RATIONAL DECISIONS

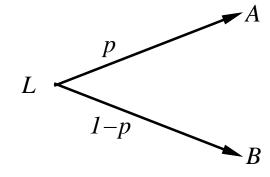
Chapter 16

Outline

- ♦ Rational preferences
- ♦ Utilities
- \Diamond Money
- ♦ Multiattribute utilities
- ♦ Decision networks
- ♦ Value of information

Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes



Lottery
$$L = [p, A; (1 - p), B]$$

Notation:

 $A \succ B$ A preferred to B

 $A \sim B$ indifference between A and B

 $A \gtrsim B$ not preferred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints.

Rational preferences \Rightarrow

behavior describable as maximization of expected utility

Constraints:

Orderability

$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

Transitivity

$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$

Continuity

$$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$$

Substitutability

$$A \sim B \implies [p, A; 1 - p, C] \sim [p, B; 1 - p, C]$$

Monotonicity

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

Rational preferences contd.

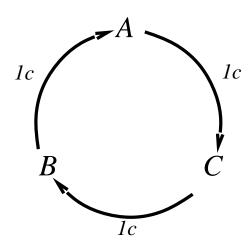
Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C



Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function U such that

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

MEU principle:

Choose the action that maximizes expected utility

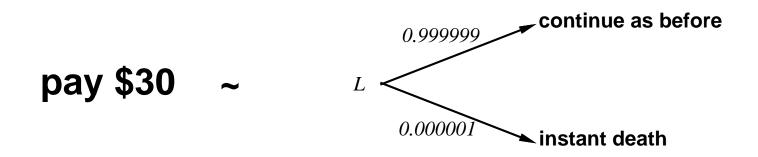
Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has "best possible prize" u_{\top} with probability p "worst possible catastrophe" u_{\perp} with probability (1-p) adjust lottery probability p until $A \sim L_p$



Utility scales

Normalized utilities: $u_{\rm T}=1.0$, $u_{\rm \perp}=0.0$

Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is **invariant** w.r.t. +ve linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

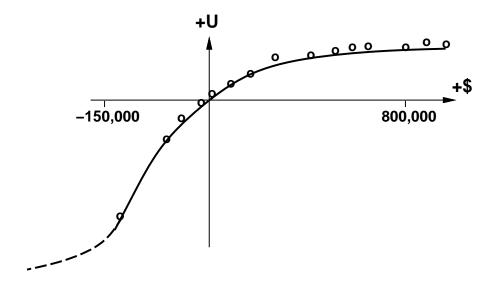
Money

Money does **not** behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

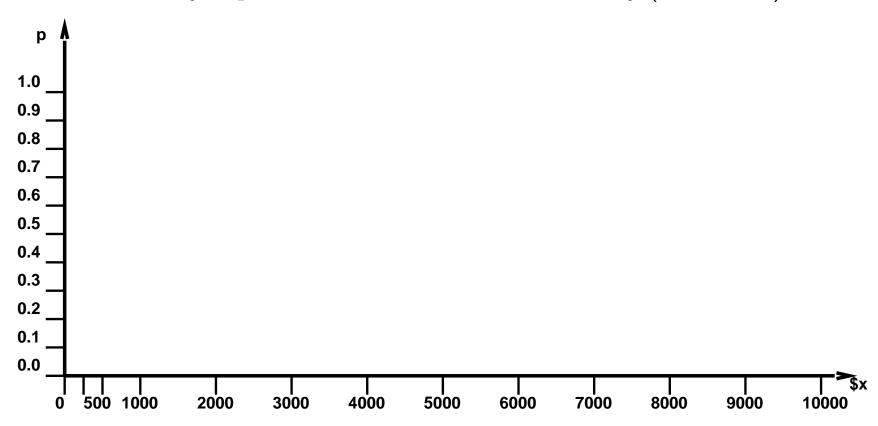
Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p,\$M;\ (1-p),\$0]$ for large M?

