Inference in Bayesian networks

Chapter 14.4–5
Outline

◊ Exact inference by enumeration
◊ Exact inference by variable elimination
◊ Approximate inference by stochastic simulation
◊ Approximate inference by Markov chain Monte Carlo
Inference tasks

Simple queries: compute posterior marginal \(P(X_i|E = e) \)

 e.g., \(P(\text{NoGas}|\text{Gauge} = \text{empty, Lights} = \text{on, Starts} = \text{false}) \)

Conjunctive queries: \(P(X_i, X_j|E = e) = P(X_i|E = e)P(X_j|X_i, E = e) \)

Optimal decisions: decision networks include utility information;
 probabilistic inference required for \(P(\text{outcome}|\text{action, evidence}) \)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation.

Simple query on the burglary network:

\[P(B|j,m) = \frac{P(B,j,m)}{P(j,m)} = \alpha P(B,j,m) = \alpha \sum_e \sum_a P(B,e,a,j,m) \]

Rewrite full joint entries using product of CPT entries:

\[P(B|j,m) = \alpha \sum_e \sum_a P(B)P(e)P(a|B,e)P(j|a)P(m|a) \]

Recursive depth-first enumeration: \(O(n) \) space, \(O(d^n) \) time
Enumerationalgorithm

function **Enumeration-Ask**(X, e, bn) returns a distribution over X

inputs: X, the query variable
 e, observed values for variables E
 bn, a Bayesian network with variables $\{X\} \cup E \cup Y$

$Q(X) \leftarrow$ a distribution over X, initially empty

for each value x_i of X do
 extend e with value x_i for X
 $Q(x_i) \leftarrow$ **Enumerate-All**(VARS[bn], e)

return **Normalize**(Q(X))

function **Enumerate-All**(vars, e) returns a real number

if $\text{Empty?}(vars)$ then return 1.0

$Y \leftarrow$ **First**(vars)

if Y has value y in e
 then return $P(y \mid Pa(Y)) \times$ **Enumerate-All**(REST(vars), e)
else return $\sum_y P(y \mid Pa(Y)) \times$ **Enumerate-All**(REST(vars), e_y)

where e_y is e extended with $Y = y$
Evaluation tree

Enumeration is inefficient: repeated computation

\(P(j \mid a) P(m \mid a) \) for each value of \(e \)
Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

\[P(B|j, m) = \alpha \sum_e \sum_a \sum_j P(a|B, e) P(j|a) P(m|a) \]
\[= \alpha P(B) \sum_e \sum_a \sum_j P(a|B, e) P(j|a) P(m|a) \]
\[= \alpha P(B) \sum_e \sum_a P(e) \sum_j P(a|B, e) P(j|a) f_M(a) \]
\[= \alpha P(B) \sum_e P(e) \sum_a P(a|B, e) f_J(a) f_M(a) \]
\[= \alpha P(B) \sum_e P(e) \sum_a f_A(a, b, e) f_J(a) f_M(a) \]
\[= \alpha P(B) \sum_e P(e) f_{A|M}(b, e) \text{ (sum out } A) \]
\[= \alpha P(B) f_{E|A|M}(b) \text{ (sum out } E) \]
\[= \alpha f_B(b) \times f_{E|A|M}(b) \]
Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

$$\sum_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_X$$
assuming f_1, \ldots, f_i do not depend on X

Pointwise product of factors f_1 and f_2:

$$f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l) = f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l)$$
E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$
function Elimination-Ask\((X, e, bn) \) returns a distribution over \(X \)

inputs: \(X \), the query variable
\(e \), evidence specified as an event
\(bn \), a belief network specifying joint distribution \(P(X_1, \ldots, X_n) \)

\[
\begin{align*}
\text{factors} &\leftarrow []; \text{vars} \leftarrow \text{Reverse}(\text{VARS}[bn]) \\
\text{for each} \; \text{var} \; \text{in} \; \text{vars} \; \text{do} \\
\quad \text{factors} &\leftarrow [\text{Make-Factor}(\text{var}, e)|\text{factors}] \\
\quad \text{if} \; \text{var} \; \text{is a hidden variable} \; \text{then} \; \text{factors} &\leftarrow \text{Sum-Out}(\text{var}, \text{factors}) \\
\text{return} \; \text{Normalize}(\text{Pointwise-Product}(\text{factors}))
\end{align*}
\]
Consider the query \(P(JohnCalls|Burglary = \text{true}) \)

\[
P(J|b) = \alpha P(b) \sum_e P(e) \sum_a P(a|b, e) P(J|a) \sum_m P(m|a)
\]

