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Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential
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McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)
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A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location
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Implementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = ± 1; holographic associative memory

– Boltzmann machines use stochastic activation functions,
≈ MCMC in Bayes nets

– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.
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Feed-forward example
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Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!
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Single-layer perceptrons

Input
Units Units
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Perceptron output

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

(a) x1 and x2

1

0
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(c) x1 xor x2

?
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Minsky & Papert (1969) pricked the neural network balloon
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj

= Err ×
∂Err

∂Wj

= Err ×
∂

∂Wj

(

y − g(Σn

j = 0
Wjxj)

)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layer: back-propagate the error from the output layer:

∆j = g′(inj)
∑

i
Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ← Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i

= −(yi − ai)
∂ai

∂Wj,i

= −(yi − ai)
∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i

= −(yi − ai)g
′(in i)

∂

∂Wj,i







∑

j
Wj,iaj







= −(yi − ai)g
′(in i)aj = −aj∆i
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Back-propagation derivation contd.

∂E

∂Wk,j

= −
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∑
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∂aj
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= −
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∑
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Chapter 20, Section 5 17

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error
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Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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