Typical empirical data, extrapolated with risk-prone behavior:



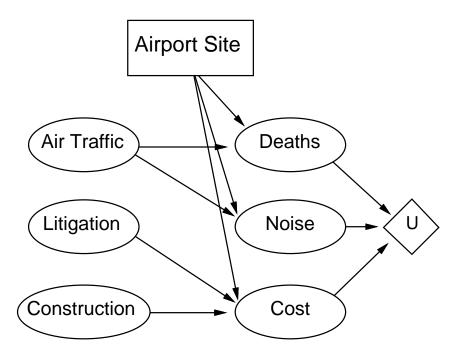
Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)



Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making



Algorithm:

For each value of action node compute expected value of utility node given action, evidence Return MEU action

Multiattribute utility

How can we handle utility functions of many variables $X_1 ... X_n$? E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from preference behaviour?

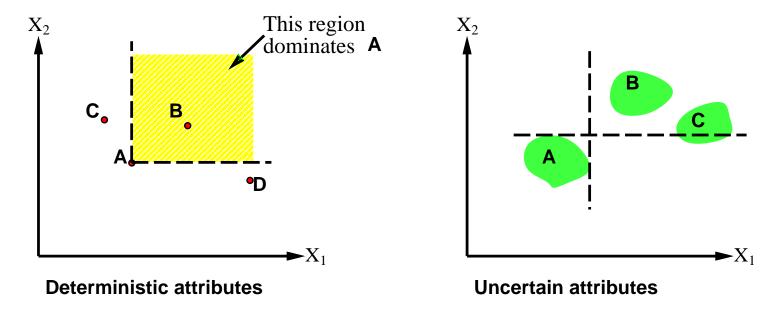
Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$

Idea 2: identify various types of **independence** in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$

Strict dominance

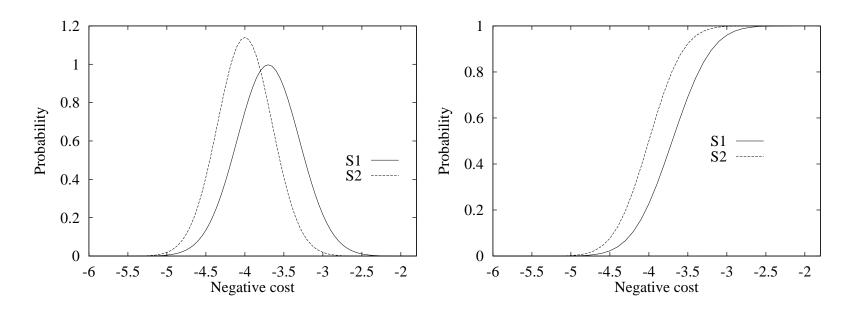
Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff $\forall i \ X_i(B) \geq X_i(A)$ (and hence $U(B) \geq U(A)$)



Strict dominance seldom holds in practice

Stochastic dominance



Distribution p_1 stochastically dominates distribution p_2 iff $\forall t \int_{-\infty}^t p_1(x) dx \leq \int_{-\infty}^t p_2(t) dt$

If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

$$\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$$

Multiattribute case: stochastic dominance on all attributes \Rightarrow optimal

Stochastic dominance contd.

Stochastic dominance can often be determined without exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city S_1 is closer to the city than S_2 $\Rightarrow S_1$ stochastically dominates S_2 on cost

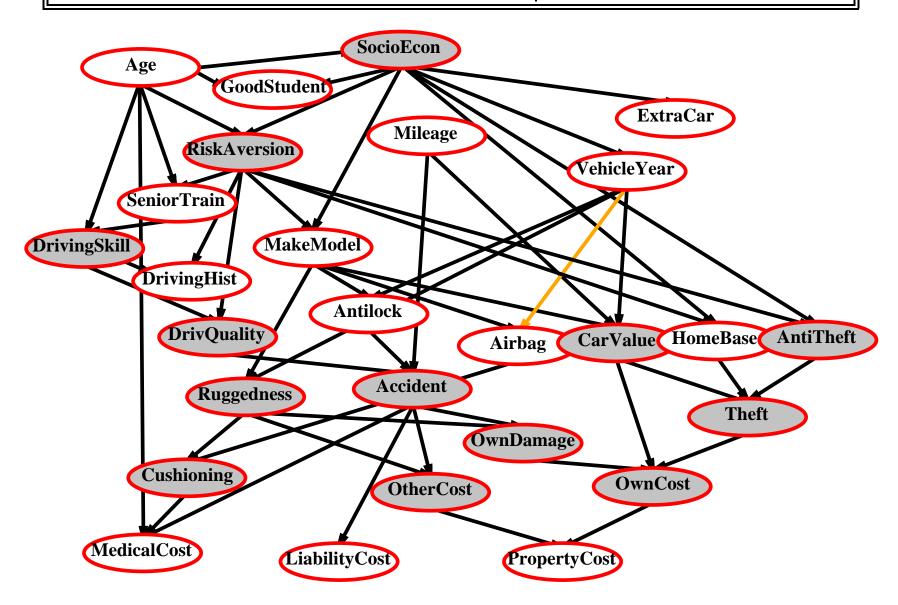
E.g., injury increases with collision speed