Sum over \(m \) is identically 1; \(M \) is irrelevant to the query

Thm 1: \(Y \) is irrelevant unless \(Y \in \text{Ancestors}(\{X\} \cup E) \)

Here, \(X = JohnCalls, E = \{Burglary\}, \) and \(\text{Ancestors}(\{X\} \cup E) = \{Alarm, Earthquake\} \)

so \(MaryCalls \) is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
Irrelevant variables contd.

Defn: **moral graph** of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For $P(\text{JohnCalls}|\text{Alarm} = \text{true})$, both *Burglary* and *Earthquake* are irrelevant
Complexity of exact inference

Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:
- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to **counting** 3SAT models \Rightarrow #P-complete

```
1. A v B v C
2. C v D v \neg A
3. B v C v \neg D
```
Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:
- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior
function \textsc{Prior-Sample}(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution \(P(X_1, \ldots, X_n) \)

\(x \leftarrow \) an event with \(n \) elements

\textbf{for} \(i = 1 \) to \(n \) \textbf{do}

\(x_i \leftarrow \) a random sample from \(P(X_i \mid \text{parents}(X_i)) \)

given the values of \(\text{Parents}(X_i) \) in \(x \)

\textbf{return} \(x \)
Example

\[
\begin{array}{c|c|c}
C & P(S|C) & \text{P(R|C)} \\
T & .10 & .80 \\
F & .50 & .20 \\
\end{array}
\]

\[P(C) = .50\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\end{array}
\]
Example

\[
P(C) = 0.50
\]

\[
\begin{array}{c|c}
C & P(S|C) \\
T & 0.10 \\
F & 0.50 \\
\end{array}
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
T & 0.80 \\
F & 0.20 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array}
\]
Example

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & .10 \\
F & .50 \\
\end{array}
\]

\[
\begin{array}{c|c}
P(C) & .50 \\
\end{array}
\]

\[
\begin{array}{c|c}
P(R|C) & \\
\hline
T & .80 \\
F & .20 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\end{array}
\]
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

<table>
<thead>
<tr>
<th>P(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
</tr>
</tbody>
</table>

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|-----|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event

\[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) = P(x_1 \ldots x_n) \]

i.e., the true prior probability

E.g., \(S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t) \)

Let \(N_{PS}(x_1 \ldots x_n) \) be the number of samples generated for event \(x_1, \ldots, x_n \)

Then we have

\[
\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} \\
= S_{PS}(x_1, \ldots, x_n) \\
= P(x_1 \ldots x_n)
\]

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: \(\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n) \)
Rejection sampling

\(\hat{P}(X|e) \) estimated from samples agreeing with \(e \)

```
function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of \( P(X|e) \)
  local variables: \( N \), a vector of counts over \( X \), initially zero
  for \( j = 1 \) to \( N \) do
    \( x \leftarrow \text{PRIOR-SAMPLE}(bn) \)
    if \( x \) is consistent with \( e \) then
      \( N[x] \leftarrow N[x]+1 \) where \( x \) is the value of \( X \) in \( x \)
  return \text{NORMALIZE}(N[X])
```

E.g., estimate \(P(Rain|Sprinkler=true) \) using 100 samples
 27 samples have \(Sprinkler = true \)
 Of these, 8 have \(Rain = true \) and 19 have \(Rain = false \).

