
Neural networks

Chapter 20, Section 5

Chapter 20, Section 5 1

Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer perceptrons

♦ Applications of neural networks

Chapter 20, Section 5 2

Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 20, Section 5 3

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 20, Section 5 5

Implementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5 6



Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = ± 1; holographic associative memory

– Boltzmann machines use stochastic activation functions,
≈ MCMC in Bayes nets

– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.

Chapter 20, Section 5 7

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

Single-layer perceptrons

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Chapter 20, Section 5 9

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Minsky & Papert (1969) pricked the neural network balloon

Chapter 20, Section 5 10

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj

= Err ×
∂Err

∂Wj

= Err ×
∂

∂Wj

(

y − g(Σn

j = 0
Wjxj)

)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n 

co
rr

ec
t o

n 
te

st
 s

et

Training set size - MAJORITY on 11 inputs

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n 

co
rr

ec
t o

n 
te

st
 s

et

Training set size - RESTAURANT data

Perceptron
Decision tree

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Chapter 20, Section 5 12



Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 20, Section 5 13

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5 14

Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layer: back-propagate the error from the output layer:

∆j = g′(inj)
∑

i
Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ← Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 20, Section 5 15

Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i

= −(yi − ai)
∂ai

∂Wj,i

= −(yi − ai)
∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i

= −(yi − ai)g
′(in i)

∂

∂Wj,i







∑

j
Wj,iaj







= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 20, Section 5 16

Back-propagation derivation contd.

∂E

∂Wk,j

= −
∑

i
(yi − ai)

∂ai

∂Wk,j

= −
∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j

= −
∑

i
∆i

∂

∂Wk,j







∑

j
Wj,iaj







= −
∑

i
∆iWj,i

∂aj

∂Wk,j

= −
∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j







∑

k
Wk,jak







= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j

Chapter 20, Section 5 17

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n 

tr
ai

ni
ng

 s
et

Number of epochs

Typical problems: slow convergence, local minima

Chapter 20, Section 5 18



Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n 

co
rr

ec
t o

n 
te

st
 s

et

Training set size - RESTAURANT data

Decision tree
Multilayer network

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Chapter 20, Section 5 19

Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Chapter 20, Section 5 20

Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

Chapter 20, Section 5 21