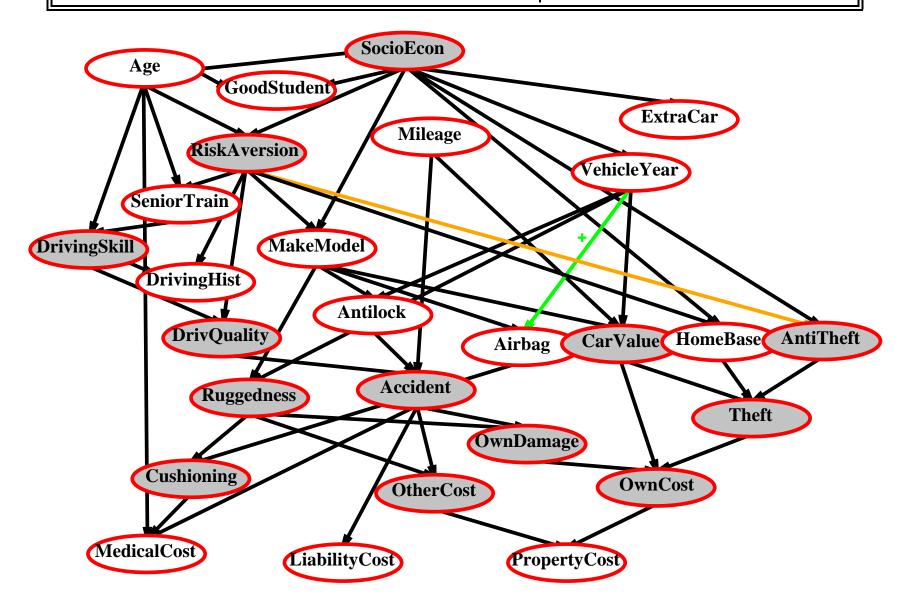
Can annotate belief networks with stochastic dominance information:

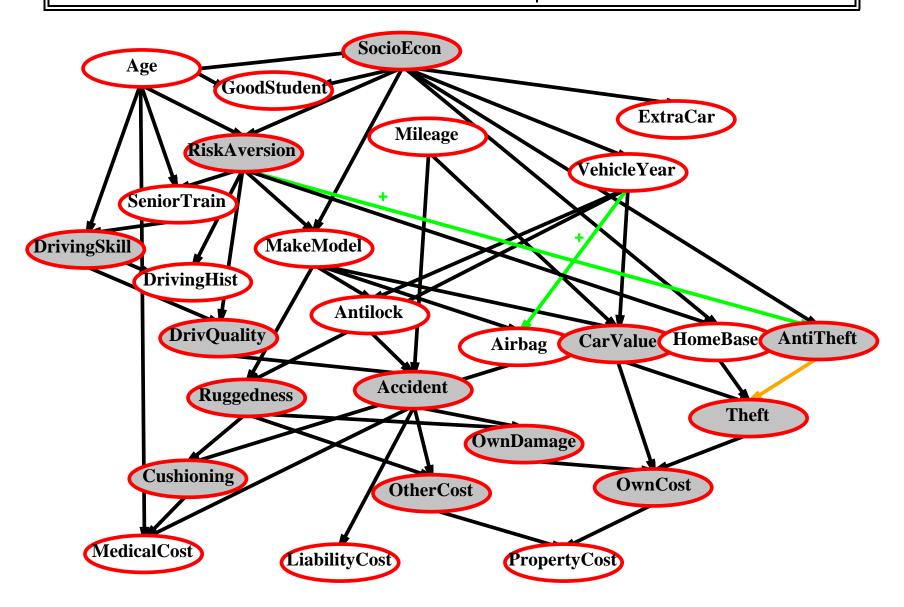
 $X \xrightarrow{+} Y$ (X positively influences Y) means that

