Vision

Chapter 24
\diamond Perception generally
\diamond Image formation
\diamond Early vision
$\diamond 2 \mathrm{D} \rightarrow 3 \mathrm{D}$
\diamond Object recognition

Perception generally

Stimulus (percept) S, World W

$$
S=g(W)
$$

E.g., $g=$ "graphics." Can we do vision as inverse graphics?

$$
W=g^{-1}(S)
$$

Perception generally

Stimulus (percept) S, World W

$$
S=g(W)
$$

E.g., $g=$ "graphics." Can we do vision as inverse graphics?

$$
W=g^{-1}(S)
$$

Problem: massive ambiguity!

Perception generally

Stimulus (percept) S, World W

$$
S=g(W)
$$

E.g., $g=$ "graphics." Can we do vision as inverse graphics?

$$
W=g^{-1}(S)
$$

Problem: massive ambiguity!

Perception generally

Stimulus (percept) S, World W

$$
S=g(W)
$$

E.g., $g=$ "graphics." Can we do vision as inverse graphics?

$$
W=g^{-1}(S)
$$

Problem: massive ambiguity!

Better approaches

Bayesian inference of world configurations:

$$
P(W \mid S)=\alpha \underbrace{P(S \mid W)}_{\text {"graphics" }} \quad{ }_{\text {"prior knowledge" }}^{P(W)}
$$

Better still: no need to recover exact scene!
Just extract information needed for

- navigation
- manipulation
- recognition/identification

Vision requires combining multiple cues

Image formation

P is a point in the scene, with coordinates (X, Y, Z)
P^{\prime} is its image on the image plane, with coordinates (x, y, z)

$$
x=\frac{-f X}{Z}, y=\frac{-f Y}{Z}
$$

by similar triangles. Scale/distance is indeterminate!

Images contd.

195	209	221	235	249	251	254	255	250	241	247	248
210	236	249	254	255	254	225	226	212	204	236	211
164	172	180	192	241	251	255	255	255	255	235	190
167	164	171	170	179	189	208	244	254	255	251	234
162	167	166	169	169	170	176	185	196	232	249	254
153	157	160	162	169	170	168	169	171	176	185	218
126	135	143	147	156	157	160	166	167	171	168	170
103	107	118	125	133	145	151	156	158	159	163	164
095	095	097	101	115	124	132	142	117	122	124	161
093	093	093	093	095	099	105	118	125	135	143	119
093	093	093	093	093	093	095	097	101	109	119	132
095	093	093	093	093	093	093	093	093	093	093	119

$I(x, y, t)$ is the intensity at (x, y) at time t
CCD camera $\approx 1,000,000$ pixels; human eyes $\approx 240,000,000$ pixels i.e., 0.25 terabits/sec

Color vision

Intensity varies with frequency \rightarrow infinite-dimensional signal

Human eye has three types of color-sensitive cells; each integrates the signal \Rightarrow 3-element vector intensity

Edge detection

Edges in image \Leftarrow discontinuities in scene:

1) depth
2) surface orientation
3) reflectance (surface markings)
4) illumination (shadows, etc.)

Edge detection contd.

1) Convolve image with spatially oriented filters (possibly multi-scale)

$$
E_{\theta}(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(u, v) I(x+u, y+v) d u d v
$$

2) Label above-threshold pixels with edge orientation
3) Infer "clean" line segments by combining edge pixels with same orientation

Cues from prior knowledge

Shape from...	Assumes
motion	rigid bodies, continuous motion
stereo	solid, contiguous, non-repeating bodies
texture	uniform texture
shading	uniform reflectance
contour	minimum curvature

Stereo

Stereo depth resolution

Simple geometry: $\delta Z=Z^{2} \delta \theta /(-b)$
Physiology: $\delta \theta \geq 2.42 \times 10^{-5}$ radians, $b=6 \mathrm{~cm}$
$Z=30 \mathrm{~cm} \Rightarrow \delta Z \approx 0.04 \mathrm{~mm}$
$Z=30 \mathrm{~m} \Rightarrow \delta Z \approx 40 \mathrm{~cm}$
Large baseline \Rightarrow better resolution!

Texture

Idea: assume actual texture is uniform, compute surface shape that would produce this distortion

Similar idea works for shading-assume uniform reflectance, etc.-but interreflections give nonlocal computation of perceived intensity
\Rightarrow hollows seem shallower than they really are

Edge and vertex types

Assume world of solid polyhedral objects with trihedral vertices

Vertex/edge labels

CSP: variables $=$ edges, constraints $=$ possible node configurations

Object recognition

Simple idea:

- extract 3-D shapes from image
- match against "shape library"

Problems:

- extracting curved surfaces from image
- representing shape of extracted object
- representing shape and variability of library object classes
- improper segmentation, occlusion
- unknown illumination, shadows, markings, noise, complexity, etc.

Approaches:

- index into library by measuring invariant properties of objects
- alignment of image feature with projected library object feature
- match image against multiple stored views (aspects) of library object
- machine learning methods based on image statistics

Handwritten digit recognition

3 -nearest-neighbor $=2.4 \%$ error
400-300-10 unit MLP $=1.6 \%$ error
LeNet: 768-192-30-10 unit MLP $=0.9 \%$ error

Shape-context matching

Basic idea: convert shape (a relational concept) into a fixed set of attributes using the spatial context of each of a fixed set of points on the surface of the shape.

Shape-context matching contd.

Each point is described by its local context histogram (number of points falling into each log-polar grid bin)

Shape-context matching contd.

Determine total distance between shapes by sum of distances for corresponding points under best matching

Simple nearest-neighbor learning gives 0.63% error rate on NIST digit data

Summary

Vision is hard—noise, ambiguity, complexity
Prior knowledge is essential to constrain the problem
Need to combine multiple cues: motion, contour, shading, texture, stereo
"Library" object representation: shape vs. aspects
Image/object matching: features, lines, regions, etc.