\(\hat{P}(Rain|Sprinkler=true) = \text{NORMALIZE}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle \)

Similar to a basic real-world empirical estimation procedure
Analysis of rejection sampling

\[
\hat{P}(X|e) = \alpha N_{PS}(X, e) \quad \text{(algorithm defn.)}
\]
\[
= N_{PS}(X, e)/N_{PS}(e) \quad \text{(normalized by } N_{PS}(e)\text{)}
\]
\[
\approx P(X, e)/P(e) \quad \text{(property of } PRIOR\text{)}
\]
\[
= P(X|e) \quad \text{(defn. of conditional probability)}
\]

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if \(P(e) \) is small

\(P(e) \) drops off exponentially with number of evidence variables!
Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X | e)
    local variables: W, a vector of weighted counts over X, initially zero
    for j = 1 to N do
        x, w ← WEIGHTED-SAMPLE(bn)
        W[x] ← W[x] + w where x is the value of X in x
    return NORMALIZE(W[X])

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
    x ← an event with n elements; w ← 1
    for i = 1 to n do
        if X_i has a value x_i in e
            then w ← w × P(X_i = x_i | parents(X_i))
            else x_i ← a random sample from P(X_i | parents(X_i))
    return x, w
```
Likelihood weighting example

\[w = 1.0 \]
Likelihood weighting example

\[w = 1.0 \]
Likelihood weighting example

$w = 1.0$
\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\[w = 1.0 \times 0.1 \times 0.99 = 0.099 \]
Likelihood weighting analysis

Sampling probability for \texttt{WEIGHTEDSAMPLE} is

\[S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i|\text{parents}(Z_i)) \]

Note: pays attention to evidence in \texttt{ancestors} only

\[\Rightarrow \] somewhere “in between” prior and posterior distribution

Weight for a given sample \(z, e \) is

\[w(z, e) = \prod_{i=1}^{m} P(e_i|\text{parents}(E_i)) \]

Weighted sampling probability is

\[S_{WS}(z, e)w(z, e) \]

\[= \prod_{i=1}^{l} P(z_i|\text{parents}(Z_i)) \prod_{i=1}^{m} P(e_i|\text{parents}(E_i)) \]

\[= P(z, e) \text{ (by standard global semantics of network)} \]

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight
Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
    local variables: N[X], a vector of counts over X, initially zero
                     Z, the nonevidence variables in bn
                     x, the current state of the network, initially copied from e

    initialize x with random values for the variables in Y
    for j = 1 to N do
        for each Z_i in Z do
            sample the value of Z_i in x from P(Z_i|mb(Z_i))
            given the values of MB(Z_i) in x
            N[x] ← N[x] + 1 where x is the value of X in x
        return Normalize(N[X])
```

Can also choose a variable to sample at random each time
With $Sprinkler = true, WetGrass = true$, there are four states:

Wander about for a while, average what you see
MCMC example contd.

Estimate $\mathbf{P}(\text{Rain}|\text{Sprinkler} = \text{true}, \text{WetGrass} = \text{true})$

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
- 31 have $\text{Rain} = \text{true}$, 69 have $\text{Rain} = \text{false}$

$\hat{\mathbf{P}}(\text{Rain}|\text{Sprinkler} = \text{true}, \text{WetGrass} = \text{true})$
$= \text{Normalize}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability
Markov blanket sampling

Markov blanket of \textit{Cloudy} is \textit{Sprinkler} and \textit{Rain}
Markov blanket of \textit{Rain} is \textit{Cloudy}, \textit{Sprinkler}, and \textit{WetGrass}

Probability given the Markov blanket is calculated as follows:
\[
P(x'_i|mb(X_i)) = P(x'_i|parents(X_i)) \Pi_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))
\]

Easily implemented in message-passing parallel systems, brains

Main computational problems:
\begin{enumerate}
\item Difficult to tell if convergence has been achieved
\item Can be wasteful if Markov blanket is large: \(P(X_i|mb(X_i))\) won’t change much (law of large numbers)
\end{enumerate}
Summary

Exact inference by variable elimination:
- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:
- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables