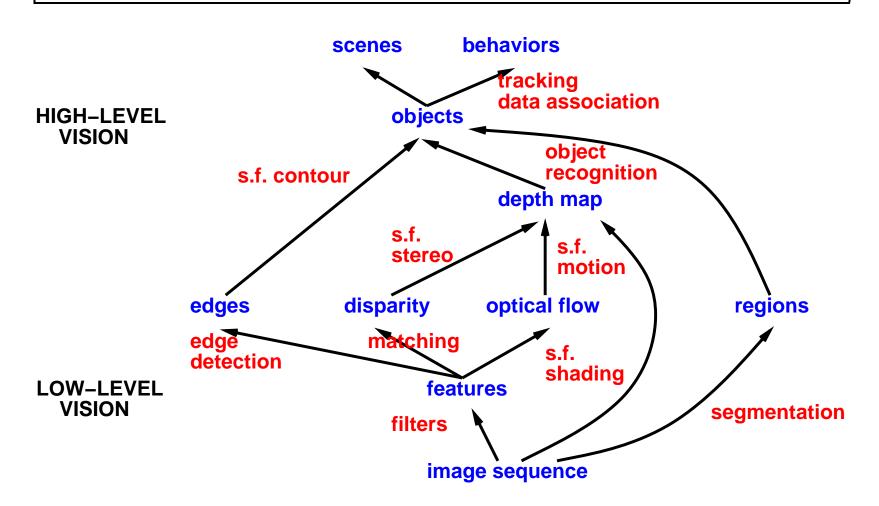
Bayesian inference of world configurations:

$$P(W|S) = \alpha \underbrace{P(S|W)}_{\text{"graphics"}} \underbrace{P(W)}_{\text{"prior knowledge"}}$$

Better still: no need to recover exact scene! Just extract information needed for

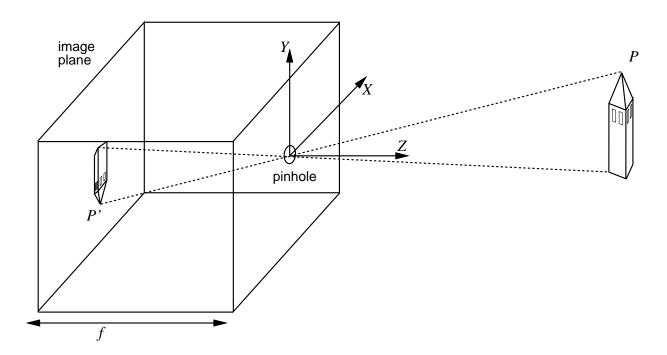
- navigation
- manipulation
- recognition/identification

Vision "subsystems"



Vision requires combining multiple cues

Image formation



P is a point in the scene, with coordinates (X,Y,Z) P^\prime is its image on the image plane, with coordinates (x,y,z)

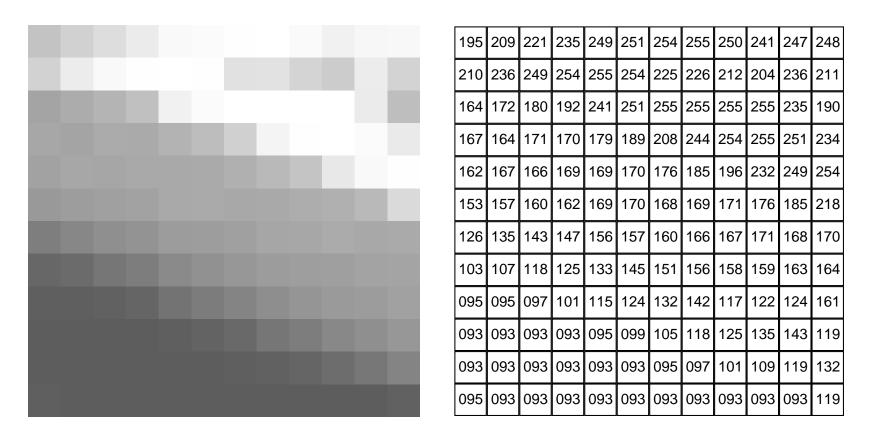
$$x = \frac{-fX}{Z}, \ y = \frac{-fY}{Z}$$

by similar triangles. Scale/distance is indeterminate!

Images



Images contd.

