VISION

Chapter 24

Perception generally

Stimulus (percept) S, World W

$$S = g(W)$$

E.g., g= "graphics." Can we do vision as inverse graphics?

$$W = g^{-1}(S)$$

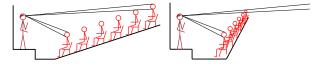
Problem: massive ambiguity!

Chapter 24 1

Outline

- ♦ Perception generally
- \Diamond Image formation
- ♦ Early vision
- $\diamondsuit \ 2D \to 3D$
- ♦ Object recognition

Perception generally


Stimulus (percept) S, World W

$$S = g(W)$$

E.g., g= "graphics." Can we do vision as inverse graphics?

$$W = g^{-1}(S)$$

Problem: massive ambiguity!

Chapter 24 2 Chapter

Perception generally

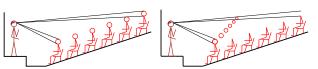
Stimulus (percept) S, World W

$$S = g(W)$$

E.g., g = "graphics." Can we do vision as inverse graphics?

$$W=g^{-1}(S)$$

Perception generally


Stimulus (percept) S, World W

$$S = g(W)$$

E.g., g = "graphics." Can we do vision as inverse graphics?

$$W = g^{-1}(S)$$

Problem: massive ambiguity!

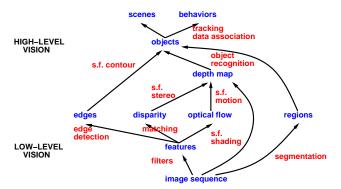
Better approaches

Bayesian inference of world configurations:

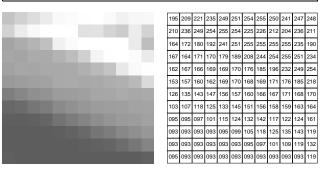
$$P(W|S) = \alpha \underbrace{P(S|W)}_{\text{"graphics"}} \underbrace{P(W)}_{\text{"prior knowledge"}}$$

Better still: no need to recover exact scene! Just extract information needed for

- navigation
- manipulation
- recognition/identification


Images

Chapter 24 10


Chapter 24 9

Vision "subsystems"

Vision requires combining multiple cues

Images contd.

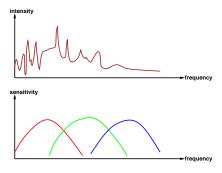
I(x,y,t) is the intensity at (x,y) at time t

CCD camera \approx 1,000,000 pixels; human eyes \approx 240,000,000 pixels i.e., 0.25 terabits/sec

Chapter 24 11

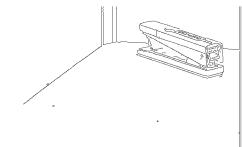
Chapter 24 12

Image formation


P is a point in the scene, with coordinates (X,Y,Z) P^\prime is its image on the image plane, with coordinates (x,y,z)

$$x = \frac{-fX}{Z}, \ y = \frac{-fY}{Z}$$

by similar triangles. Scale/distance is indeterminate!

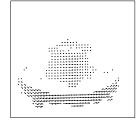

Color vision

Intensity varies with frequency \rightarrow infinite-dimensional signal

Human eye has three types of color-sensitive cells; each integrates the signal ⇒ 3-element vector intensity

Edge detection

Edges in image \Leftarrow discontinuities in scene:

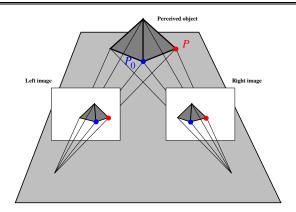

- 1) depth
- 2) surface orientation
- 3) reflectance (surface markings)
- 4) illumination (shadows, etc.)

Chapter 24 13

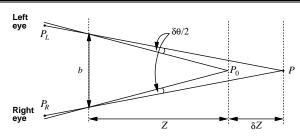
Motion

Edge detection contd.

