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Brains |

10" neurons of > 20 types, 10'* synapses, 1Ims—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Synapse

Dendrite

Synapses

Cell body or Soma
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I McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; — gling) = g (3;W),a;)

Bias Weight

a0=1\
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Input Input  Activation Output
Links Function Function ~ OUPUt Links

a;= g(in;)

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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I Activation functions

g(in) g(in;)

+1

+1

in; |
(a) (b)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1+ ¢ ")

Changing the bias weight 11, ; moves the threshold location
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I Implementing logical functions

Wy=1.5 Wy= 0.5
WooT W
/ /
Wy=1 W,=1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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I Network structures |

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (1, ; = ;)
g(x)=sign(z), a; = + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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I Feed-forward example |
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Feed-forward network = a parameterized family of nonlinear functions:
as = | '(l;;ﬁ'”'[ﬁ'([;)
cgWhig-ar+ Wag-ag) + Wis - gWia-ar+ Way-as))

Adjusting weights changes the function: do learning this way!
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I Single-layer perceptrons |
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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I Expressiveness of perceptrons |

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Z,lf’i/"j,’l,', >0 or W-x>0

Xy X1
1 ® 1 o
?
0 0
0 1 % 0 1 x
(a) x; and x, (b) x) or x, (c) x| xor x,

Minsky & Papert (1969) pricked the neural network balloon
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I Perceptron learning |

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is

1., 1 .
E=_ B’ = S hw(x))?
Perform optimization search by gradient descent:
oF OFErr 0
= Err = Err y — g _ W,
0”’/ X ()U'/ T X ()Uv/ (!/ _(]( j=0 .II./)>

= —Err x ¢'(in) x x;
Simple weight update rule:
W; — W;+ax Errxg'(in) x x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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I Perceptron learning contd. |

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it
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I Multilayer perceptrons |

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a;
Wi

Hidden units a;
Wi

Input units a;
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I Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5 14

I Back-propagation learning |

Output layer: same as for single-layer perceptron,
Wii—Wii+axaj x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = g¢'(inj) % WA .

Update rule for weights in hidden layer:
Wij—Wij+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)
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I Back-propagation derivation

The squared error on a single example is defined as
1 .
E= 52(1}/ - (11)2

where the sum is over the nodes in the output layer.
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= 7(.1/1 - a’)'q/(m/)al’lf/j = 7(1/1 - a/)ﬁ/(znl)m (z/: U/.l.za/
= —(y; —a))g'(iny)a; = —a;A\;
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I Back-propagation derivation contd.
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I Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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I Back-propagation learning contd. |

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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I Handwritten digit recognition |
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3-nearest-neighbor = 2.4% error
400-300~10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Mo

Current best (kernel machines, vision algorithms) ~ 0.6% error
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[ Summary |

Most brains have lots of neurons; each neuron ~ linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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