Neural networks

Chapter 20, Section 5

Outline

\diamond Brains
\diamond Neural networks
\diamond Perceptrons
\diamond Multilayer perceptrons
\diamond Applications of neural networks

Brains

10^{11} neurons of >20 types, 10^{14} synapses, $1 \mathrm{~ms}-10 \mathrm{~ms}$ cycle time Signals are noisy "spike trains" of electrical potential

McCulloch-Pitts "unit"

Output is a "squashed" linear function of the inputs:

$$
a_{i} \leftarrow g\left(i n_{i}\right)=g\left(\sum_{j} W_{j, i} a_{j}\right)
$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

(a)

(b)
(a) is a step function or threshold function
(b) is a sigmoid function $1 /\left(1+e^{-x}\right)$

Changing the bias weight $W_{0, i}$ moves the threshold location

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented

Network structures

Feed-forward networks:

- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state
Recurrent networks:

- Hopfield networks have symmetric weights ($W_{i, j}=W_{j, i}$) $g(x)=\operatorname{sign}(x), a_{i}= \pm 1$; holographic associative memory
- Boltzmann machines use stochastic activation functions, $\approx \mathrm{MCMC}$ in Bayes nets
- recurrent neural nets have directed cycles with delays \Rightarrow have internal state (like flip-flops), can oscillate etc.

Feed-forward example

Feed-forward network $=$ a parameterized family of nonlinear functions:

$$
\begin{aligned}
a_{5} & =g\left(W_{3,5} \cdot a_{3}+W_{4,5} \cdot a_{4}\right) \\
& =g\left(W_{3,5} \cdot g\left(W_{1,3} \cdot a_{1}+W_{2,3} \cdot a_{2}\right)+W_{4,5} \cdot g\left(W_{1,4} \cdot a_{1}+W_{2,4} \cdot a_{2}\right)\right)
\end{aligned}
$$

Adjusting weights changes the function: do learning this way!

Single-layer perceptrons

Output units all operate separately-no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

Expressiveness of perceptrons

Consider a perceptron with $g=$ step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:
$\sum_{j} W_{j} x_{j}>0$ or $\mathbf{W} \cdot \mathbf{x}>0$

(a) x_{1} and x_{2}

(b) x_{1} or x_{2}

(c) x_{1} xor x_{2}

Minsky \& Papert (1969) pricked the neural network balloon

Perceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input \mathbf{x} and true output y is

$$
E=\frac{1}{2} E r r^{2} \equiv \frac{1}{2}\left(y-h_{\mathbf{W}}(\mathbf{x})\right)^{2},
$$

Perform optimization search by gradient descent:

$$
\begin{aligned}
\frac{\partial E}{\partial W_{j}} & =\operatorname{Err} \times \frac{\partial \operatorname{Err}}{\partial W_{j}}=\operatorname{Err} \times \frac{\partial}{\partial W_{j}}\left(y-g\left(\sum_{j=0}^{n} W_{j} x_{j}\right)\right) \\
& =-\operatorname{Err} \times g^{\prime}(i n) \times x_{j}
\end{aligned}
$$

Simple weight update rule:

$$
W_{j} \leftarrow W_{j}+\alpha \times \operatorname{Err} \times g^{\prime}(i n) \times x_{j}
$$

E.g., + ve error \Rightarrow increase network output
\Rightarrow increase weights on + ve inputs, decrease on -ve inputs

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set

Perceptron learns majority function easily, DTL is hopeless
DTL learns restaurant function easily, perceptron cannot represent it

Multilayer perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Expressiveness of MLPs

All continuous functions $w / 2$ layers, all functions $w / 3$ layers

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

Back-propagation learning

Output layer: same as for single-layer perceptron,

$$
W_{j, i} \leftarrow W_{j, i}+\alpha \times a_{j} \times \Delta_{i}
$$

where $\Delta_{i}=E r r_{i} \times g^{\prime}\left(i n_{i}\right)$
Hidden layer: back-propagate the error from the output layer:

$$
\Delta_{j}=g^{\prime}\left(i n_{j}\right) \sum_{i} W_{j, i} \Delta_{i} .
$$

Update rule for weights in hidden layer:

$$
W_{k, j} \leftarrow W_{k, j}+\alpha \times a_{k} \times \Delta_{j} .
$$

(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation derivation

The squared error on a single example is defined as

$$
E=\frac{1}{2} \sum_{i}\left(y_{i}-a_{i}\right)^{2},
$$

where the sum is over the nodes in the output layer.

$$
\begin{aligned}
\frac{\partial E}{\partial W_{j, i}} & =-\left(y_{i}-a_{i}\right) \frac{\partial a_{i}}{\partial W_{j, i}}=-\left(y_{i}-a_{i}\right) \frac{\partial g\left(i n_{i}\right)}{\partial W_{j, i}} \\
& =-\left(y_{i}-a_{i}\right) g^{\prime}\left(i n_{i}\right) \frac{\partial i n_{i}}{\partial W_{j, i}}=-\left(y_{i}-a_{i}\right) g^{\prime}\left(i n_{i}\right) \frac{\partial}{\partial W_{j, i}}\left(\sum_{j} W_{j, i} a_{j}\right) \\
& =-\left(y_{i}-a_{i}\right) g^{\prime}\left(i n_{i}\right) a_{j}=-a_{j} \Delta_{i}
\end{aligned}
$$

Back-propagation derivation contd.

$$
\begin{aligned}
\frac{\partial E}{\partial W_{k, j}} & =-\sum_{i}\left(y_{i}-a_{i}\right) \frac{\partial a_{i}}{\partial W_{k, j}}=-\sum_{i}\left(y_{i}-a_{i}\right) \frac{\partial g\left(i n_{i}\right)}{\partial W_{k, j}} \\
& =-\sum_{i}\left(y_{i}-a_{i}\right) g^{\prime}\left(i n_{i}\right) \frac{\partial i n_{i}}{\partial W_{k, j}}=-\sum_{i} \Delta_{i} \frac{\partial}{\partial W_{k, j}}\left(\sum_{j} W_{j, i} a_{j}\right) \\
& =-\sum_{i} \Delta_{i} W_{j, i} \frac{\partial a_{j}}{\partial W_{k, j}}=-\sum_{i} \Delta_{i} W_{j, i} \frac{\partial g\left(i n_{j}\right)}{\partial W_{k, j}} \\
& =-\sum_{i} \Delta_{i} W_{j, i} g^{\prime}\left(i n_{j}\right) \frac{\partial i n_{j}}{\partial W_{k, j}} \\
& =-\sum_{i} \Delta_{i} W_{j, i} g^{\prime}\left(i n_{j}\right) \frac{\partial}{\partial W_{k, j}}\left(\sum_{k} W_{k, j} a_{k}\right) \\
& =-\sum_{i} \Delta_{i} W_{j, i} g^{\prime}\left(i n_{j}\right) a_{k}=-a_{k} \Delta_{j}
\end{aligned}
$$

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply
Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

MLPs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily

Handwritten digit recognition

3 -nearest-neighbor $=2.4 \%$ error
400-300-10 unit MLP $=1.6 \%$ error
LeNet: 768-192-30-10 unit MLP $=0.9 \%$ error
Current best (kernel machines, vision algorithms) $\approx 0.6 \%$ error

Summary

Most brains have lots of neurons; each neuron \approx linear-threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive
Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.
Engineering, cognitive modelling, and neural system modelling subfields have largely diverged