1) Convolve image with spatially oriented filters (possibly multi-scale)


 $E_{\theta}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(u,v) I(x+u,y+v) \, du \, dv$

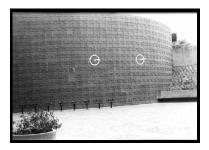
- 2) Label above-threshold pixels with edge orientation
- 3) Infer "clean" line segments by combining edge pixels with same orientation $\frac{1}{2}$


Stereo

Cues from prior knowledge

Shape from	Assumes
motion	rigid bodies, continuous motion
stereo	solid, contiguous, non-repeating bodies
texture	uniform texture
shading	uniform reflectance
contour	minimum curvature

Stereo depth resolution

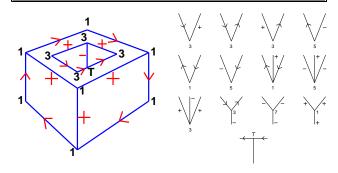


Simple geometry: $\delta Z=Z^2\delta\theta/(-b)$ Physiology: $\delta\theta\geq 2.42\times 10^{-5}$ radians, $b=6{\rm cm}$

 $Z\!=\!30\mathrm{cm}\ \Rightarrow\ \delta Z\approx 0.04\mathrm{mm}$ $Z = 30 \mathrm{m} \ \Rightarrow \ \delta Z \approx 40 \mathrm{cm}$

Large baseline \Rightarrow better resolution!

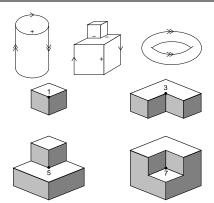
Texture


Idea: assume actual texture is uniform, compute surface shape that would produce this distortion

Similar idea works for shading—assume uniform reflectance, etc.—but interreflections give nonlocal computation of perceived intensity

 \Rightarrow hollows seem shallower than they really are

Chapter 24 1


Vertex/edge labelling example

 ${\sf CSP: variables} = {\sf edges, constraints} = {\sf possible node configurations}$

Chapter 24 22

Edge and vertex types

Assume world of solid polyhedral objects with trihedral vertices

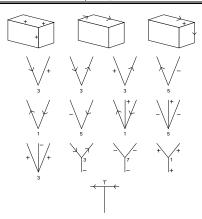
Chapter 24 20

Object recognition

Simple idea:

- extract 3-D shapes from image
- match against "shape library"

Problems:


- extracting curved surfaces from image
- representing shape of extracted object
- representing shape and variability of library object classes
- improper segmentation, occlusion
- unknown illumination, shadows, markings, noise, complexity, etc.

Approaches:

- index into library by measuring invariant properties of objects
- alignment of image feature with projected library object feature
- match image against multiple stored views (aspects) of library object
- machine learning methods based on image statistics

Chapter 24 23

Vertex/edge labels

Handwritten digit recognition

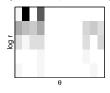
3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error

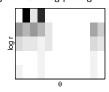
LeNet: 768-192-30-10 unit MLP = 0.9% error

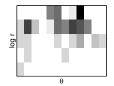
Chapter 24 21 Chapter 24 21

Shape-context matching

Basic idea: convert shape (a relational concept) into a fixed set of attributes using the spatial context of each of a fixed set of points on the surface of the shape.






Chapter 24 2

Shape-context matching contd.

Each point is described by its local context histogram (number of points falling into each log-polar grid bin)

Chapter 24

Chapter 24 27

Shape-context matching contd.

Determine total distance between shapes by sum of distances for corresponding points under best matching $\,$

Simple nearest-neighbor learning gives 0.63% error rate on NIST digit data

Summary

Vision is hard—noise, ambiguity, complexity

Prior knowledge is essential to constrain the problem

Need to combine multiple cues: motion, contour, shading, texture, stereo

 $\hbox{``Library'' object representation: shape vs. aspects}\\$

Image/object matching: features, lines, regions, etc.

Chapter 24 2