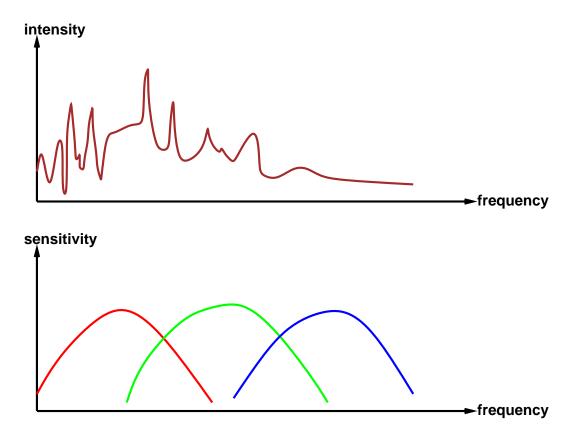


I(x,y,t) is the intensity at (x,y) at time t

CCD camera \approx 1,000,000 pixels; human eyes \approx 240,000,000 pixels i.e., 0.25 terabits/sec

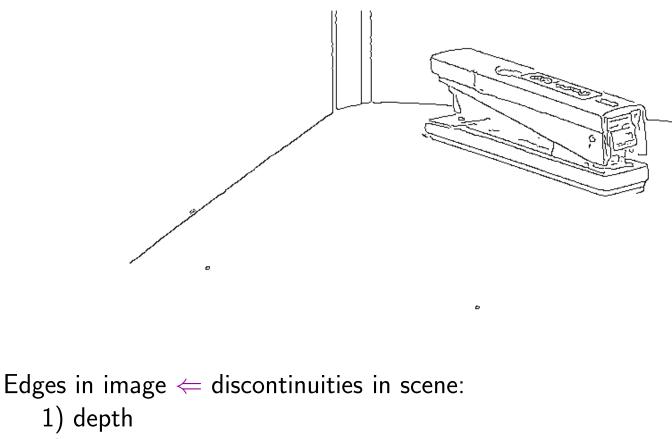
Color vision

Intensity varies with frequency \rightarrow infinite-dimensional signal



Human eye has three types of color-sensitive cells; each integrates the signal \Rightarrow 3-element vector intensity

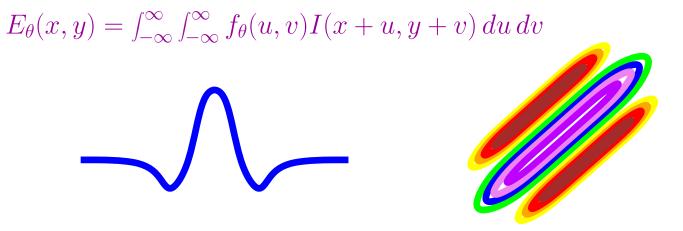
Edge detection



- 2) surface orientation
- 3) reflectance (surface markings)
- 4) illumination (shadows, etc.)

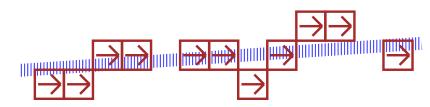
Edge detection contd.

1) Convolve image with spatially oriented filters (possibly multi-scale)



2) Label above-threshold pixels with edge orientation

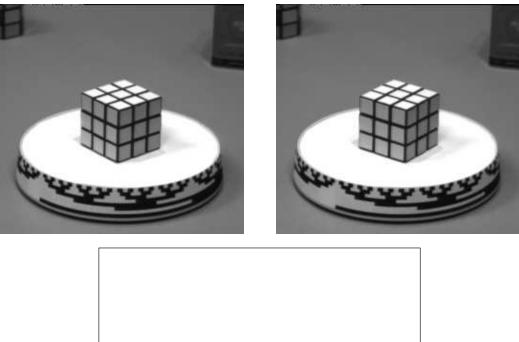
3) Infer "clean" line segments by combining edge pixels with same orientation

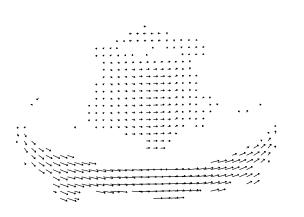


Cues from prior knowledge

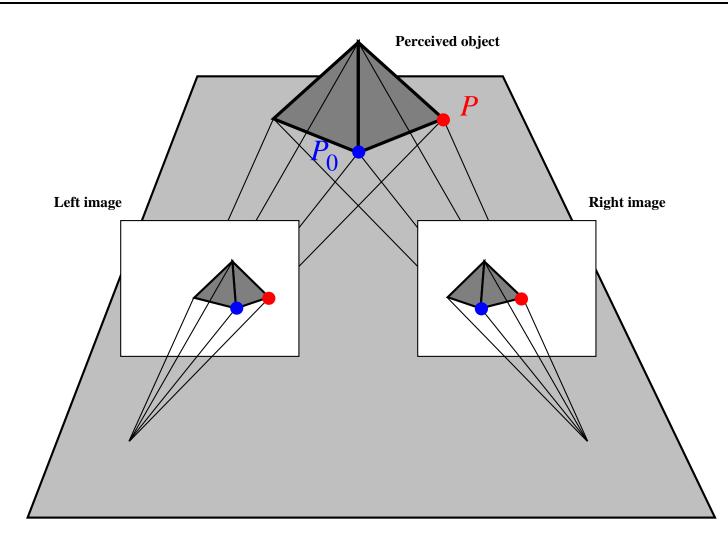
Shape from	Assumes
motion	rigid bodies, continuous motion
stereo	solid, contiguous, non-repeating bodies
texture	uniform texture
shading	uniform reflectance
contour	minimum curvature

