Temporal probability models

Chapter 15, Sections 1-5

Outline

\diamond Time and uncertainty
\diamond Inference: filtering, prediction, smoothing
\diamond Hidden Markov models
\diamond Kalman filters (a brief mention)
\diamond Dynamic Bayesian networks
\diamond Particle filtering

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step
$\mathbf{X}_{t}=$ set of unobservable state variables at time t e.g., BloodSugar ${ }_{t}$, StomachContentst, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time t e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$

This assumes discrete time; step size depends on problem
Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: \mathbf{X}_{t} depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order

Second-order

Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
Stationary process: transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all t

Example

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressure ${ }_{t}$

Example: robot motion.
Augment position and velocity with Battery $_{t}$

Inference tasks

Filtering: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ belief state-input to the decision process of a rational agent

Prediction: $\mathbf{P}\left(\mathbf{X}_{t+k} \mid \mathbf{e}_{1: t}\right)$ for $k>0$ evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ for $0 \leq k<t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max _{\mathbf{x}_{1: t}} P\left(\mathbf{x}_{1: t} \mid \mathbf{e}_{1: t}\right)$ speech recognition, decoding with a noisy channel

Filtering

Aim: devise a recursive state estimation algorithm:

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right)
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

I.e., prediction + estimation. Prediction by summing out \mathbf{X}_{t} :

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

$\mathbf{f}_{1: t+1}=\operatorname{FORWARD}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
Time and space constant (independent of t)

Filtering example

Divide evidence $\mathbf{e}_{1: t}$ into $\mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}$:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

Backward message computed by a backwards recursion:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!
Most likely path to each x_{t+1}
$=$ most likely path to some \mathbf{x}_{t} plus one more step

$$
\begin{aligned}
& \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, \mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right) \\
& =\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)\right)
\end{aligned}
$$

Identical to filtering, except $f_{1: t}$ replaced by

$$
\mathbf{m}_{1: t}=\max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)
$$

I.e., $\mathbf{m}_{1: t}(i)$ gives the probability of the most likely path to state i.

Update has sum replaced by max, giving the Viterbi algorithm:

$$
\mathbf{m}_{1: t+1}=\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \mathbf{m}_{1: t}\right)
$$

Viterbi example

\mathbf{X}_{t} is a single, discrete variable (usually E_{t} is too)
Domain of X_{t} is $\{1, \ldots, S\}$
Transition matrix $\mathbf{T}_{i j}=P\left(X_{t}=j \mid X_{t-1}=i\right)$, e.g., $\left(\begin{array}{cc}0.7 & 0.3 \\ 0.3 & 0.7\end{array}\right)$
Sensor matrix O_{t} for each time step, diagonal elements $P\left(e_{t} \mid X_{t}=i\right)$
e.g., with $U_{1}=$ true, $\mathbf{O}_{1}=\left(\begin{array}{cc}0.9 & 0 \\ 0 & 0.2\end{array}\right)$

Forward and backward messages as column vectors:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{b}_{k+1: t} & =\mathbf{T O}_{k+1} \mathbf{b}_{k+2: t}
\end{aligned}
$$

Forward-backward algorithm needs time $O\left(S^{2} t\right)$ and space $O(S t)$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\alpha \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1: t+1} & =\mathbf{f}_{1: t}
\end{aligned}
$$

Algorithm: forward pass computes \mathbf{f}_{t}, backward pass does $\mathbf{f}_{i}, \mathbf{b}_{i}$

Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying- $\mathbf{X}_{t}=X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$.

Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then prediction

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)=\int_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) d \mathbf{x}_{t}
$$

is Gaussian. If $\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then the updated distribution

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
$$

is Gaussian
Hence $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is multivariate Gaussian $N\left(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right)$ for all t
General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \rightarrow \infty$

Simple 1-D example

Gaussian random walk on X-axis, s.d. σ_{x}, sensor s.d. σ_{z}

$$
\mu_{t+1}=\frac{\left(\sigma_{t}^{2}+\sigma_{x}^{2}\right) z_{t+1}+\sigma_{z}^{2} \mu_{t}}{\sigma_{t}^{2}+\sigma_{x}^{2}+\sigma_{z}^{2}} \quad \sigma_{t+1}^{2}=\frac{\left(\sigma_{t}^{2}+\sigma_{x}^{2}\right) \sigma_{z}^{2}}{\sigma_{t}^{2}+\sigma_{x}^{2}+\sigma_{z}^{2}}
$$

General Kalman update

Transition and sensor models:

$$
\begin{aligned}
P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) & =N\left(\mathbf{F}_{t}, \boldsymbol{\Sigma}_{x}\right)\left(\mathbf{x}_{t+1}\right) \\
P\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) & =N\left(\mathbf{H} \mathbf{x}_{t}, \boldsymbol{\Sigma}_{z}\right)\left(\mathbf{z}_{t}\right)
\end{aligned}
$$

F is the matrix for the transition; Σ_{x} the transition noise covariance
H is the matrix for the sensors; Σ_{z} the sensor noise covariance
Filter computes the following update:

$$
\begin{aligned}
& \boldsymbol{\mu}_{t+1}=\mathbf{F} \boldsymbol{\mu}_{t}+\mathbf{K}_{t+1}\left(\mathbf{z}_{t+1}-\mathbf{H F} \boldsymbol{\mu}_{t}\right) \\
& \boldsymbol{\Sigma}_{t+1}=\left(\mathbf{I}-\mathbf{K}_{t+1}\right)\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right)
\end{aligned}
$$

where $\mathbf{K}_{t+1}=\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right) \mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right) \mathbf{H}^{\top}+\boldsymbol{\Sigma}_{z}\right)^{-1}$
is the Kalman gain matrix
Σ_{t} and \mathbf{K}_{t} are independent of observation sequence, so compute offline

2-D tracking example: smoothing

Where it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around $\mathbf{x}_{t}=\boldsymbol{\mu}_{t}$ Fails if systems is locally unsmooth

Dynamic Bayesian networks

$\mathbf{X}_{t}, \mathbf{E}_{t}$ contain arbitrarily many variables in a replicated Bayes net

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors
E.g., where are bin Laden and my keys? What's the battery charge?

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t
Rollup filtering: add slice $t+1$, "sum out" slice t using variable elimination
Largest factor is $O\left(d^{n+1}\right)$, update cost $O\left(d^{n+2}\right)$ (cf. HMM update cost $O\left(d^{2 n}\right)$)

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
\Rightarrow fraction "agreeing" falls exponentially with t
\Rightarrow number of samples required grows exponentially with t

Particle filtering

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for \mathbf{e}_{t}

Widely used for tracking nonlinear systems, esp. in vision
Also used for simultaneous localization and mapping in mobile robots
10^{5}-dimensional state space

Particle filtering contd.

Assume consistent at time $t: N\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) / N=P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)$
Propagate forward: populations of \mathbf{x}_{t+1} are

$$
N\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t}\right)=\sum_{\mathbf{x}_{t}} P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) N\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
$$

Weight samples by their likelihood for e_{t+1} :

$$
W\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=P\left(\mathbf{e}_{t+1} \mid \mathbf{x}_{t+1}\right) N\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t}\right)
$$

Resample to obtain populations proportional to W :

$$
\begin{aligned}
N\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t+1}\right) / N & =\alpha W\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha P\left(\mathbf{e}_{t+1} \mid \mathbf{x}_{t+1}\right) N\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& =\alpha P\left(\mathbf{e}_{t+1} \mid \mathbf{x}_{t+1}\right) \sum_{\mathbf{x}_{t}} P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) N\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& =\alpha^{\prime} P\left(\mathbf{e}_{t+1} \mid \mathbf{x}_{t+1}\right) \sum_{\mathbf{x}_{t}} P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& =P\left(\mathbf{x}_{t+1} \mid \mathbf{e}_{1: t+1}\right)
\end{aligned}
$$

Particle filtering performance

Approximation error of particle filtering remains bounded over time, at least empirically-theoretical analysis is difficult

Summary

Temporal models use state and sensor variables replicated over time
Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
- sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, $O\left(n^{3}\right)$ update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable
Particle filtering is a good approximate filtering algorithm for DBNs