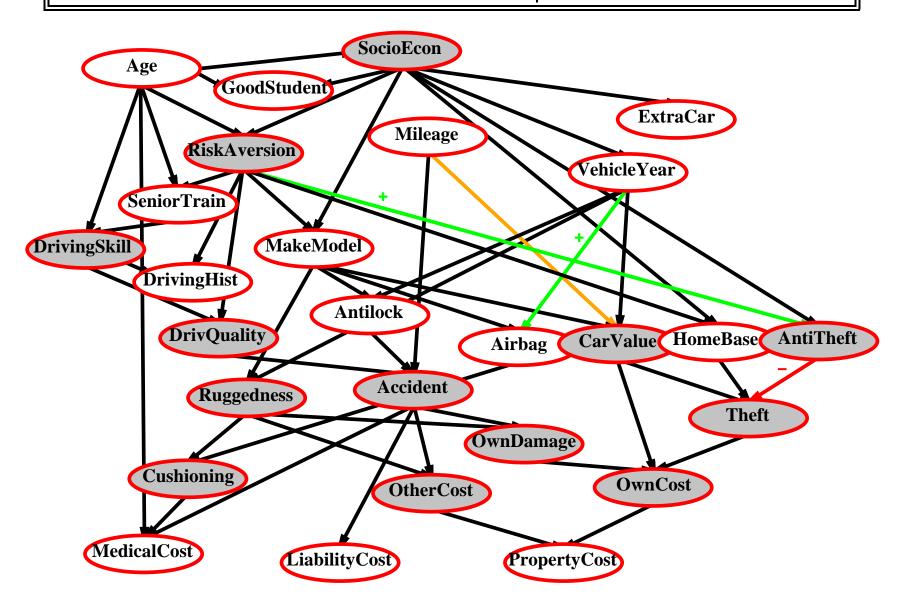
For every value z of Y's other parents Z

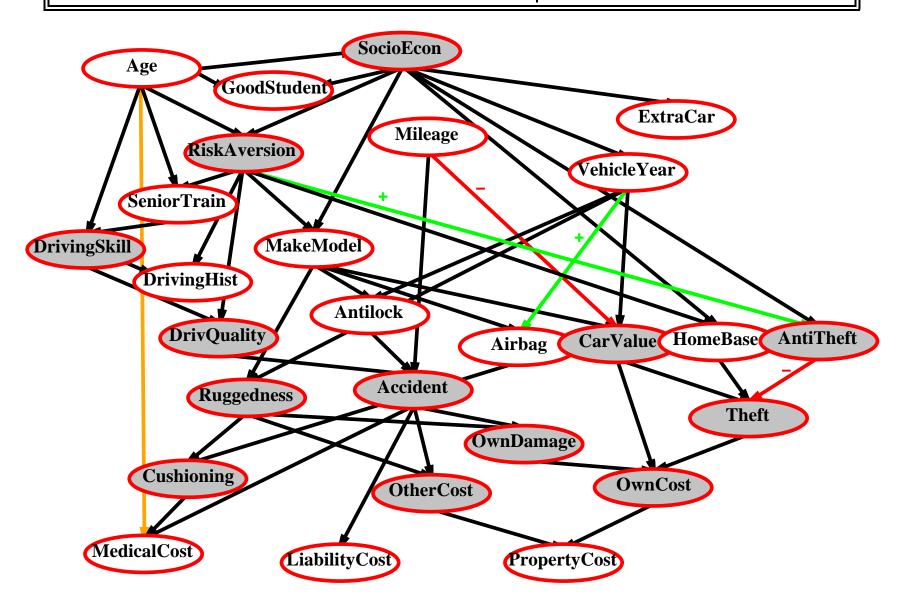
 $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$

