BAYESIAN NETWORKS
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I Bayesian networks |

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link & “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values
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I Example |

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

Toothache and C'atch are conditionally independent given C'avity
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I Example |

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Farthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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I Example contd. |

Burglary
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[ Compactness |

A CPT for Boolean X; with & Boolean parents has

2% rows for the combinations of parent values @ @
Each row requires one number p for X; =true 0
(the number for X; = false is just 1 — p) @ @

If each variable has no more than % parents,
the complete network requires O(n - 2¥) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1+ 1+ 4 + 2+ 2=10 numbers (vs. 2> — 1 = 31)
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[ Global semantics |

o
P(xy,...,2,) = II'_ P(x;|parents(X;)) ﬁ
g ®

Global semantics defines the full joint distribution
as the product of the local conditional distributions:

eg., P(FAmAaN—bA—e)
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[ Global semantics |

“Global” semantics defines the full joint distribution
as the product of the local conditional distributions: @
P(xy, ... 2,) = I_ Plai|parents(X;)) (A

eg., P(FjAmAaN—-bA—e) @ @

P(jla)P(m|a)P(a|-b, —e)P(—=b)P(—e)
0.9 x 0.7 x 0.001 x 0.999 x 0.998
0.00063

Q
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I Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics

I Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

I Constructing Bayesian networks

||

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X, ..., X,
2. Fori=1ton
add X to the network
select parents from X1, ..., X; 1 such that
P(Xi|Parents(X;)) = P(X)| Xy, ..., Xi—1)

This choice of parents guarantees the global semantics:

P(Xy,...,X,) = II'_ P(X;|Xy, ..., X; 1) (chain rule)
= II'_,P(X,|Parents(X;)) (by construction)



I Example

Suppose we choose the ordering M, J, A, B, E

P(J

M) =P(J)?
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I Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A]J, M) = P(A)?
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I Example

Suppose we choose the ordering M, J, A, B, E

N =

Burglary

P(J|M) = P(J)? No

P(A|J, M) = P(A[J)? P(A|J, M) = P(A)? No
P(B|A, J, M) = P(B|A)?

P(B|A,J, M) = P(B)?
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I Example |

Suppose we choose the ordering M, J, A, B, E

Burglary

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)? No

Earthquake

P(B|A,J, M) = P(B|A)? Yes

P(B|A, J,M) = P(B)? No

P(E|B, A, J, M) = P(E|A)?

P(E|B,A,J,M)= P(E|A, B)?

I Example |

Suppose we choose the ordering M, J, A, B, E
Earthquake

P(J|M)=P(J)? No -

P(A|J, M) = P(A|J)? P(AlJ,M) = P(A)? No

P(B|A,J, M) = P(B|A)? Yes

P(B|A, J,M) = P(B)? No

P(E|B, A, J, M) = P(E|A)? No

P(E\B,A,J,M)= P(E|A,B)? Yes

I Example contd. |

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2+ 4 4 2 + 4 =13 numbers needed
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I Example: Car diagnosis |

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

starter
klocked broke|
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I Example: Car insurance |
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I Compact conditional distributions |

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian\VV US NV Mexican
E.g., numerical relationships among continuous variables
JLevel
ot

= inflow + precipitation - outflow - evaporation
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Il

Compact conditional distributions contd.

||

Noisy-OR distributions model multiple noninteracting causes

1) Parents U, ... U} include all causes (can add leak node)

2) Independent failure probability ¢; for each cause alone
= P(X|Uy...Uj,=Ujsy...~Up) =1-1I]_ g

Cold Flu  Malaria| P(Fever)| P(=Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=02x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x 0.1

T T F 0.88 0.12=0.6 x0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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I Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? @
N
CoosD

Buys?

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)

2) Discrete variable, continuous parents (e.g., Buys?)
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I Continuous child variables

J

Need one conditional density function for child variable given continuous

parents, for each possible assignment to discrete parents
Most common is the linear Gaussian model, e.g.,:

P(Cost=c|Harvest = h, Subsidy? =true)
= N(ah+ b, 04)(c)

_r 7}(0—(ath+bt))2
7Ut\/27r P 2 o

Mean Clost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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[ Continuous child variables |

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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l Discrete variable w/ continuous parents |

Probability of Buys? given C'ost should be a "soft” threshold:
1 T
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Costc
Probit distribution uses integral of Gaussian:
O(z) = 1* N(0,1)(x)dz
P(Buys?=true | Cost=c) = ®((—c+ p)/o)
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I Why the probit? |

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

9
-0
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I Discrete variable contd. |

Sigmoid (or logit) distribution also used in neural networks:

1
P(Buys?=true | Cost=c¢) = ————————~
1+ exp(—2-<H)

Sigmoid has similar shape to probit but much longer tails:
1
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[ Summary |

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables = parameterized distributions (e.g., linear Gaussian)
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