INFERENCE IN BAYESIAN NETWORKS

CHAPTER 14.4-5
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Outline

> Exact inference by enumeration
> Exact inference by variable elimination
> Approximate inference by stochastic simulation

> Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge =empty, Lights=on, Starts = false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=¢)P(X;|X;,E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j, m) C
=P(B,j,m)/P(j,m) .\}Z\:{C@
= aP(B, j,m)

—a Y. X, P(B,e, a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

=« 2. 2., P(B)P(e)P(a|B,e)P(jla)P(m]|a)

= aP(B) 2. P(e) 2, P(a| B, e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time
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Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value z; of X do

extend e with value x; for X

Q(z;) <« ENUMERATE-ALL(VARS[bn], )
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, €) returns a real number
if EMPTY?(vars) then return 1.0
Y« FIrST(vars)
if Y has value 7 in e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return ZyP(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with ¥V = y
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Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(mla) for each value of ¢
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
=0 P(B), P(0) %, PlalB.c) Plla) Plmla
= aP(B)X.P(e)X, (a!B,G) (J|@)fM(@)
— aP(B)S.P(c)Z,P(a|B.e) fyla) furla)
= aP(B)X.P(e)Xqfala,b,e) fi(a) frla)
= aP(B)2.P(e)fi(b,e) (sum out A)
= aP(B)fzi(b) (sum out E)
= afp(b) X frim(b)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

ipfiX oo X fe=fix oo X fiday fi X o X fro=fix o X fix fx
assuming fi,..., f; do not depend on X

Pointwise product of factors f; and f:

flxy oz, yn, e U)X folYny e oo Yky 21, - -+ 21)
= f(T1,- T YL, e Yk 2Ly - 21

E.g., fi(a,b) X fo(b,c) = f(a,b,c)
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Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1,..., X,,)

factors <« [|; vars <+« REVERSE(VARS|[bn])
for each var in vars do

factors «— [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors«— SuM-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Irrelevant variables

Consider the query P(JohnCalls|Burglary =true) e
P(Jb) = aP(b)2.P(e)2,Plalb, e)P(J|a) 2, P(m|a) \ /'
Sum over m is identically 1; M is irrelevant to the query / \

g ®

Thm 1: Y is irrelevant unless Y € Ancestors({X} UE)

Here, X = JohnClalls, E={Burglary}, and
Ancestors({ X } UE) = { Alarm, Farthquake}
so MaryClalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For P(JohnCalls|Alarm = true), both (A)
Burglary and Earthquake are irrelevant o @
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

0.5 0.5 0.5 0.5

1. AvBv C
2. CvDv-A
3. Bv Cv-D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S A
2) Compute an approximate posterior probability P

3) Show this converges to the true probability P
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X7,..., X},

X <— an event with n elements
fori = 1tondo
z; < a random sample from P(X; | parents(X;))
given the values of Parents(X;) in x
return x
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Example

C |P(SIC)
T | .10
F| .50

P(C)
50

S R[P(WI|SR)
T T| .99
T F| .90
F T| .90
F F| .01

C |P(RIC)
T| .80
F| .20
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Example

C |P(S[0)
T | 10
F| .50

P(C)
50

C [P(RIC)
T | .80
F| .20

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| .01
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(xy...xz,) = 1I'_  P(xs|parents(X;)) = P(x; ... x,)
i.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x 0.8 x0.9=0.324 = P(t, f,t,1)
Let Npg(xy...x,) be the number of samples generated for event ¢, ..., x,

Then we have

A}im Pz, ... x,) = A}im Nps(x1,...,2,)/N
= Sp5<5131,...,£€n>
= P(xy...2p)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1,....2,) ~ Pl ...x,)
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Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X]|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then
N[z] < N[2]4+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

AN

P(Rain|Sprinkler =true) = NORMALIZE((8,19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(X|e) = aNpg(X, e) (algorithm defn.)
= Nps(X,e)/Npg(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!
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Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

X, W+« WEIGHTED-SAMPLE( bn)

W(z] < W{z] + w where 1 is the value of X in x
return NORMALIZE(W |[X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X < an event with n elements: w+1
for :=1ton do
if X, has a value z; in e
then w«— w x P(X,= z; | parents(X,))
else z; < a random sample from P(X; | parents(X;))
return x, w
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Likelihood weighting example

C |P(S[O)
T| .10
F| 50

P(C)

.20

P(RIC)

.80
20

S R

T T 99
T F 90
F T 90
F F 01
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Likelihood weighting example

O

PSIC)

m -

10
.20

w=1.0x0.1

P(C)

.20

P(RIC)

.80
20

S R

T T 99
T F 90
F T 90
F F 01
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Likelihood weighting example

P(C)
50

C |P(SIC) P(RIC)
T | .10 .80
F| .50 20

S R[PWISR)
T T| 99
T F| .90
F T| .90
F F| .01

w = 1.0x0.1x0.99 = 0.099
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Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = HizlP(zZ-]parents(Zi))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z,e) = 11", P(e;|parents(E;))

Weighted sampling probability is
Sws(z,e)w(z,e)
= HizlP(ZﬂpaTents(Zi)) II_, P(e;|parents(E;))
= P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: IN[.X]|, a vector of counts over X, initially zero
7., the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to Ndo
for each Z;, in Z do
sample the value of Z; in x from P(Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] <= N[z] 4+ 1 where z is the value of X in x
return NORMALIZE(N[X])

Can also choose a variable to sample at random each time
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The Markov chain

With Sprinkler =true, WetGrass =true, there are four states:

Wander about for a while, average what you see

35
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MCMC example contd.

Estimate P(Rain|Sprinkler =true, WetGrass =true)

Sample Cloudy or Rain given its Markov blanket, repeat.

Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

AN

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of C'loudy is
Sprinkler and Rain
Markov blanket of Rain is D)
Cloudy, Sprinkler, and WetGrass

SLL TS

Probability given the Markov blanket is calculated as follows:
P(x!mb(X;)) = P(x,’i\parents(Xi))HZj€ChildT€n(Xi)P(zj\parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;|mb(X;)) won't change much (law of large numbers)
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Summary

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables
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