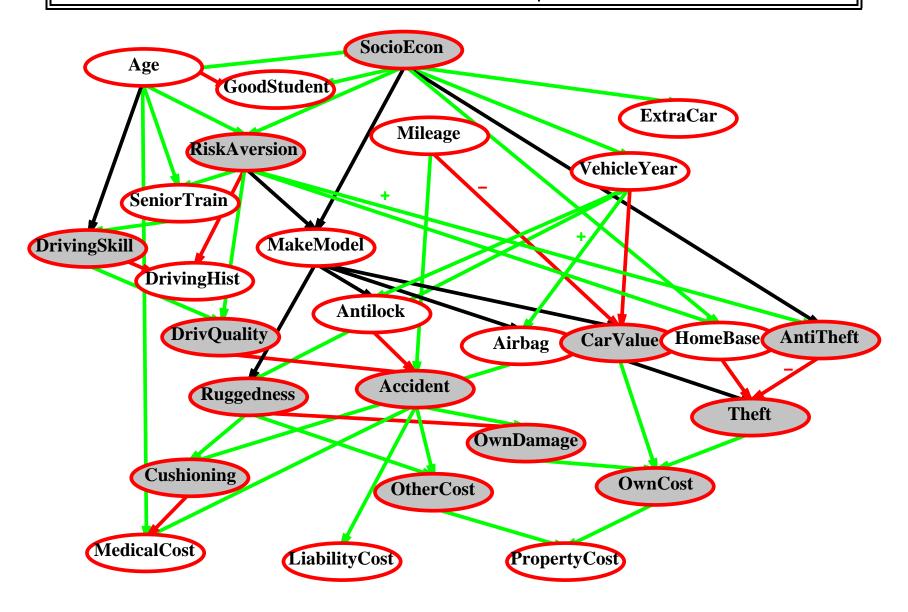












Preference structure: Deterministic

```
X_1 and X_2 preferentially independent of X_3 iff preference between \langle x_1, x_2, x_3 \rangle and \langle x_1', x_2', x_3 \rangle does not depend on x_3
```

```
E.g., \langle Noise, Cost, Safety \rangle: \langle 20,000 \text{ suffer}, \$4.6 \text{ billion}, 0.06 \text{ deaths/mpm} \rangle vs. \langle 70,000 \text{ suffer}, \$4.2 \text{ billion}, 0.06 \text{ deaths/mpm} \rangle
```

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I. $\Rightarrow \exists$ additive value function:

$$V(S) = \sum_{i} V_i(X_i(S))$$

Hence assess n single-attribute functions; often a good approximation

Preference structure: Stochastic

Need to consider preferences over lotteries:

X is utility-independent of Y iff preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement

 $\Rightarrow \exists$ multiplicative utility function:

$$U = k_1U_1 + k_2U_2 + k_3U_3 + k_1k_2U_1U_2 + k_2k_3U_2U_3 + k_3k_1U_3U_1 + k_1k_2k_3U_1U_2U_3$$

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of information

Idea: compute value of acquiring each possible piece of evidence Can be done directly from decision network

Example: buying oil drilling rights Two blocks A and B, exactly one has oil, worth k Prior probabilities 0.5 each, mutually exclusive Current price of each block is k/2 "Consultant" offers accurate survey of A. Fair price?

Solution: compute expected value of information

= expected value of best action given the information minus expected value of best action without information

Survey may say "oil in A" or "no oil in A", prob. 0.5 each (given!)

=
$$[0.5 \times \text{ value of "buy A" given "oil in A"}]$$

+ $0.5 \times \text{ value of "buy B" given "no oil in A"}]$
- 0
= $(0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$

General formula

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values:

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_j) \geq 0$$

Nonadditive—consider, e.g., obtaining E_j twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

$$VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E, E_j}(E_k) = VPI_E(E_k) + VPI_{E, E_k}(E_j)$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal

 \Rightarrow evidence-gathering becomes a **sequential** decision problem

Qualitative behaviors

- a) Choice is obvious, information worth little
- b) Choice is nonobvious, information worth a lot
- c) Choice is nonobvious, information worth little

