Local search algorithms

Chapter 4, Sections 3–4
Outline

♦ Hill-climbing
♦ Simulated annealing
♦ Genetic algorithms (briefly)
♦ Local search in continuous spaces (very briefly)
Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution.

Then state space = set of “complete” configurations;
find **optimal** configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities
Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., $n = 1$ million
Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing (problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← Make-Node(Initial-State[problem])
loop do
 neighbor ← a highest-valued successor of current
 if Value[neighbor] ≤ Value[current] then return State[current]
 current ← neighbor
end
Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves 😊 escape from shoulders 😐 loop on flat maxima
Simulated annealing

Idea: escape local maxima by allowing some “bad” moves but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem
 schedule, a mapping from time to “temperature”

local variables: current, a node
 next, a node
 T, a “temperature” controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do
 T ← schedule[t]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ∆E ← Value[next] – Value[current]
 if ∆E > 0 then current ← next
 else current ← next only with probability $e^{\Delta E/T}$
Properties of simulated annealing

At fixed “temperature” T, state occupation probability reaches Boltzmann distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \implies always reach best state x^*

because $e^{\frac{E(x^*)}{kT}} / e^{\frac{E(x)}{kT}} = e^{\frac{E(x^*) - E(x)}{kT}} \gg 1$ for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

Fitness Selection Pairs Cross-Over Mutation
Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs ≠ evolution: e.g., real genes encode replication machinery!
Continuous state spaces

Suppose we want to site three airports in Romania:
 – 6-D state space defined by $(x_1, y_2), (x_2, y_2), (x_3, y_3)$
 – objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$
 sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm \delta$ change in each coordinate

Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)$$

to increase/reduce f, e.g., by $x \leftarrow x + \alpha \nabla f(x)$

Sometimes can solve for $\nabla f(x) = 0$ exactly (e.g., with one city). Newton–Raphson (1664, 1690) iterates $x \leftarrow x - H_f^{-1}(x) \nabla f(x)$
to solve $\nabla f(x) = 0$, where $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$