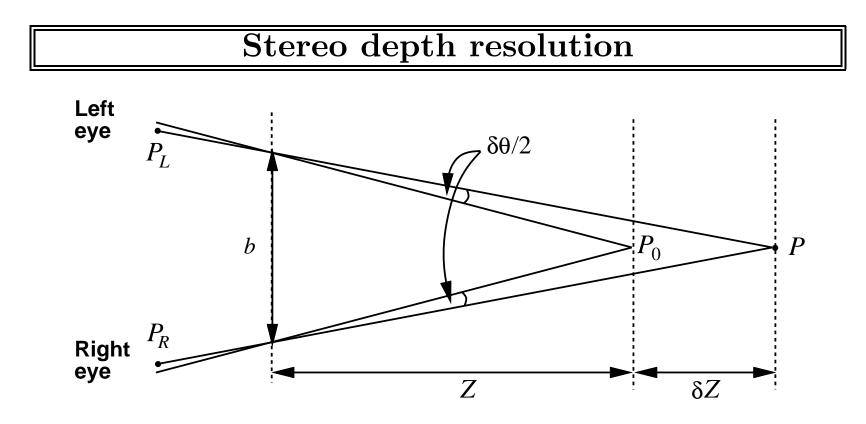
Motion





Stereo



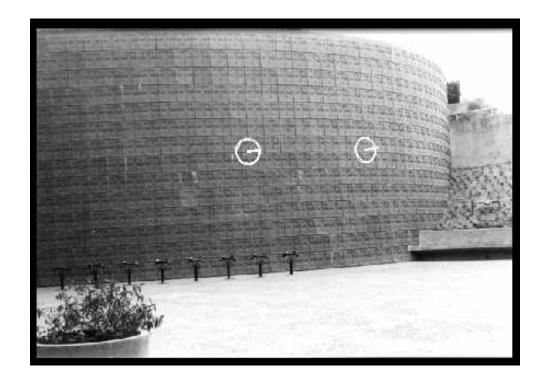


Simple geometry: $\delta Z = Z^2 \delta \theta / (-b)$ Physiology: $\delta \theta \ge 2.42 \times 10^{-5}$ radians, b = 6cm

 $\begin{array}{ll} Z = 30 \mathrm{cm} & \Rightarrow & \delta Z \approx 0.04 \mathrm{mm} \\ Z = 30 \mathrm{m} & \Rightarrow & \delta Z \approx 40 \mathrm{cm} \end{array}$

Large baseline \Rightarrow better resolution!

Texture

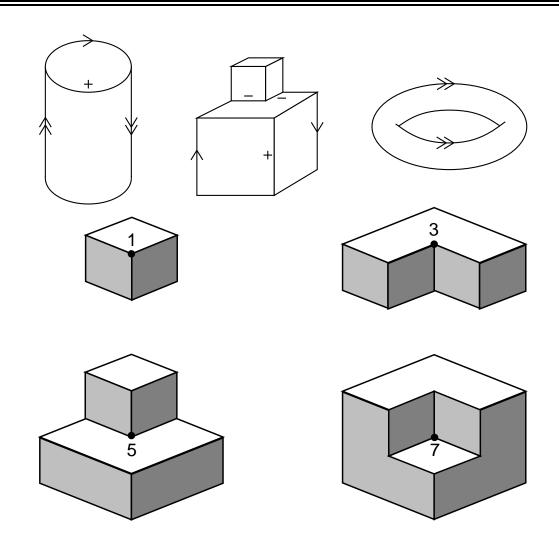


Idea: assume actual texture is uniform, compute surface shape that would produce this distortion

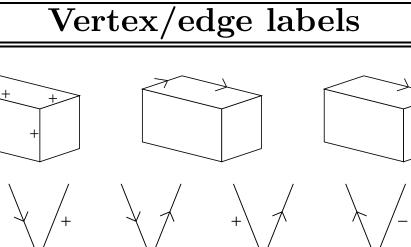
Similar idea works for shading—assume uniform reflectance, etc.—but interreflections give nonlocal computation of perceived intensity

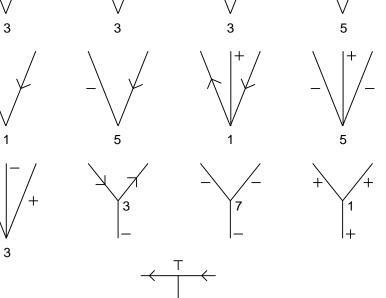
 \Rightarrow hollows seem shallower than they really are

Edge and vertex types

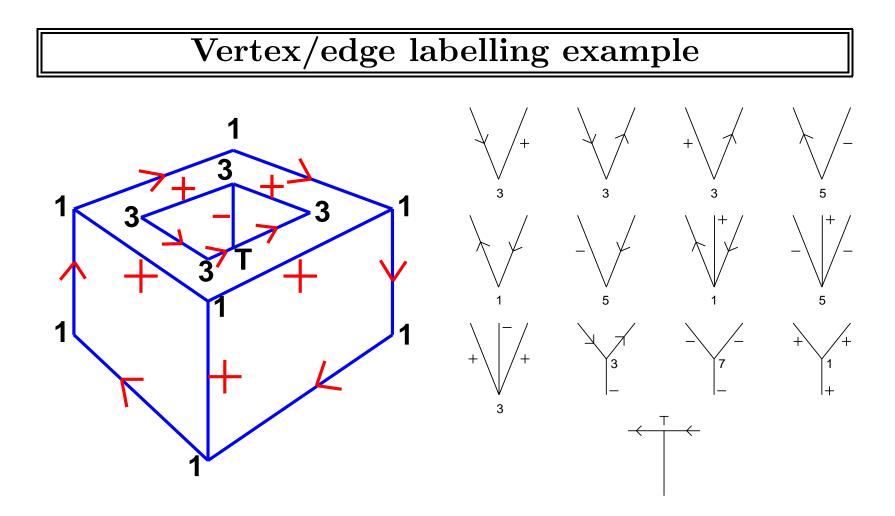


Assume world of solid polyhedral objects with trihedral vertices





+



CSP: variables = edges, constraints = possible node configurations

Object recognition

Simple idea:

- extract 3-D shapes from image
- match against "shape library"

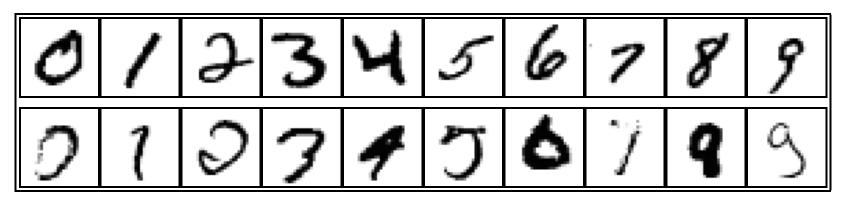
Problems:

- extracting curved surfaces from image
- representing shape of extracted object
- representing shape and variability of library object classes
- improper segmentation, occlusion
- unknown illumination, shadows, markings, noise, complexity, etc.

Approaches:

- index into library by measuring invariant properties of objects
- alignment of image feature with projected library object feature
- match image against multiple stored views (aspects) of library object
- machine learning methods based on image statistics

Handwritten digit recognition



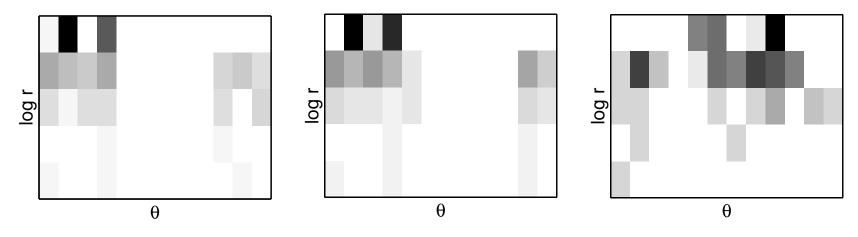
3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error LeNet: 768-192-30-10 unit MLP = 0.9% error

Shape-context matching

Basic idea: convert **shape** (a relational concept) into a fixed set of **attributes** using the **spatial context** of each of a fixed set of points on the surface of the shape.

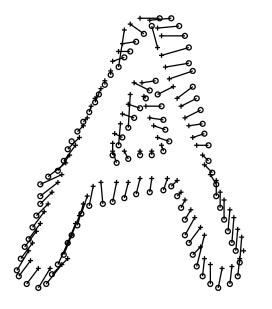
Shape-context matching contd.

Each point is described by its local context histogram (number of points falling into each log-polar grid bin)



Shape-context matching contd.

Determine total distance between shapes by sum of distances for corresponding points under best matching



Simple nearest-neighbor learning gives 0.63% error rate on NIST digit data

Summary

Vision is hard—noise, ambiguity, complexity

Prior knowledge is essential to constrain the problem

Need to combine multiple cues: motion, contour, shading, texture, stereo

"Library" object representation: shape vs. aspects

Image/object matching: features, lines, regions, etc.